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Exposé n°® 22

“Towards a Schwarz 1list for Lamé's differential operators

via division points on elliptic curves"
by

F. Baldassari (Padova)

1. - Lamé's operator L, -

It is the following (family of) second order linear differential operator(s)

on P1
_ _n . 1f' _n(n+l)x + B
(1.1) Ly=Ll,g=D"+5+ D -i-—-%-—-—
2 3 3
where D = d/dx ,y~ = f(x) = 4x~ - goX = g3 = 4 ’Hl (x-ei) is an elliptic
]:

curve E , n 1is a rational number and B 1is a constant called "the accessory
paremeter". Todays discussion will be mainly in characteristic zero, and 95593 »
B will be algebraic numbers ; but we will occasionally refer to mod p proper-
ties of L, where p is a prime nuhber s.t. p#23, nGEZp » B, 9,593 are
p-integral and E has good reduction mod p .

From the Riemann viewpoint (1 1) 1is a regular operator on Pl(m) with Riemann

scheme :

. o
e'I

(1.2) 0 -n/2 ; x
1/2 (n+1)/2

When pulled back to E, via x : E a—Pl » 1t becomes
, d )
(1.3) (y Hi) - [n(n+l)x + B]

so it only has one singular point on E (x = » , which we take as the zero point
0E for the addition law on E) with exponents -n, n+l .
The Lamé opérator has been the object of some attention in the past few years for

several reasons.



I) (The problem of accessory parameters : very classical, but still open).

Ln is the first case, in order of increasing complication, of an operator which
is not determined by its Riemann scheme (1.2). Namely it is of order 2 and has 4
singularities on P1 . Notice the independence of (1.2) from B . Some people are
interested in the problem of "reading off the monodromy group of a d.e. from
its coefficients" and in particular in understanding (for fixed (1.2) i.e.

n and f) the dependence of the monodromy group up on.the accessory parameter.

With respect to this problem, this operator is the first example that should be

considered.

II) (The Grothendieck conjecture) Ln is not (in general) an operator of

Picard-Fuchs type, i.e. it does not, in genera], admit an algebraic integral
formula for the solutions. This was first noticed by Deligne, who exhibited e

class of Ln non-globally nilpotent. So, the Katz proof of the Grothendieck

conjecture does not apply to Ln . D.V. and G.V. Chudnovsky have published a
proof of that conjecture that applies to Ln ("Applications of Padé approximations
to the Grothendieck conjecture on linear differential equations" in "Number
Theory, New York 1984, LNM 1135 pp. 52-100").

Unfortunately, they apply their result incorrectly and deduce that,.for n€N ,

L (any, fixed, f) is globally nilpotent iff B has one of the 2n+l »specia]

n,B

values {Bﬂ} that are classically known to give rise to the so

m=1,..., 2n+l
called "Lamé functions" of degree n , E:(x), m=1,..., 2n+l (see Whittaker
of Watson 23.42). The mistake they made is to assume, perhaps misunderstanding an

assertion in Poole (Chap. IX § 39), that Ly » n€Z , can never have a full set

of algebraic solutions. In fact no counter example to the former assumption was

classically known, and in fact stronger conjectures have been formulated. But we

can disprove them by exhibiting an equatibn with projective monodromy group

dihedral of order 6 over ((x), namely L1 0 with f(x) = 4x3 - 93 -



III) (The problem of global nilpotence). It is extremely difficult to decide

whether a given d.e. is globally nilpotent, unless an algebraic integral formula

exists. So Ln is again the first non trivial example to look at.

Dwork ("Arithmetic theory of differential equations” INDAM, Symp. Math.,

Vol XXIV, 1981, pp. 225-243) showed that Ln » NnEN , is globally nilpotent iff
either B 1is one of the Bﬂ sm=1,...,2n+1 , or Ln has in fact zero
p-curvature for almost all primes p . He also conjectured that this second

possibility could never occur. We therefore disproved this conjecture.

NB. In fact, modulo the Grothendieck conjecture, the Dwork conjecture was equiva-
lent to the statement that Ln should never have a full set of algebraic solu-

tions. This is because when one solution is a lamé function, the other is automa-

tically transcendal.

