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Exposé n® 16

PERIODS AND GAUSS-MANIN CONNECTION FOR THE
T, Ty T T
MUMFORD CURVE y,%y,' -y, -y, + 2 =0

Lothar Gerritzen

Bochum, W. Germany

A method is introduced which allows to obtain explicit formulas for
the periods q(A) of a family (CX) of smooth curves. It gives ex-

pressions for q(A) in the wvicinityof a point ko for which the curve
CAO is totally degenerate provided one knows Picard-Fuchs equations

for differentials of the family (Cx).

Techniques from rigid analytic geometry are used, see [T]. We work
with the notion of periods for p-adic Schottky groups as defined by
Manin-Drinfeld, [MD]. The result can certainly be applied to the
usual complex periods. In this approach it is basic that one has a

canonical basis for the De Rham cohomology classes.

In this manuscript only one example is treated. The curves Ci given

by the equation in the title are prestable and totally degenerate

for A 1. The p-adic Schottky uniformization is constructed in

section 2. In section 3 a crucial formula for the Gauss-Manin con-
nection is explained. The main application is the expression for the
periods in proposition 4 of section 4. For elliptic curves the re-
sult is classical, see [F]. It is planned to give a more complete
account of this method in a joint paper with F. Herrlich. The re-

lation to the work of B. Dwork, [D], shall be included.

1. The curve C{

Let K be a field of characteristic O and r = (r},rz) a pair of in-

tegers > 2. Assume that there is a primitive root of unity Py of
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order T in K.

Let (y1,y2) be a system of inhomogeneous coordinates for P x PP,

where IP is the projective line over K and let A be a parameter in K.

The equation

T, T T T
2.T1 2 1
Y2 Y1y =Yy -y *A= 0

defines a projective curve Ci inP x IP.

u.
If u;, v; are homogeneous variables for IP with y; = ;l, then Ci is
i
the set of zeroes of the Bihomogeneous equation
T, T T, T T, T T, r
271 _ 2,71 _ 2 1 2.°1 _
u, u, u, v, vyTu, o+ sz v, = 0

The curve C{ is non-singular if and only if A (A-1) # O. The curve Ci
is a union of Ty'T, projective lines and prestable.

Let o, (resp. 02) be the automorphism onIP x P for which
Y1° 91 % P1Yys Y% 9 = Yy

(resp. Y10 93 = ¥qs ¥,0 0y = pz-yz).

The restriction 01|C§ of o; onto C{ is an automorphism of C{ and
0% 0, = 0,9 04. Let G denote the group generated by 01IC§ and OZKK.
It is canonically isomorphic to ZZ/r1Z 922/1'22 .

The field of K-rational functions of C{ is generated by y1lC§ and

yzlci if A # 0, A# 1. We will write in the sequel y, instead of

T.
T : i
y;1Cy and define x; to be y,”. Then

dx1 dx2
E;TT =T i;:T

because the rational functions Xy, X, satisfy the relation
XX =Xz - xp A =0

and thus
xzdx1 + x1dx2 - dxz - dx1 =0
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(xl°])dX2 + (XZ-1)dx] = Q.
2

Let I := {i = (11,12) €zZ” : 1< i1 < Ty, 1T <1i, < rz}.
For i = (ij,iz) € I we define
.. = dx1 o dxz
i i1 i2 11 iz
Y1 ¥, G 1) Yy ¥y (xpm1)
ot = dx1
i i, 1,
Y172

Then the De Rham cohomology vectorspace HéR(Ci) admits a direct de-
composition

\]
igI (mi,mi)

where (wi,mi> denotes the K-vectorspace of differentials generated

by w.

i and mi. In fact (wi,mi> is the eigenspace of the canonical

action of G on HéR(Ci) with respect to the character x : G - K* for
-i, -i,

As dim H%R(Ci) = Z(r]-l)(rz-l) the genus of C{ is (r1-1)(r2-1).

2. p-adic uniformization

Let now K be complete with respect to non-archimedean valuation ||
and assume that |[A-1| < 1 and that r;-r, is prime to the characteri-
stic of the residue field. I want to show that C; is a Mumford curve.
This will be achieved by constructing the non-archimedean or p-adic

Schottky uniformization for C;.

