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Expos’ ~~ 22

"Towards a Schwarz list for Lamé’s differential operators

via division points on elliptic curves"

by

F. Baldassari (Padova)

1. - Lame’s operator . 

11: is the following (family of) second order l’inear differential operator(s)
on P~

/i iB ! = = D2 jL 1 + B

where D = d/dx , y - f(x) = 4x - g2x - 93 = 4 II is an elliptic~ " 

i=1 
curve E , n i s a rational number and B i s a constant cal led "the accessory

paremeter" . Todays di scussi on will be mainly i n characteri stic zero, and a

B wil l be algebraic numbers ; but we will occasionally refer to mod p proper-

ties of L , where p i s a pri me number s . t. p 1 2,3, B , g2,g3 are

. p-i ntegral and E has good reduction mod p .

From the Riemann viewpoint (1 1) is a regular operator on P (t) with Riemann

scheme :

/ ~- - B
(1.2) 0 -n/2 ; x .

B 1/2 (n+l)/2 /

When pulled back to E , vna x : E ~ P , 11 becomes

. 
2

(1.3) (y~) - [n(n+l)x + B]

so 11 only has one si ngular point which we the zero point

Or for the addition law on E) with exponents -n, n+1 .

The Lame operator has been the object of some attention in the past few years for

several reasons.



2

I) (The problem of acces sory parameters : very classical, but still open).

Ln is the first case, in order of increasing complication, of an operator which

is not determined by its Riemann scheme (1.2). Namely i t is of order 2 and has 4

singularities on Notice the independence of (1.2) from B . Some people are

interested in the problem of "readi ng off the monodromy group of a d.e. from

its coefficients" and in particular in understanding (for fixed (1.2) i.e.

n and f) the dependence of the monodromy group up on the accessory parameter.

Wi th respect to this problem, this operator is the first example that should be

considered.

II) (The Grothendieck conjecture) L is not (in general) an operator of

Picard-Fuchs type, i.e. it does not, in general, admit an algebraic integral

formula for the solutions. This was first noticed by Deligne, who exhibited e

class of Ln non-globally nilpotent. So, the Katz proof of the Grothendieck

conjecture does not apply to Ln . . D.V. and G.V. Chudnovsky have published a

proof of that conjecture that applies to Ln ("Applications of Padé approximations
to the Grothendieck conjecture on linear differential equations" in "Number

. Theory, New York 1984, LNM 1 135 pp. 52-100").

Unfortunately, they apply thei r result incorrectly and deduce that, for 

(any, fixed, f) is globall y nil potent i ff B has one of the 2n+l special
values {B~} that are classically known to give rise to the son 

m=1 , ... , 2n+1

called "Lame functions" of degree n , E~(x), m = 1 ,..., 2n+l (see Whittaker

of Watson 23.42). The mistake they made is to assume, perhaps misunderstanding an

assertion in Poole (Chap. IX § 39), that can never have a full set

of algebraic solutions. In fact no counter example to the former assumption was

classically known, and in fact stronger con jectures have been formulated. But we

can disprove them by exhi bi ti ng an equation with projective monodromy group

dihedral of order 6 namely with f(x) = 4x - g3 . ..



3

III) (The probl em Of global nilpotence). It i s extremel y difficult to decide

whether a given d.e. is globally nil potent, unless an algebraic integral formula

exists. So L is again the first non trivial example to look at.

Dwork ("Anthmetic theory of differential equati ons" INDAM, Symp. Math.,

Vol XXIV, 1981, pp. 225-243) showed that is globally nilpotent iff

ei ther B is one of the m = 1 ,..., 2n+1 , or L has in fact zero

p-curvature for almost a11 primes p . He also conjectured that this second

possibility could never occur. We therefore disproved this conjecture.

NB. In fact, modulo the Grothendieck conjecture, the Dwork conjecture was equiva-

lent to the statement that Ln should never have a full set of algebraic solu-

tions. This is because when one sol ution is a lamé function, the other is automa-

tically transcendal.

IV) (Schwarz list and torsion of elliptic curves) - In a paper of 1981

(J.D.E. 41, 1981, pp. 44-58), we tried to analyse all possible cases (any 

in which a Lame operator has a ful l set of algebraic solutions. For the

results were quite complete and will be briefly reviewed later. But in the case

we were only able to show the close relation between algebraic solutions

to Ln and tors ion points on E . In particular we could bound the order of the

projective monodromy group of L. (when finite, hence necessari ly dihedral) by

twice the exponent of the group of division points on E , rational over a certain

quadratic extension K of 9!(g~~g~ .B). Me were unable at that ti me of exhibiting
a single example of this situation. Me now feel that we have a better understan-

ding of this case. This will be the subject of the present talk.