IV) (Schwarz list and torsion of elliptic curves) - In a paper of 1981

(J.D.E. 41, 1981, pp. 44-58), we tried to analyse all possible cases (any n€Q)
in which a Lamé operator has a full set of algebraic solutions. For n & Z the
results were quite complete and will be briefly reviewed later. But in the case
n€Z we were only able to show the close relation between algebraic solutions

to Ln and torsion points on E . In particular we could bound the order of the
projective monodromy group of Ln (when finite, hence necessarily dihedral) by
twice the exponent of the group of division points on E , rational over a certain
quadratic extension Kn of Q(gz,g3,B). We were unable at that time of exhibiting
a single example of this situation. We now feel that we have a better understan-

ding of this case. This will be the subject of the present talk.

I will now proceed to explain my results in completely classical terms
(over ) : from the above discussion it should be clear that this type of results

give some insight also in the non-classical problems II and III.



2. - Finite monodromy for Ln s NEQ .

In general, if L 1is a second order linear d.o. defined over a Riemann surface
C and P1 seees P2 are the singular points of L or C and if 1 denotes (as.it
will be the case all over thisuTalk) a ratio of independent solutions of L at

an ordinary point P of L , continuation of T along closed paths <y issuing

from P on C' = C\{P1 seens Pr} » produces a transformation

_at + b
(2.1) tre (1) =5
a b ,
with ( ) € PGL(2, C). The group of these transformations
c d

G = ﬁpY | v € Hl(C', P)} is what we call the projective monodromy group (or simply

the group) of L (over C). If the wronskian of L 1is algebraic over C , as is

1

the case for (1.1) over P~ (or (1.3) over E), the fact that G is finite is

equivalent for L to having a full set of algebraic solutions. In that case, if
K denotes the function field of C , the extension K(t)/K is automatically
Galois with group G . This can of course only happen if the singularities of L
are all regular, the exponents are rational (and there are no logarithmic solu-
tions). When C = Pl and r =3 (e.g. if x is a coordinate on Pl , the singu-

lar points are 0, 1, ) an operator with exponent differences X,u,v at

0, 1, resp., is equivalent to

2 2 2 2 2
- 2  1-2) 1 -4y AT+ pt-1-v
(2.2) Ly = (a7 + = MPYMRTY A I CoH)
1 . _— .
The group Gx,u,v of Lx,u,v over P~ is finite (Schwarz, 1879) iff (X,u,v)
(after suitable normalization e.g. 0 <X , u, v<1l.,.) is in the follewing

list (the basic Schwarz list) :




(/n, 1, 1/n) ,» NEN cyclic of order n

(1/2 , 1/n , 1/2) , neN dihedral " 2n
(2.3) (1/2 , 1/3 , 1/3) Tetrahedral

(172 , 1/3 , 1/4) octahedral

(/2 , 1/3 , 1/5) icosahedral

In his book "Lectures on the Icosahedron®™, Klein showed that an L on C has

finite monodromy iff it is (projectively equivalent to) a pullback of an operator

L in the basic Schwarz list, via a suitable map £ : C a-Pl

YRTIRY . In that case
] >

the group of L would be (a subgroup of) the groupe Gx R We can also tell

what the degree of the map & should be : if vy(P) denotes the positive exponent

difference of L at P , g 1is the genus of C , and

(2.4) A(L) = = (v(P) - 1)
PeC
we have :
A(L) - 2(g-1
(2.5) deg ¢ - flt) - glocly

(this is an easy consequence of the Hurwitz formula, due to Dwork and myself).

So it is possible to examine whether a given L , for example (1.1) on P1

» has

a certain type of finite group : it is a problem of elimination theory. By this
method one can analize in finite terms whether L 1is Tetrahedral, octahedral, or
icosahedral : but the 2 sublists of cyclic and dihedral operators are infinite and
in gehera] we need some arithmetic considerations to establish whether, for example,
a given operator L 1is not dihedral.

We now come back to Ln of (1.1) : G will be the group of Ln over‘P1 . We could

prove (in the 1981 paper) :



I. - If n¢ %—Z and G 1is finite, then G must be either octahedral or icosa-
hedral (of course this can only happen if n + %—E -;—Z U -}rl U%Z). We dispose

here of explicit formulas. For example, if n = 1/10,

(2.6) p? + 3x?/2(x3_c) D - 11%/400(x3-)

is the only Lamé operator with finite (hence icosahedral) group. We leave aside

this case.

