Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

Lucien Van Hamme

The p-adic gamma function and the congruences of Atkin and Swinnerton-Dyer

Groupe de travail d'analyse ultramétrique, tome 9, $\mathrm{n}^{\circ} 3$ (1981-1982), exp. n ${ }^{\circ}$ J17, p. J1-J6
http://www.numdam.org/item?id=GAU_1981-1982_19_3_A18_0
© Groupe de travail d'analyse ultramétrique
(Secrétariat mathématique, Paris), 1981-1982, tous droits réservés.
L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE p-ADIC GAITA FUNCTICN AND THE CONGRUENGES CF ATKIN AND SNINNERTON-DYER

$$
\begin{gathered}
\text { by Lucien VAN HAilE }\left(^{*}\right) \\
\text { [Vrije Universiteit Brussel] }
\end{gathered}
$$

1. Introduction.

The padic gamma function is defined as follows.
Whrite

$$
\Gamma_{p}(n)=(-1)^{n} \prod_{(i, \rho)=1}^{n-1} i \prod_{1}^{n} \text { for } n \in \mathbb{N}, n \geqslant 2
$$

The sequence $n \rightarrow \Gamma_{p}(n)$ is the restriction of a continuous function $\Gamma_{p}: \underset{\sim}{Z} \rightarrow \underset{\sim}{Z}{\underset{p}{*}}^{*}$ which is, by definition, the p-adic gamma function.

We will need the following properties of this function [5]:
If $x \equiv y\left(\bmod p^{r}\right)$, then $\Gamma_{p}(x) \equiv \Gamma_{p}(y)\left(\bmod p^{r}\right)$.
If $p \neq 2$, then $\Gamma_{p}(x) \Gamma_{p}(1-x)=(-1)^{R(x)}$ where $R(x)$ is the representative of $x \bmod p$ in the $\operatorname{set}\{1,2, \ldots, p\}$.

We will discuss the following two formulas.
FORMULA 1. - If p is a prime number of the form $p=1+3 m, m \in \mathbb{N}$, then

$$
\begin{equation*}
\Gamma_{p}\left(\frac{1}{3}\right)^{3}=\frac{a+\sqrt{-3} b}{2} \tag{F.1}
\end{equation*}
$$

where a and b are integers defined by the conditions $4 p=a^{2}+3 b^{2}, b \equiv 0$ $(\bmod 3), \quad a \equiv+1(\bmod 3) \quad$ and $a \equiv \sqrt{-3} b(\bmod p)$.

FORUULA 2. - If p is a prime number of the form $p=1+4 m, m \in \underline{N}$, then

$$
\begin{equation*}
\Gamma_{p}\left(\frac{1}{4}\right)^{2}=-i(a+i b) \tag{F.2}
\end{equation*}
$$

where $i^{2}=-1, i \equiv\left(\frac{p-1}{2}\right):(\bmod p)$, and a and b are integers defined by the conditions $p=a^{2}+b^{2}, a \equiv 1(\bmod 4)$ and $a \equiv i b(\bmod p)$.

The formulas (F.1) and (F.2) can be proved in several ways. They are both special

[^0]cases of the formula of Gross-Koblitz ([3], [5]), and they can also be deduced from the p-adic version of the formula of Chowla-Selberg (formula (4.12) of [3] and (3.10) of [4]).

The purpose of this note is to prove the formulas by means of the congruences of Atkin and Swinnerton-Dyer.

The fact that the values of the p-adic gamma function are related to certain elliptic curves is hardly suprising since the (complex) formula of ChowlamSelberg shows that there is a relation between the (complex) gamma function and elliptic functions.

We will only give the detailed proof of (F.1). The proof of (F.2) is similar.