I will now proceed to explain my results in completely classical terms

(over t) : from the above discussion it should be clear that this type of results

give some insight also in the non-classical problems II and I I I .
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2. - Finite monodromy for .

In general, if L is a second order l inear d.o. defined over a Riemann surface

C and P 1 , ... , P2 are the singular points of L or C and if T denotes (as it

wil l be the case al l over this Talk) a ratio of independent solutions of L at

an ordinary point P of L , continuation of T along closed paths y issuing

from P on C’ = CB{P1 ,..., Pr} , produces a transformation 

(2.1) 

a b 
.

with ( ) E PGL(2, C). The group of these transformations
c d

G = ~~ P~~ is what we call the projective monodromy group (or simply

the group) of L (over C). If the wronskian of L is algebraic over C , as is

the case for (1.1) over 1 (or (1.3) over E), the fact that G is finite is

equivalent for L to having a full set of algebraic solutions. In that case,’ if

K denotes the function field of C , the extension is automatically

Galois with group G . This can of course only happen if the singularities of L

are al l regular, the exponents are rational (and there are no logarithmic solu-

. tions). When C and r = 3 (e.g. if x is a coordinate on P1, the singu-
1 ar points are 0, 1, oo) an operator with exponent differences X , p , B~ at

0, resp., is equivalent to

The group ~ 
of L. over P is finite (Schwarz, 1879) iff 

(after s ui table normalization e.g. 0  X , p , ~  1 ...) is in the fol lowing

list (the basic Schwarz list) :
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In his book "Lectures on the Icosahedron", Klein showed that an L on C has

finite monodromy iff it is (projectively equivalent to) a pullback of an operator

in the basic Schwarz list, via a suitable map 03BE : C ~ P1. In that case

the group of L would be (a subgroup of) the groupe (3.. . Me can also tel l

what the degree of the map 03BE should be : if y(P) denotes the positive exponent

difference of L at P , g is the genus of C , and

( thi s is an easy consequence of the Hurwi tz formula, due to Dwork and myself) .

So i t is possible to examine whether a given L , for example (1.1) on P  , has
a certain type of finite group : it is a problem of elimination theory. By this

method one can anal i ze in fi ni te terms whether L is Tetrahedral, octahedral, or

icosahedral : but the 2 subl i sts of cyclic and dihedral operators are infinite and

in general we need some arithmetic considerations to establish whether, for example,

a given operator L is not dihedral.

We now come back to L n of (1.1) : : G will be the group of L n over . We could

prove (in the 1981 paper) :
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I. - If and G is finite, then G must be either octahedral or icosa-

hedral (of course this can only happen i f n + 1 2 ~ 1 3 Z ~ 1 4 Z ~ 1 5 Z). We dispose
here of explicit formulas. For example, i f n = 1/ lo,

(2.6) D 2 + 3x~/~,3~) D - 
is the onl y Lame operator with finite (hence icosahedral ) group. We leave aside

this cas.e .

II - If ne 1 ~Z 1 ~ , then a classical trick due to Halphen and Brioschi shows

that i f G i s finite, i t i s necessari ly Kl ei n’s Vierer group (di hedral or order 4,

abelian). The extension !:(x,T )/!:( x) is isomorphic to C(~ (u/2) )/T( ~ (u)) ,
denotes the Wei erstrass elliptic functi on for E. We also leave

aside this case. -

I I I - If n~Z and G i s finite, then i t i s dihedral. Thi s case, and its connec-

tion with the torsion of E, we analyze in detail.
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3. - Fi ni te monodromy for and tors ion points on E.

Si nce L_ = we may assume n&#x3E;0 . The synwnetric square of L :

(3.1) Mn = f 03 + ~ f’ 02 + ~ f" D - 4[ n(n+1)x + B ] D - 2n(n+1)

has Riemann scheme :

It always admits a polynomial solution Fn(x) = Fn(x,B) monic of degree n in x

For example

On the other hand we have : .

Prop. 3.4 - is never finite cyclic.