II - If ne (%Z)\Z , then a classical trick due to Halphen and Brioschi shows
that if G 1is finite, it is necessarily Klein's Vierer group (dihedral or order 4,
abelian). The extension C(x,t)/C(x) 1is isomorphic to EQP(u/Z))/c(és(u)),

where db(u) denotes the Weierstrass elliptic function for E . We a]sb leave

aside this case.

III - If n€Z and G 1is finite, then it is dihedral. This case, and its connec-

tion with the torsion of E , we analyze in detail.



3. - Finite monodromy for Ln » n€Z , and torsion points on E .

Since L_n = Ln-l » we may assume n=0 . The symmetric square of Ln :

3 2 .1

(3.1) M =fD>+3f 0%+ 5 ' D - 40 n(n+1)x + B] D - 2n(n+1)

has Riemann scheme :

e, @
0 n+l
(3.2) 5 X
1/2 1/2
1 -n

It always admits a polynomial solution Fn(x) = Fn(x,B) monic of degree n in x

For example
Fo(x,B) =1

(3.3) Fl(x,B) = x-B
2 g
Fo(x,B) = x? - -g-x + (-g— - 1—2-)

On the other hand we have :

Prop. 3.4 - C(x,T)/C(x) is never finite cyclic.

Proof - Otherwise it would be possible to express two independent solutions u,v
of Ln as radicals of rational functions (if T = u/v , '/t = w/v2 = c/yv2 .

¢ constant, w = wronskian of u,v).

So :

) €.
(3.4.1) U,V (x-e;) ' g(x)

1}
= W
fa—y

1=



with e =0 or 1/2 and g a po]ynomial (not the same, in general, for u,v !).

At o« this gives :
(3.4.2) deg g(x) + I €5 = - (an exponent of Ln at «) .

But the exponents of Ln at « are - n/2 and (n+1)/2 : so only one is non posi-
tive and u,v should belong to the same exponent at « and should be dependent.

Absurd. Q.E.D.

Prop. 3.5 - If L has_a solution g whose square belongs to €(x,y), then t is

transcendental over (€(x).

Proof - Let h be another solution independent of g and put T = h/g . Then :

(3.5.1) = /gy

with ¢ constant. If 1 were algebraic over C(x), let o € Gal(C(x,y,t)/C(xXsy)).
We would have
] 1] 2 t
(o 1) =o(t') =c/gy =1
and therefore

ocoT=T+A
T=T -

with A0 constant. So either AU =0 and T € [C(x,y) or G is infinite. But

the first case is impossible by Prop. 3.4 and the second is absurd. Q.E.D.

We conclude that if G 1is finite there exist 2 independent solutions Ujpsly of L
such that
(3.6) u; u, = Fn(x,B)

We then have, for 1= ul/u2 :

( ) ! n?
3‘: T -
2



for some constant C, » and, intrinsically

Cc

(3.8) dr_ _n ax .
‘ T F 0GB Y def T ¢

Since Tt 1is, locally on E , a projective coordinate at each point P # OE R

and since w has a zero (of order 2n) at 0E » we conclude a priori, that w has
only simple poles on E with residues + 1 . More precisely if for P(x,y)
P denotes the point P(x, -y), and if we introduce the divisor
(3.9) D= I resQ(w) Q
Q€ E
we conclude that D 1is of the form

n n __
(3.10) £ P, - £ P

with P1 seees Pn n distinct points in E \{OE} .

Our problem is then to determine in which cases a multiple of w 1is logarithmic

on E . This consists of 2 problems :

A) Is a multiple ND of D principal ?

B) If He(l(x,y) (a priori regular and non-zero at OE) is such that

ND = (H)

can we conclude that the differential
n=Nw'gH}i:

a priori of the ISt Kind, is in fact zero ?

Of course, E being elliptic, N is zero iff it has a zero at OE or in other

words.

B') Can the function H of B) be chosen in

1 +1n2



where MG is the maximal ideal of O. on E ?

E
0 ——0 .

Notice first of all that the constant <, appearing in (3.8) is determined by
Fn(x,B) and the condition that the residues of w are 1 .
For n=0, w is of the 1St kind so, unless it is 0 , no multiple of it can

be logarithmic.

Hence :

Prop. 3.11 - Ld never has a full set of algebraic solutions.

