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DIFFERENTIALS OF THE SECOND KIND FOR FAMILIES OF MUMFORD CURVES

Lothar GERRITZEN

Groupe d’étude d’Analyse ultramétrique
(Y. AMICE, G. CHRISTOL, P. ROBBA)
lie année, 1983/84, n° 23, 8 p. 21 mai 1984

The space of everywhere meromorphic differentials on a Mumford curve M of genus

g which can be integrated on the universal covering of M is a space of codimension

g in the full space of meromorphic differentials on M . This fact allows to con-

clude that the Gauss-Manin connection associated to an analytic fanily of Schottky

groups has g linearly independent horizontal elements which are defined everywhere
on the parameter space of the family. I will give a sketch of the proof for this re-

sult.

1. and differentials of the second kind.

Let K be an algebraically closed field together with a complete non-archiwedean

valuation. Let r be a Schottky subgroup of the group of fractional li-

near transformations of the Rienann surface P = K u over K . Let Z be the

domain of ordinary points of r , see [GP], Chap. 4.

THEOREM 1. - Let h(z) be a rational function on t, whose poles all lie in Z

and let zo E Z be an or dinary point f or r. T hen the series

is as a function of z uniformly convergent on any affinoid subdonain of Z . Its

linit is a ueronorphic function on Z .

A proof of this result appears in [G], (1).

Let now I be the K-vectorspace of those meronorphic functions f(z) on Z for

which

for all 

The differential df of a function fron I is r-invariant and is thus a diffe-

rential of’ the Munford curve N = Z/I’ .

.

(*) LotharGERRITZER. Institut für Mathematik, Universitat Bochun, Postfach 1,02148,
Dr4630 BOCHUM 1 (Allemagne fédérale).
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Denote by H the K-vectorspace of rational functions on P whose poles all lie

in Z .One can show that any f ~ I is obtained as 03BE(h , zO ; z) with 

se e [ G ] , (2).

Let Hom(r, K) be the K-vectorspace of group homomorphisms c : 0393 ~ K . If we

fix a basis ... ~ ~ of the free group r, ixe obtain a canonical isomorphism

K) ~ K when we map c onto the ... , 

For any f ~ I we denote by P(f) the group homomorphism r - K given by

Then p(f)(~) is the period of the differential df with respect to the "cycle"

y .

The napping

is K-linear whose kernel consists of the field of r-invariant meromorphic functions

on Z which is the field of rational functions on the curve M . One can prove that

the mapping P : I -" Hom(r , K) is surjective, see [G], (3).

THEOREM 2. - Let 03B11 , ... , y be a basis of F . Then there exist functions

f1 , ..., fg ~ I such that P(fi)(03B1j) = &#x26;ij = {1:p: i = j i~ j}.
A meromorphic differential 03C9 = fdz on Z is called to be of the second kind if

for any point a 6 Z there is a meromorphic function h (z) on Z such that

db - dh is analytic in a .
a

Denote by C~ the K-vectorspace of r-invariant differentials on Z of the se-

cond kind. The proof of the following theorem is given in (4).

THEOREM 3. - 03A92 == Q. 0 dl where is the g-dimensional K-vectorspace of ana-

lytic differentials on M .

2~ s.

Let S be a rigid analytic space over K , see [BGR], Chap. 9. consider the

projective line over S , nanely the product space P x S together with the projec-

tion 17 onto the second factor.

Denote by x S) the group of those bianalytic mapping y : P x S ~ P x S

which are compatible with ir (i. e. ’yoff=’rf).

One can prove that there is an admissible covering 6= such 

is a fractional-linear transformation over S. which means that there is a matrix
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where 0(S.) is the K-algebra of analytic functions on S. such that
1 1

For any point s E S we obtain a canonical homomorhien AutS(P x S) - 
by restricting Y E x S) to the subspace P x [s} of P x S . We denote the

restriction o f ’Y to by 6 .
- 

’ 

s

Definition. - A subgroup r ~ Aut-(P~ x S) is called a Schottky group over S (or
a family of Schottky groups parametrized by. S ) if for any point S E S the restric-

tion of the canonical homomorphism AutS(P x S) - to f gives an isomor-

phism from r to a Schottky group fs of 

Let now [ be a Schottky group over S . The proof of the following result will

be given elsewhere.

THEOREM 4. - There exists an admissible subdouain Z of P x S such that for

any the intersection Z n (P x is the domain of ordinary points for

the Schottky groups hs . If S is an affinoid space there is an affinoid subdomain

such that

y(F) n F = empty for almost all 03B3 E F .

If S i s irreducible, then so i s the docain Z .

COROLLARY. - S is an analytic family of Mumford curves.

From now on let S be irreducible and H be the of meromorphic
functions on P x S whose poles and points of indeterninancy all lie in Z .

Let S ~ Z be an analytic mapping such that 03C0 ° Zo = id and h E H . Let

h be the restriction of h onto P x [a} . Then there is a meromorphic function
s 

-

03BE(h ; Zo ; ; s , z) on Z such that the restriction of z ; s , z) onto

P x {s} equals $(h ; z) . Let IS be O(S)module of meromorphic func-

tions f ( s , y z ) on Z for which f 0 ~ - f E 0(s) for all y E r . Let Hom(r, (8))
be the free of rank g of all group homomorphisms c : F - 0(s) .

Let P(f)(-y) := f 0 ’y = f . Then P(f) E Hom(r , 0(S)) .