Proof - Otherwise it would be possible to express two independent solutions U,v

of L n as radicals of rational functions (if r = u/v , w/v2 = 
c constant, w = wronskian of u,v). _



8

with ~i 
= 0 or 1/2 and g a polynomial (not the same, i n general , for u~v !).

At ~ this gives :

(3.4.2) deg g(x) + E £i 
= - (an exponent of Ln at 

But the exponents of Ln at ~ are - n/2 and (n+1)/2 : so only one is non posi-

ti ve and u,v shoul d bel ong to the same exponent at ~ and shoul d be dependent.

Absurd. Q.E.D.

Prop. 3.5 - j_f Ln has a sol ution g whose square belongs to 0152(x,y), then T is

transcendental over C(x).

Proof - Let h be another sol uti on i ndependent of g and put r = h/ g . Then :

(3.5.1) T 1 = c/ g 2 y

with c constant. If T were al gebraic over [(x), let 

We would have

(a T)I = a(r’) = T~

and therefore 
-

a T = T + A ..

with AQ constant. So either A == 0 and T E or G i s infinite. But

the first case is impossible by Prop. 3.4 and the second is absurd. Q.E.D.

We concl ude that i f G i s fi ni te there exi st 2 i ndependent sol uti ons u,u. of L

such that .

( 3. 6) u 1 u2 = ...

We then have, for r = u, /u~ :



9

for some constant c n , and, intrinsically

( o B 
d T cn dx 

,3.8) y def w .

Since T is, locally on E, a projecti ve coordinate at each point P; Or. ,
and since 03C9 has a zero (of order 2n) at 0E, we conclude a priori, that w has

only simple poles on E with residues ± 1 . More precisely if for P(x,y)

P denotes the point P(x, -y), and if we introduce the divisor

(3.9) D = E 
E 

Q

we conclude that D is of the form

n n _

(3.10) E Pi - E Pi

with P 1 , ... , Pn n disti nct points in E B{0~} .

Our problem is then to determine in which cases a mul ti pl e of (jo is logarithmic

on E. Thi s consists of 2 problems :

A) Is a multiple ND of D principal ?

B ) If (a pri ori regular and non-zero at OE) is such that

ND = (H)

can we conclude that the differential

a p ri ori of the 1st Ki nd, is in fact zero ? 
-

Of course, E being elliptic, ~ is zero i ff i t has a zero at Or or in other

words.

BI) Can the function H of B ) be chosen in
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where is the maximal ideal of o E on E ?

0 -.- o .

Notice first of all that the constant cn appearing in (3.8) is determined by

F n’ (x,B) ’ and the condition that the residues of w are ± 1 .

For n = 0 , w i s of the 1~ ki nd so, unl ess it is 0, no multiple of i t can

be logarithmic. _

Hence : .

Prop. 3.11 - L ~ never has a full set of algebraic sol utions ..

We now discuss Ll . ° Here :

.

1- ( }

( 3 .12 ) 03C9 = f(B)1/2 x-B dx y
P = (B, f(B)1/2)
D=P-P .

Also N(P-P) -0 iff P is a 2N-division point.

Of course we may restrict to N = 1,2,3,... and in fact to N &#x3E; 1 because N = 1

woul d give T E 0: (x,y), absurd by Prop. 3.4. Consider N = 2 .

Here P is a 4-division (not 2-division) point, so :
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But Fig. 1 shows that 0 , so H ~ 1 +~2 . In other words.

Prop. 3.15 - L. never admits a group G of order 4 .

Now consider N = 3 . Me can repeat the previous considerations to conclude that :

HE 1 +’M,2 iff y’(P) = y.(P) = 0 . This happens iff B = g2 = 0 . So

Prop. 3. 16 - L1 , 0 wi th f(x) = 4X - g3 is the only Lame operator of L1 
. 

type

with group of order 6.

To explain the uniqueness statement we must exclude that a 6-division point P

. 

which is neither a 3-nor a 2-divi s ion point may give rive to an H~= 1 +~ . But
first let me show that in fact, if y = 4x - 1 , has al gebraic l .
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To illustrate how to proceed to treat hi gher division points, we concl ude the

proof of (3.16) by consi dering a 6-division point P whi ch is nei ther a 3-nor a

2-division point.