We now discuss L1 . Here :
Fi=x-B
cy = f(B)l/z

2

1/
(3.12) w=TC A%g

P = (B, £(8)Y/2)

P-P

e
[}

Also N(P—F)-O iff P 1is a 2N-division point.

Of course we may restrict to N =1,2,3 ,... and in fact to N>1 because N =1

would give Tt € C(x,y), absurd by Prop. 3.4. Consider N =2 .

Here P 1is a 4-division (not 2-division) point, so :

e(xsy) =0

l
o

e(x,y) =

10



y - ¥y (P)X + x(P) y'(P) - y(P)

e(x,y)

(3.13)
e(x,y) = - e(x, -y)
So
e(x,y) 1 -y'(P) §' X X X
(3.14) H = - Sy T toly) =1-2y'(P) y *o§)
— 1+y'(P)

But Fig. 1 shows that y'(P) #0 , so H¢ 1 +1&2 . In other words.

Prop. 3.15 - L1 never admits a group G of order 4 .

Now consider N = 3 . We can repeat the previous considerations to conclude that :

Hel +M2 ifF y'(P) = y*(P)

0 . This happens iff B = g, =0 . So

4X3 - 93 is the only Lamé operator of L1 type

Prop. 3.16 - L with f(x)

1,0
with group of order 6.

To explain the uniqueness statement we must exclude that a 6-division point P

which is neither a 3-nor a 2-division point may give rive to an He€l +ﬂb2 . But
first let me show that in fact, if y2 = 4x3 -1, L1 0 has algebraic T .
Here
w = idx
Xy
P = (0,i) , tangent line y=1
and
. 1/3
_yl/3 _ ¥y -1
T =TT = ()
gives
dr _ 1 dy_. El,) =1 2idy _
T 3 Yy-T 0 y# y2.+1
2 1 124 X% dX _ i dX _

(since 2y dy = 12 X° dx) = —r T xy_ =
3 4X7 Y

11



To illustrate how to proceed to treat higher division poiﬁts, we conclude the
proof of (3.16) by considering a 6-division point P which is neither a 3-nor a
2-division point.

5

We consider the embedding ¢6 of E into .Asc:P associated to the very ample

divisor 6 OE . In affine coordinates (Y1 seces Y5) this is :

Yl(xs.y) =X
Yo(xsy) =y
(3.17) Yy(x.y) = xF
Ya(x5y) = xy
Ye(x,y) = x3

5

The image curve E6 is a curve of degree 6 in P° , isomorphic to E via ¢6 .

We take '¢6(0E) = the unique point at « of Eg as the zero point 06 of E¢ and

Ntimes

denote by H the addition law (and by P the point P ® ... B P). The oscula-
ting hyperplane HQ to E, at any Q intersects E6 in 5Q + ([:}i(J). So P is

6-torsion iff the osculating hyperplane at P to E6 is in fact hyperosculating.

This gives for HP the equation :

Yl~-x Y3-x2 Ys-x3 Y2 -y Y4-x_y
1 2x eyt xy'+y
(3.18) 0 2 6x y" xy" +2y! =0
0 0 6 y" xy" + 3y"
0 0 0 y(iv) xy(iv)-+4y"'

12



with

y(‘v) 4yll
. =0 (P of 6-division)
yv) 5 (i)
ylll 3y||
(3.19) #0 (P not of 5-division)
(iV) 4 nm
y y
y" #£0 (P not of 4-division)
y' #0 (P not of 3-division)

NB. To obtain the conditions of 4 and 5 division, one may consider ¢4 and Qs .

On the other hand, if we had y(iv) = 0 , we would deduce from (3.19) that also

y(v) = 0 , hence, from the identity :
(3.20) 20 y'y" + 10 y' y(IV) 4 2 yy(V) o g

(obtained by differentiating y2 = f(x)) we would have y" y"™ =0 , a contradic-
~ tion to (3.19).

