The p-adic gamma function and the congruences of Atkin and Swinnerton-Dyer
Groupe de travail d'analyse ultramétrique, Volume 9 (1981-1982) no. 3, Talk no. J17, 6 p.
@article{GAU_1981-1982__9_3_A18_0,
     author = {van Hamme, Lucien},
     title = {The $p$-adic gamma function and the congruences of Atkin and Swinnerton-Dyer},
     journal = {Groupe de travail d'analyse ultram\'etrique},
     publisher = {Secr\'etariat math\'ematique},
     volume = {9},
     number = {3},
     year = {1981-1982},
     note = {talk:J17},
     zbl = {0512.12014},
     language = {en},
     url = {http://www.numdam.org/item/GAU_1981-1982__9_3_A18_0}
}
Van Hamme, Lucien. The $p$-adic gamma function and the congruences of Atkin and Swinnerton-Dyer. Groupe de travail d'analyse ultramétrique, Volume 9 (1981-1982) no. 3, Talk no. J17, 6 p. http://www.numdam.org/item/GAU_1981-1982__9_3_A18_0/

[1] Atkin (A.) and Swinnerton-Dyer (H.). - Modular forms on noncongruence subgroups, "Combinatorics", p. 1-25. - Providence, American mathematical Society, 1979 (Proceedings of Symposia in pure Mathematics, 19). | MR 337781 | Zbl 0235.10015

[2] Gauss (C.F.). - Disquisitiones arithmeticae. - New Haven, London, Yale university Press, 1966. | MR 197380 | Zbl 0136.32301

[3] Gross (B.) and Koblitz (N.). - Gauss sums and the p-adic Γ-function, Annals of Math., Series 2, t. 109, 1979, p. 569-581. | Zbl 0406.12010

[4] Gross (B.). - On the factorization of p-adic L-series, Invent. Math., Berlin, t. 57, 1980, p. 83-95. | MR 564185 | Zbl 0472.12011

[5] Lang (S.). - Cyclotomic fields, II. - New York, Heidelberg, Berlin, Springer-Verlag, 1980 (Graduate texts in Mathematics, 69). | MR 566952 | Zbl 0435.12001

[6] Tate (J.). - Rational Points on elliptic curves, Philips Lectures, Haverford College, 1961.