2. The congruences of Atkin and Swinnnerton-Dyer.

THEOREN: [1]. - Let $p \neq 2$ or 3 and let $y^{2}=x^{3}-B x-C$ be an elliptic curve over ${\underset{p}{\text { with }}}_{{\underset{p}{p}}^{y}=t^{-3}+\ldots \text {, the field of } p \text { and write }}^{\text {eleinents. Let }} x=t^{-2}+\sum_{n=-1}^{\infty} c(n) t^{n}$ be any expansion,

$$
-\frac{1}{2 y} \frac{d x}{d t}=1+\sum_{n=1}^{\infty} a(n) t^{n-1} B, C, c(n), a(n) \in \underset{\sim}{Z} p
$$

Then $a(n p)-A a(n)+p a\left(\frac{n}{p}\right) \equiv 0\left(\bmod p^{r+1}\right)$, if $n \equiv 0\left(\bmod p^{r}\right)$, where

$$
a\left(\frac{n}{p}\right)=\left\{\begin{array}{cc}
0 & \text { if } p \nmid n \\
a\left(\frac{n}{p}\right) & \text { if } p \mid n
\end{array}\right.
$$

and $p-A=N_{p}=$ the number of point.s on the affine curve.
3. Proof of (F.1).

We now apply the theorem of Atkir and Swinnerton-Dyer to the curve

$$
\begin{equation*}
y^{2}=x^{3}+\frac{1}{4} \tag{1}
\end{equation*}
$$

In order to simplify the calculations, we replace y by $y+\frac{1}{2}$, and write the equation in the form
(2)

$$
y^{2}+y=x^{3}
$$

If we put $t=\frac{x}{y}$ (the locai parameter at 0) and $s=\frac{1}{y}$, the equation (2) gives

$$
\begin{equation*}
s+s^{2}=t^{3} \tag{3}
\end{equation*}
$$

Hence

$$
s=t^{3} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m+1}\binom{2 m}{m} t^{3 m}
$$

Since $y=\frac{1+s}{t^{3}}$ and $x=\frac{1+s}{t^{2}}$, we know the expansions of x and y.
However, what we really need are the coefficients in the expansion of

$$
w=-\frac{\frac{d x}{d t}}{2 y+1}=-\frac{s \frac{d x}{d t}}{2+s}
$$

Now $x s=t, \frac{d x}{d t} s+x \frac{d s}{d t}=1$ and from (3) we have $\frac{d s}{d t}=\frac{3 t^{2}}{1+2 s}$. Hence

$$
\omega=\frac{x \frac{d s}{d t}-1}{2+s}=\frac{1}{2+s}\left[\frac{3 t^{3}}{s(1+2 s)}-1\right]=\frac{1}{1+2 s}= \pm \frac{1}{\sqrt{1}+4 t^{3}}
$$

Since the constant term of ω is +1 , we must take the + sign.
Hence

$$
w=\sum_{m=0}^{\infty}(-1)^{m}\binom{2 m}{m} t^{3 m}
$$

and

$$
\begin{aligned}
& a(n)=0 \quad \text { if } n \neq 1 \quad(\bmod 3) \\
& a(n)=(-1)^{m}\left(\begin{array}{c}
2 m \\
m
\end{array} \quad \text { if } n=1+3 m\right.
\end{aligned}
$$

Let p be a prime number, $\mathrm{p} \equiv 1(\bmod 3)$. Put $\mathrm{p}^{\mathbf{r}}=1+3 \mathrm{~m}_{\mathbf{r}}$. Hence

$$
\begin{equation*}
m_{0}=0, \quad m_{r+1}=p m_{r}+m_{1} \tag{4}
\end{equation*}
$$

If we apply the theorem of Atkin and Swinnerton-Dyer with $n=p^{r}$ we get, for $r \geqslant 1$,

$$
\begin{aligned}
& a\left(1+3 m_{r+1}\right)-A a\left(1+3 m_{r}\right)+p a\left(1+3 m_{r-1}\right) \equiv 0\left(\bmod p^{r+1}\right) \\
& (-1)^{m_{r+1}}\left(\sum_{m_{r+1}}^{2 m_{r+1}}\right)-A(-1)^{m_{r}}\left({\underset{r}{m_{r}}}_{2 m_{r}}\right)+p(-1)^{m_{r-1}}\left(m_{r-1}^{2 m_{r-1}}\right) \equiv 0 \quad\left(\bmod p^{r+1}\right)
\end{aligned}
$$

