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DIFFERENTIALS OF THE SECOND KIND FOR FAMILIES OF MUMFORD CURVES

3*
by Lothar GERRITZEN ( )
(Ruhr-Universitsat Bochum)

The space of everywhere meromorphic differentials on a Mumford curve M of genus
g which can be integrated on the universal covering of M is a space of codimension
g€ in the full space of meromorphic differentials on M . This fact allows to con-
clude that the Gauss-Manin connection associated to an analytic family of Schottky
groups has g 1linearly independent horizontal elements which are defined everywhere
on the parameter space of the family. I will give a sketch of the proof for this re-
sult,

l, E~-functions and differentials of the second kind.

Let K ©be an algebraically closed field together with a complete non-archimedean
valuation. Let I be a Schottky subgroup of the group PGL2(K) of fractional li-
near transforrations of the Riemann surface P =K u {«»} over K. Let Z be the

domain of ordinary points of I' , see [GP], Chap. I, § 4.

THEZOREM 1. - Let h(z) be a rational function on P , whose poles all lie in 2

and let 2z

o € Z be an ordinary point for I' . Then the series

g(h 32y 5 2) 2= b3 (n(v(2)) - n(«(z,))) + 2 n(v(z))
el YeT

h(Y(ZO))¢“ h(y(zo))=m

is as a function of 2z uniformly convergent on any affinoid subdomain of Z . lts

limit is a meromorphic function on Z .

A proof of this result appears in [G], (1).

Let now I be the K-vectorspace of those meronorphic functions f£(z) on Z for

which
f(yz) - £(2) e K
for all Y e[ .

The differential df of a function from I is I-invariant and is thus a diffe-

rential of the Mumford curve M = Z/T" .

* ' .
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Denote by H the K-vectorspace of rational functions on P whose poles all lie

in 7 . One can show that any f € I is obtained as §(h , zy 3 %z) with he H,

see [G], (2).

Let Hom(I' , K) be the K-vectorspace of group homomorphisms c¢ : I # K « If we
fix a basis @, , ees , ag of the free group I, we obtain a canonical isomorphisn

Hom(I' , K) Ké when we map c¢ onto the g-tugle (c(al) y ese c(ag)) .

For any f € I we denote by P(f) the group homonorphism I' =K given by

p(£)(v) = £(yz) - £(2) o

Then P(f)(Y) is the period of the differential df with respect to the '"cycle"
Y o

The mapping

P: I~ Hom(l, K)

is K-lincar whose kernel consists of the field of I-invariant meromorphic functions

on Z which is the field of rational functions on the curve Ii . One can prove that

the mapping P : I — Hom(I', K) is surjective, sce [G], (3).

THEOREM 2. - Let Dyy eee @, be a basis of I' . Then there exist functions

g —
_ gl i=)
£l see s T € I such that P(fi)(aj) =85 = {o i £ j} .

es oo’

A meromorphic differential ® = fdz on Z is called to be of the second kind if
for any point a € Z there is a meromorphic function ha(z) on 7 such that

o - dha is analytic in a .

Denote by C? the X-vectorspace of TI-invariant differentials on 2 of the sc-

cond kind. The proof of the following theorem is given in [G], (4).

THEORE!: 3¢ - 02 = Ql(D dI where (ﬁ is the g-dinensional K-vectorspace of ana-
lytic differentials on M .

2. Fanilies of Schottky groups.
Let S be a rigid analytic space over K , see [BGR], @hap. 9. We consider the

projective line over S , namely the product space P x S together with the projec-

tion T onto the second factor.

Denote by AutS(P x S) the group of those bianalytic mapping Y : P x S = E x S

which are conpatible with 1 (i. e. vy ° =1 ).
One can prove that there is an admissible covering &= (Si)ﬂEI of 3 such YISi

is a fractional-linear transformation over Si which means that there is a matrix

a, b,
(of o)) e onglols))
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where O(Si) is the K-algebra of analytic functions on Si such that

ai(s) X 7 + bi(s)

ci(37 X 7 + di(sf

(vls)(s , 2) = .
For any point s € S we obtain a canonical homomor shisn AutS(E_x s) - PGLg(K)

by restricting vy € Auts(g'x S) to the subspace Px {s] of P x S . We denote the

restriction of Yy to P{s} by Eg .