Me consi der the embedding 03A66 of E into A5 ~ P5 associated to the very ample

di vi sor 6 ° In affine coordinates (VI ,..., Yc) this is :

The image curve E6 is a curve of degree 6 in p5 , isomorphic to E via ~6 .
We = the unique po-int at 00 of E6 as the zero point 06 of E6 and

denote by B the addition law .(and by OÐ P the point ... P’). The oscula-

ting hyperplane llQ to E6 at any Q intersects E6 i n 5Q + ( ""5 Q ). SO P is
. 

6-torsion iff the osculating hyperplane at P to E6 is i n fact hyperoscul at-ing.

.

This gives for lip the equation:
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NB. To obtain the conditions of 4 and 5 divi s ion, one may consider ()L 

On the other hand, if we had = 0 , we would deduce from (3.19) that a1so

= 0 , hence, from the identity :

(3.20) 20 y"y’" + 10 y’ + 2 = 0

(obtai ned by differentiating y2 = f(x)) we would have y" y"’ = 0 , a contradi c-

tion to (3.1!)).

On the other hand if we write

5

(3.21) E (Y~ - V;(P»1=1 ’ ’ ’

for the determinant (3.18) we conclude, as before, that the function 

such that
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and, b the previous considerations we tha;t   1 

We can reach the same concl us ions vi a Xle-in’ s theory of pul 1 backs . We know that

L. g has a group of order fi i iff it. i s a pullback of L1/ 2, 1/3, 1/2 via a

rational map ~(x).

The Riemann scheme of L 1 i s

so the pos i ti ve exponent di fference at ei i s 1/2 whi le at ~ i t i s 3/2 .

We conclude by (2.5) that deg ~( x) = 3 . So we must have one of the two situa-

tions :



15

Therefore, i n the first case:

~(x) = a f(x} - 1 + b(x - Y} 3 -

for some a,b ~ . So

4x~- g2 x- 93 -4x- ( Y } ~+ c

for some E 0152 and

f(x } = 4x3 - g3 , 03BE(x) = 1 - -- x .

g3 .

I n the second case we get

f(x} - 4x - 03C13 , 03BE(x) = (1 - - x ) 
-1 

.

g3

to determine the value of B , we must replace by 03BE(x) the independent variable

of L1/2, 1/3, 1/2 
and normalize the resulting operator by making its wronskian

equal to f(x)-1/2, while keeping T unchanged. We then obtain an operator of

the form L1,B ’ with B - 0 .
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4. - Open problems

4.1 - Fix a finite group G and a rati onal number n. It seems that the condi -

ti ons on g~, g~, B ensuring that Ln g has projective monodromY group G have

the form of two homogeneous equations in g’~’ , g~/3 ~ B , possibly wi th an open
condition..

For exampl e, i f n =1 and G i s di hedral of order 10, the condi tions are :

If and G i s the Vierergruppe, the two equations reduce to one and,

for any choi ce of g?.9o . there are B’ s that full fill the requi rement

(Brioschi solutions). Asi de from that case we as k whether the set of i somorphi sm

classes of elliptic curves E : y2 = such that there exists an L 
o 

asso-

ciated to f with group G, is finite...

Can one characteri ze those elliptic curves otherwise ? E. g : , do they all admi t

complex multipl ications ? _

guarani tees that, if G is finite :

(4.2.1) c 
. 

In fact the. field extension 0152(X,T)/[(X,y) i s unrami fi ed and cyclic. So 0152(X,T)
i s an elliptic functi on field associated to an elliptic curve E 1 and E is

isomorphic to a quotient of E:. modulo the subgroup generated by an

N-division (if order G = 2N) point PI . . Which unrami fi ed cycl i c cove ri ngs of
el liptic curves E1 -~ E are rel ated to a Lame equation ? . 

~
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4.3 - Let us reexamine the case of an Ll with a group of order 2N , by transcen-

dental methods. Let w2 be the semiperiods of the differentiel dx y on

E :=! t/A

A=2o).Z+2o)?Z .

For a E 0152 we denote by [ a] the image i n T/A . Me consider.a 2N-division

point [(x ] , and write explicitly the elliptic function H(u) such that

We must impose the condition (on w2) that 1 (0) = 0 ; therefore we get :

Universita Degli Studi di Padova
Oi partímento di Matematica
Pura e applicata
Via Belzoni, 7
35/31 PAOOVA (Italie)

UNIVERSITE DE 1

LABORATOIRE
DE MATHE MATIQUES

tNSTSTUT f-o’!3tPP

We have :

and

Therefore :

where