Since m_{r} is even this simplifies to
(5)

$$
\binom{2 m_{r+1}}{m_{r+1}}-A\binom{2 m_{r}}{m_{r}}+p\binom{2 m_{m-1}}{m_{r-1}} \equiv 0\left(\bmod p^{r+1}\right), r \geqslant 1
$$

For $r=0$, we simply get

$$
\begin{equation*}
\binom{2 m_{1}}{m_{1}}=A \quad(\bmod p) \tag{6}
\end{equation*}
$$

We now turn te the calculation of $A=p-N_{p}$. We will determine N_{p}, the number of points, over ${\underset{F}{p}}$, on the projective curve $z y^{2}=x^{3}+\frac{z^{3}}{4}$.

Since this curve has one point at infinity $N_{p}^{\prime}=N_{p}+1$. But N^{\prime} is also the number of points on the projective curve $u^{3}+\mathrm{p}_{3}=\mathrm{p}_{3}$. This follows from the birational transformation

$$
x=-\frac{1}{u+v}, \quad y=\frac{\sqrt{-3}}{2} \frac{u-v}{u+v}
$$

which transforms (1) in $u^{3}+\nabla^{3}=1$. Note that $\sqrt{-3} \in{\underset{-p}{p}}$.
A well-known theorem of Gauss ([2], [6]) states that for $p \equiv 1(\bmod 3)$, the number of points on the projective curve $u^{3}+v^{3}=w^{3}$ is equal to $p+1-a$, where the integer a in deterained by the decomposition $4 p=a^{2}+3 b^{2}$ and the congruences $a \equiv-1(\bmod 3), b \equiv 0(\bmod 3)$.

Hence $N_{p}=p-a$ and the number A in (5) and (6) is equal to a.
Observe that (6) is a classical congruence of Jacobi and Stern.
We now use (5) to calculate $\Gamma_{p}\left(\frac{1}{3}\right)^{3}$.
Let g be a positive integer, and put $h=\left[\frac{\mathrm{g}}{\mathrm{p}}\right]$. Suppose that $\left[\frac{2 \mathrm{~g}}{\mathrm{p}}\right]=2\left[\frac{\mathrm{~B}}{\mathrm{p}}\right]$, then

$$
\begin{gathered}
g!=\prod_{i=1}^{g} i=p^{h} h!\prod_{\substack{i=1 \\
(i, p)=1}}^{g} i=(-1)^{g+1} \Gamma_{p}(1+g) p^{h} h! \\
\binom{2 g}{g}=\frac{(2 g)!}{g!g!}=\frac{(-1)^{1+2 g} \Gamma_{p}(1+2 g) p^{2 h}(2 h)!}{(-1)^{2+2 g} \Gamma_{p}(1+g)^{2} p^{2 h}(h!)^{2}}
\end{gathered}
$$

so

$$
\binom{2 g}{g}=-\binom{2 h}{h} \frac{\Gamma_{p}(1+2 g)}{\Gamma_{p}(1+g)^{2}}
$$

We use this with $g=m_{r+1}$. From (4), we see that $h=m_{r}$ and $\left[\frac{2 g}{p}\right]=2\left[\begin{array}{c}0 \\ 0\end{array}\right]$. Hence

$$
\begin{equation*}
\binom{2 m_{r+1}}{m_{r+1}}=-\left(\frac{2 m_{r}}{m_{r}}\right) \frac{\Gamma_{p}\left(1+2 m_{r+1}\right)}{\Gamma_{p}\left(1+m_{r+1}\right)^{2}} . \tag{7}
\end{equation*}
$$