Definition. - A subgroup I‘C:Auts(gfx S) 1is called a Schottky group over S (or
a fauily of Schottky groups parasetrized by S ) if for any point s € S the restric-
tion of the canonical houomorphisn Auts(g_x S) - PGLZ(K) to T’ gives an isomor-
phisn fron I' to a Schottky group I of PGLZ(K) .

Let now I be a Schottky group over S . The proof of the following result will

be given elsewhere.

THEOREM 4. - There exists an aduissible subdowmain 2 of P xS such that for

any s € S the intersection Z n (P x {s}) is the domain of ordinary points for

the Schottky groups FS o« If S 1is an affinoid space there is an affinoid subdomain
P C Z such that

Il
N

User v(F)

v(F) A F = enpty for almost all Yy € I,

If 3 1is irreducible, then so is the domain Z .

COROLLARY. - Z/T' = S 1is an analytic fauwily of Munford curves.

From now on let S be irreducible and H be the O(S)-algebra of meromorphic

functions on P x S whose poles and points of indeterminancy all lie in 2 .

Let Zo S~ Z be an analytic mapping such that 1 ° Zg = idS and he€H ., Let
hs be the restriction of h onto P x {s}] . Then there is a meronorphic function
g(h ; Zy 3 S z) on Z such that the restriction of &(h ; Zy 3 S z) onto

P x {s} equals §(hs ; zo(s) s 2) o Let I, %be 0(8)-nodule of meromorphic func—
tions f(s, z) on Z for which f o y~-f € O(S) for all ye I . Let Hom(l, (8))

be the free O(S)-module of rank g of all group homomornhisus c¢ : [ — o(s) .

Let P(£f)(y) := £ oy =f . Then P(f) € Hom(I , O(3)) .

THEORE! 5. - Let Wy eee ag be a basis of I . There is an admissible covering

y see o fg € IS such that

(bi)iEI of S and for any i there are functions f ,

1
P(fj)(al) =05 -

Let

= CQM/S denote the sheaf on S whose set of sections on an adnissible
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open donain U & S are the K-vectorspace of T-invariant differentials relative
to Z—-S , of the second kind on ZU =7Zn (g_x U) .

Let (%X be the subsheaf of Cb of exact differentials and H%R be the quotient
sheaf /0 -

P 1
THROREM 6, - H is a free coherent module over the structure sheaf OS on S

DR
of rank 2g « There is a canonical decouposition
1 —
HDR = dI C>(H
where O, is the subsheaf of €, of analytic differentials and dI is the sheaf
of cohonology classes of differentials of the form df with f € I.dI and o

are free nodules of rank g over «SS .

Sketch of proof : In order ot prove that Cﬁ is free of rank g , we have to ob-
serve that for any Y € I' there is a canonical differe.tial QG = (dqy/qy) e 0,
where u ~is defined on Z as in [eP], Chap. 2. While the wu, are unique up to a
unit from 'SS , the differential w, is unique. If @, , coo ag is a basis of

1

', then w , «s0 , @ is a basis for Q .
w, o,

(1)

are in the intersection S1 n S, the

The result concerning dl follows from Theorem 4. While the function f depence
on the index i , we find that dfg i) df(l)
differential of a [-invariant function and thus the cohounology class of df

equals the cohomology class of df i) . Thus they constitute a basis eleAent of dI

[a], (3atz 6), we conclude the proof.

3. Gauss~Manin-Connection.

Let V be the Gauss-Manin connection for the analytic family M = z/T -8 of
Munford curves, see [K0], [K], [D]. Thus for any vector field D on S there is

an extension V, on the nodule sheaf HéR(M/S)

THEOREH 7. - The restriction V|dI of V onto dI is trivial, i. e. there is a

basis of horizontal elements in aT .

Sketch of proof : The result is local in nature. If € = (S.) is an aduissible
covering of S and if we have proved the result for the famllr over S for all

i , the proof is complete.

Using Theoren 5 we may therefore assuue that there are function £ 9 ees s fg el

such that P(fi)(aj) = aij , where al y ese o ag is a basis of I' . We have to
show that VD(a?i) = 0 where afi is the cohonology class of df, in H;R . Now
by the very definition of VD we know that VD(dfi) d(Df ) where D is an ex-

tension of the derivation D to the field of wmeromorphic function on M with
A .
D(x) = 0 for a meromorphic function x on M which is not a meromorphic function

on 3 . ( = is not constant on all the curves of the family M -3 ).
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~
We are done if we can show that Dfi is I-invariant. This seens obvious as

(Dfi) sy = D(fi 0 uj) = D(fi + éij) = D(fi) .