THEOREM 5. - Let ... , 03B1g be a basis of f. There is an admissible covering

of S and for any i there are functions f , ... , f el such that

Let Q = / S denote the sheaf on S whose set of sections on an admissible
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open domain U ~ S are the K-vectorspace of 0393-invariant differentials relative

to Z ~ S , of the second kind on ZU = Z n x u) .

Let °ex be the subsheaf of °2 of exact differentials and be the quotient
sheaf 

ex 
.

THEOREM 6. - H- is a free coherent module over the structure sheaf Os on S

of rank 2g . There is a canonical decomposition

where Q is the subsheaf of 03A92 of analytic differentials and dl is the sheaf

of classes of differentials of the form df and Q.
are free modules of rank g over 

Sketch of proof : In order ot prove that Q is free of rank g y we have to ob-

serve that for any Y ~ r there is a canonical differential oo 
h. 
= 

where u 
cv 

is defined on Z as in Chap. 2. While the u are unique up to a

unit from the differential 03C903B1 is unique. If 03B11 , ... , 03B1g is a basis of

0393 , then 03C903B11 , ..., 03C903B1g 
is a basis for 03A91 . 

(i)
The. result concerning dl follows from Theorem 4. While the function f . depends

on the index i , we find that dfB ’ - df. ’ are in the intersection S n S, the
J J ~ (..

differential of a F-invariant function and thus the cohomology class of df_ (1)
(-) 0

equals the cohonology class of df.. Thus they constitute a basis element of dl

(Satz 6), we conclude the proof. 
_

Let V be the Gauss-Manin connection for the analytic family M = Z/F -’ S of

Mumford curves, see [K], [D]. Thus for any vector field D on S there is

an extension V on the module sheaf H~-(M/S) .
THEOREM 7. - The restriction ~|dI of ~ onto dl is trivial, i. e. there is a

basis of horizontal elements in dl .

Sketch of proof : The result is local in nature. If 6 = (S. ) is an admissible

covering of S and if we have proved the result for the family over S, for all

i , the proof is complete.

Using Theorem 5 we may therefore assume that there are function ... , f e I
such that P(f )(03B1j) = 03B4i j, where 03B11 , ... 03B1g is a basis of F . We have to

show that V (df.) =0 where df. is the cohomology class of dfi in H1DR . Now

by the very definition of ~D we know that ~D(dfi) = where D is an ex-

tension the derivation D to the field of meromorphic function on M with

D(x) = 0 for a meromorphic function x on M which is not a meromorphic function

on S . ( == is not constant on all the curves of the family M -~ S ).
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are done if we can show that Df , is 0393-invariant. This seems obvious as

03B1j = (fi ° 03B1j) = + 03B4ij) == (fi) .
The problem with this argument is that D is defined only on the f ield of meromor-

phic functions of M and f. is not in it. But one can define a unique extension

of D to a vector field on Z which does justify the above line of argument as

soon as we have shown

But D’ (f) := a-l - is an analytic vector field on Z with

D1(f) =0 for all neromorphic functions on M . Thus D’ = 0 and

4. Elliptic case.

The first n ontrivial example is the family of Tate curves which has been studied

by a number of authors, see for [K], [DR].

Assuue that char K # 2 .

is a bi analytic map Z -~ Z . Let r be the transforation

group generated by a . Then M = Z~1’ -~ S is the universal family of Tate curves.

The de Rham cohomology space R-p for the family S is freely generated over

the structure sheaf on S by the class T of the analytic differential (dz/z)
and by the class T of the meromorphic differential d§ where

for which holds

Denote by (9/dq) (resp. the canonical partial derivatives with respect
.

to the first (resp. second) variable of Z = S x K .
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Then 03A6, 9’ are I -invari an t meromorphic functions on Z and the following

equation holds ,

where e ~ = 4?(q , - e 2 ==~(q , ’~~ , e 3 = ~(q , -~) with n a fixed square

root of q.

If we put

then

with

which is the Legendre normal form for the family of Tate curves.

Let .

where

Â

We claim that the vector field D q coincides ~’ith the vector field D for

D = (V~q) in the proof of Theorem 7.

Thus D=D .

Let ~ = (~~/~q) . Then D (f) dx by definition of (~~/~q).
One can by direct computation show that

and that D (03BE) = ( 8§/dq) - (x/x’) (5§/5z) is 0393-invariant.
q
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This proves that V(T2) = 0 which gives a more direct proof of Theorem 7 for the

family of Tate curves.

Let 03C31 (resp. a ) be the cohomology class of (resp. x(dx/2y)) .

Then 03C31 , a is a basis of Let

THEOREM 8.

and -~ as a f unc t ion o f ~ c an be gi ven by

where

Sketch of proof : The proof of the first part is given by a small couputation. One

can use the characterization of elements T in Hk with vCr) = 0 given in lPl,

(7.1l)y (ii)y to prove the second part.

We find that 1"2 = B(l - A) -~ A(l - A) fV(01) where f satisfies the hy-

pergeometric equation

Here one has to use the fact that the = x(q , - n) gives a bi analy-

tic map from S onto {03BB:

Thus the inverse mapping is an analytic function of A..

Now we conclude that f = as f is analytic on {03BB : |1 - 03BB|  |2|} with

a constant c ~ K which can be determined by letting X - 1 ( i. e. 0 ) .
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