From the definition of m_{r+1}, it is clear that $m_{r+1} \equiv-\frac{1}{3}\left(\bmod p^{r+1}\right)$.
Using the properties of the p-adic gamma function stated in the intmduction, we deduce from (7)

$$
\left(\begin{array}{c}
\frac{2 m}{r+1} \\
\left(\begin{array}{c}
m_{r+1} \\
2 m_{r} \\
m_{r}
\end{array}\right)
\end{array}-\frac{\Gamma_{p}\left(\frac{1}{3}\right)}{\Gamma_{p}\left(\frac{2}{3}\right)^{2}} \equiv-\Gamma_{p}\left(\frac{1}{3}\right)^{3} \quad\left(\bmod p^{r+1}\right)\right.
$$

Substituting in (5), we obtain

$$
-\Gamma_{p}\left(\frac{1}{3}\right)^{3}-a-p \Gamma_{p}\left(\frac{1}{3}\right)^{-3} \equiv 0(\bmod p r)
$$

If $r \rightarrow \infty$, we conclude that $\Gamma_{p}\left(\frac{1}{3}\right)^{3}$ is a root of $t h$: equation

$$
\begin{equation*}
x^{2}+a X+p=0 \tag{3}
\end{equation*}
$$

The discri!minant of this equation is $a^{2}-4 p=-3 b^{2}$, and hence

$$
\Gamma_{p}\left(\frac{1}{3}\right)^{3}=\frac{-a \pm b \sqrt{-3}}{2}
$$

Note that one of the mots of (8) is a p-adic unit while the other mot is in $\mathrm{p} \underset{-}{\mathrm{Z}}$. If we fir the sign of $\mathrm{b} \sqrt{-3}$ by the congruence $-a \equiv b \sqrt{-3}$ (mod p), the root $\frac{-a+b \sqrt{ }-3}{2}$ is a p-adic unit. Hence

$$
\Gamma_{p}\left(\frac{1}{3}\right)^{3}=\frac{-a+b \sqrt{-3}}{2}
$$

This proves (F.1), where a has been replaced by - a .
4. The formula (F.2).

The proof is simular but uses the curve $y^{2}=x^{3}-x$. Putting $x=$ ty as before, we find

$$
-\frac{1}{2 y} \frac{d x}{d_{J}^{I}}=\sum_{m=0}^{\infty}(-1)^{m}\binom{2 m}{m} t^{4 m}
$$

anci

$$
\begin{aligned}
& a(n)=0 \text { if } n \neq 1 \quad(\bmod 4) \\
& a(n)=(-1)^{m}\binom{2 m}{m} \text { if } n=1+\Delta m
\end{aligned}
$$

Putting $p^{r}=1+4 m_{r}$ and reasoning in the same way as in section 3 , we obtain a congruence which has the same form as (5), but where the meaning of A is different. Formala (F.2) can be deduced fron this congruence as befnre. The congruence (6) is nnw a classical congruence due to Gauss.

REFERENCES

[1] ATKIN (A.) and S'NINIERTON-DYER (H.). - Modular fnrms on noncongruence subgmups, "Combinatnrics", p. 1-25. - Providence, American mathematical Snciety, 1979 (Prnceedings of Symposia in pure Nathematics, 19).
[2] GAUSS (C. F.). - Disquisitiones arithmeticae. - New Haven, London, Yale university Press, 1966.
[3] GROSS (B.) and KOBLITZ (N.). - Gauss sums and the p-adic Γ-function, innals of Math., Series 2, t. 109, 1979, p. 569-581.
[4] Gross (B_{6}). - On the factnrization of p-adic L-series, Invent. Matho, Berlin, t. 57,1980, p. 83-95.
[5] LaNG (S.). - Cyclotomic fields, II. - New York, Heidelberg, Berlin, Springer Verlag, 1980 (Graduate texts in Matl.ematics, 69).
[6] TATE (J.). - Rational Prints on elliptic curves, Philips Lectures, Haverford College, 1961.

[^0]: (") Lucien VAN HATYE, Faculty of applied Sciences, Jrije Universiteit Brussel, 2 Pleinlaan, B-1050 BRUSSEL (Belgique).