The probleu with this argument is that D is deffhed only on the field of reromor-
phic functions »f M and fi is not in it. But one can define a unique extension
of D to a vector field on % which does justify the above line of argument as

soon as we have shown

A

(Dfi) °ow = D(fi o w) .
But D'(f) := (D(f o a)) oo™t - D(f) is an analytic vector field on Z with
D'(f) =0 for all meromorphic functions on M . Thus D' =0 and

(Dfi) o = D(fi ow) ,

4. Elliptic case.

The first nontrivial example is the family of Tate curves which has been studicd

by a number of authors, see for example [R], [Rb], [K], [DR].
Assuue that char K # 2 .

S={qek: 0<]|q| <13
Z2=1{(q, 2)eK°: qes, zek- {0}}

alq , z) := (q , qz) 1is a bianalytic map Z — Z . Let [ be the transforuation

group zencrated by « o Then M = z/I' =S is the universal family of Tate curves.

The de Rhau cohomology space H%R for the family M - S is freely generated over
the structure sheaf on S by the class 7, of the analytic differential (az/z)

1
and by the class 72 of the meromorphic differential d§ where
. 1 e 1 1
8(q , 2) =—=—+2___ ( - —)
1 b4 n=1 1 - qn 2 1 - qn z 1
1 @ q" z g 7
=1T-3z° Zn=1 ( n n -1)

for which holds

e(q , qz) - §(q , 2) =1

1

1“§(Q7Z)

¢(q, - 1) =2 if char K # 2

§(q , 27 h)

E(q , W) =1 if ﬂ2=q.

Denote by (3/dq) (resp. (0/0z) the canonical partial derivatives with respect

3
to the first (resp. second) variable of Z =95 x K .



_, O%

2 =73

%

1 -, B2
o =z z

Then & , ¢' are [-invariant meromorvhic functions on Z and the following
equation holds }
Q‘Z

Il

4(e - el)(é - e2)(@ - e3)

where ey = @(q , = 1), e, = (g, ™, ey = $(q , = ) with 1 a fixed square

root of 'q ’

If we put
¢ - el
X =g -¢
2 1
@l
y &=
_ 3/2
2(e2 el)
then
2 .
v = x(x - 1)(x = A)
with
e. - ¢
1 ‘
2 1

which is the Legendre normal form for the family of Tate curves.

Let

where
}'{——.’é}_{ ~x’—-.§x_
T oq '’ ~dz ¢
We clain that the vector field Dq coincides with the vector field ﬁ for

D = (&/9q) in the proof of Theorem 7.

Dq(x) =0 = ﬁ(x)

of =& .

D (f) == =D(F) if f is analytic on S .

q oq
Thus D =D .

q .
vV = R ¢ - PN v . .

Let © (Vs/aq) Then V(fdx) Dq(f) dx by definition of ( a/Oq)
One can by direct computation show that

v(df) = d(Dq(f))

and that Dq(g) = (38/3q) - (%/x') (9g/0z) is TI-invariant.
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This proves that V(Tz) = 0 which gives a nore direct proof of Theorew 7 for the
family of Tate curves.

Let o (respe. 02) be the cohomology class of (dx/2y) (resp. =x(ax/2y)) .

, . s 1
Then U, 0, 1z a basis of HDR . Let

dg=T2=A.O'l+B02.

THEOREN 8,

— é(Q9"'l)
A—ﬁ\q ’ T) = &tq , - 1)

B=,elq, n) - eq, -1)

and '% as a function of A can be given by

where

- (1/2) =
= z:n=0 (- n ? )2 (1 - )"

Sketch of proof : The proof of the first part is given by a small conputation., Cne
can use the characterization of elements T in H;R with 9(1) =0 given in [P],

(7.11), (ii), to prove the second part.

N 3 .\ Of
We find that T, = A1 - A) = 9

pergeouetric equation

L XGRS fV(cl) wherc f satisfies the hy-

> £
af2

Here one has to use the fact that the map W Aw) = x(q , — M) gives a bianaly-
tic map from S omto {A: |1 -a] <[2[}.

A1 = A) +(1-2A)-§fx-%f=o.

Thus the inverse mapping 7n(A) is an analvtic function of A .

Now we conclude that f = c.F(i) as f is analytic on {A : |1 =} < |2]} with

3

s constsnt c € X which can be determined by letting A -1 (i. e. m =0 ).
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