On the other hand if we write
5
(3.21) I oay(P) (Y5 - Y(P))
i=1
for the determinant (3.18) we conclude, as before, that the function H(x,y)€1l+m

such that

6(P - P) = (H)

is

13



5 ,
1’51 ai(P) (Y-i(xs.Y) - Yi(P))

H(x,y) = — - — =
E (-1 ag(P) (¥, (xay) - Y5(P))
i=1
(3.22) -
} 2(P) )
=14+ 2 35 ;2- +o(y) =

1+ (12 _y(iv)/ym 3y" (P)) 12‘ +0(§)
X

y(] V) 4 ym

and, by the previous considerations we conclude that H# 1 +1u2 .
We can reach the same conclusions via Klein's theory of pullbacks. We know that
Ll,B has a group of order 6 iff it is a pullback of L1/2’1/3, 1/2 ‘v1a a

rational map £&(x).

The Riemann scheme of L1 B is
e, 0
0 -1/2 ;s X

172 1

so the positive exponent difference at e, is 1/2 while at «~ it is 3/2 .

We conclude by (2.5) that deg &(x) = 3 . So we must have one of the two situa-

tions :
g(oo)=3,oo €(°°)=3.0
ﬁg(ei) 7= 0 is= 1’293 or {g(ei) = ® ’ i = 13253
| E(y) = 3.1 LE(y) = 3.1

for some ye€ € .

14



Therefore, in the first case :

£(x) =a f(x) = 1+ b(x - v)3

for some a,beC* . So

3
AT - gox - g4 = 4(x-v)>

+
for some c,y€ € and
_ 2.3
f(X) = 4x” - 93 s E(X) =
In the second case we get
_ a3
f(x) = 4x” - P3 g(x) =

to determine the value of B , we

of L1/2, 1/3, 1/2 and normalize

[of
4 3
1 - =
93x
4 3,71
1 -
( gBX)

must replace by g(x) the independent variable

the resulting operator by making its wronskian

equal to 1-‘(x4)'1/2 » while keeping T wunchanged. We then obtain an operator of

the form Ll,B , with B =0 .

15



4. - Open problems

4.1 - Fix a finite group G and a rational number n . It seems that the condi-

tions on s 95> B ensuring that L has projective monodromy group G have
92> 93 9 n,B

172 1
92/ /3

the form of two homogeneous equations in > 93 » B , possibly with an open

condition,

For example, if n=1 and G is dihedral of order 10, the conditions are :

2 6 2

+ 3% 52 gt

- 2°.3% 13 (485 - g, B* - g, 8%) + 21 (483 - 9,8~ g5) .88 =0

2

2 2

2
- 24 -9, B + 9,

2 .B4

- 24 (48 - g, 8% - g;B) = 12

If ne%z\z and G isthe Vierergruppe, the two equations reduce to one and,

for any choice of 95593 > there are B's that fullfill the requirement
(Brioschi solutions). Aside from that case we ask whether the set of isomorphism

classes of elliptic curves E : yz = f(x), such that there exists an Ln,B asso-

ciated to f with group G , is finite.

Can one characterize those elliptic curves otherwise ? E.g ., do they all admit

complex multiplications ?

guaranitees that, if G is finite :

(4.2.1) C(x,y) C C(x,1)

In fact the field extension €(x,t)/C(x,y) 1is unramified and cyclic. So C(x,T1)
is an elliptic function field associated to an elliptic curve E1 and E s
isomorphic to a quotient of El modulo the subgroup generated by an

N-division (if order G = 2N) point P1 . Which unramified cyclic coverings ofr

elliptic curves E1 + E are related to a Lamé equation ?
16



4.3 - Let us reexamine the case of an L1 with a group of order 2N , by transcen-

dental methods. Let W) s W, be the semiperiods of the differentiel 9)7" on

E=C/A

A=2w, Z +2 w,Z

1 2

For a€ € we denote by [a] the image in C/A . We consider a 2N-division

point [a] , and write explicitly the elliptic function H(u) such that

(4.3.1) (-H) N[al - N[=a]
We have :

(4.3.2) 2Na = 2n1 wy + 20, wy = A, n_iEZ

and
(4.3.3)  H(u) = cost . = +Z§‘ﬁ:1£<)3r:u+a 5
(since Na = (N1)(- a) + (A-a)).
Therefore :
(4.3.4) Bu) = Ng(u-a) - (V1) c(u+a) - zu+a- 1)

We must impose the condition (on Wy s “’2) that % (0) = 0 ; therefore we get :

Na = n1 wy + n2 wy niEZ
(4.3.5)

]

Nz(a) =npng+nym,

where n; = c(mi).
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