Let z be a coordinate for P, and s € K, |s-1] < 1, s # 1 and let
91 (z) = Py°2

(s-p,)z + (p,-1)s
°2(2) = 5,0z +(o,5-1) °




Then gy, O, are elliptic fractional linear transformation of P and g,
has the multiplier p, and the fixed points 1 and s. One can show that
the group ¢(o;,0,) 1is discontinuous in the sense of [GP], Chap. I,§1,
and that the commutator §ubg;oup.r of (01’02) is a free group freely

1, 1, 714 "1,

generated by {y; := o, 0,%, a, : ie€1}, see [GH].

= := 258
Let z, := z. z, := Z—=. Then

Let T, the group generated by I' U {oi} i=1,2.

Define
Z,v Y

1
Y192 0 Gy
1 ver, zp2Y

Z,2Y%
= I 2

yEF1

Both products converge on the domain Z of ordinary points for T.

They are both meromorphiec on Z and are T-automorphic forms on Z with
constant factors of automorphy, see [GP], Chap. II, §2.

A direct computation gives

Y1991 7 Pyt¥y
Y2° 92 7 P27Y)e
T, T .
One can conclude that Y1 » ¥, are <01,02)-automorphic and that Y1:Y2
are I'-invariant, see [GP], Chap. III, §1, for the notions.

T3
Let A := Yq (s)

Proposition 1: The mapping z ~» (y](z), yz(z))

gives a bianalytic mapping between the Mumford curve Z/T and the

T
curve C,.
Proof: see [GH].
Remark: The mapping
s + A(s)

is a bianalytic mapping between {s € K : [1-s| <1} and
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{x € K: |1-A] <1} with A(1) = 1. Moreover A(s~1) = a(s)~1.

3. Gauss-Manin connection

There are canonical analytic T'-automorphic forms with constant fac-

du.
1= ﬁ—i are analytic differentials on

i
Ci and such that {ai : i € I} is a basis of the K-vectorspace of ana-

tors of automorphy such that oy

lytic differentials on C{, see [GP], Chap. II, §4.

Use Yy

Let qij 1= °_ET—l € K*. The matrix q := (qij) is the period matrix
i

of T with respect to the basis {Yi : 1€ I}, see [MD], §2. Also there

are meromorphic functions g; on Z such that TR T Y5 = {é ; ? ; %,

see [G2], p. 387, and [G1], section 3.

The differentials Bi i= dci are of the second kind and

{ai : i€ 1}V {Bi : 1€ 1} is a basis of H;R(Ci)-

We consider now C' as a family of curves by letting A vary through

{A» € K: |[x-1] < 1}. The Gauss-Manin connection V of ct is a

connection

. oyl 1
v : HDR -+ HDR 2 Q

where HéR is the sheaf of De Rham cohomology classes of ct as family

of curves over S {s € K: |s-1] < 1}and Q@ is the sheaf of analytic

differentials on S.
The main result of [G]1] is a proof of

dq. .
Proposition 2: V(a,) = I B8, € —=1
1 ier J 93

V(Bi) = 0.

We want to apply this formula to the differential of the first kind

dx
w, = 1
1 1, 1 °
1

2




Proposition 3:

isjq 153
171 _+242
w. = F.(A) - I »p P a
-l 1 jEI 1 2 J
i i
1 2
o (??)n°(?_)n n n-1
with Fi(x) = I (1-x2) and (a)n = I (a+i).
n=o (ng)z . i=o

Proof: The method of proof consist in the following: It is well known

that the cohomology class w of %%, y = xa(x-1)b(x-k);, satisfies

the hypergeometric differential equation also known as Picard-Fuchs

equation for  w:
xcl-x)vf(w) + [arc-(a+b+2c)A1V, (w) - (a+b+c-1) w = O

see for instance [M], p. 378 or [D], Chap. I, p. 8.

-i i i
In our case a = ;—l, b=-1+ _E, c = 2

1 T2 T2
A straightforward computation shows that the above F, is up to a

constant the only power series solution of the above differential

equation.

But w; being a differential of the first kind admits a representation

.= L G..a.
i jel 3%

with Gij analytic in S.
Thus V., (w:) = I G..a. mod H' when H' is the subspace generated by
A1 jeI 1j )

{Bi : i€ I}.Thus each Gij = cj-Fi with Cj € K, where the dot

over Gij means the derivative with respect to A. By considering the

limit case for s - 1 one obtains the above constants. For the de-

tails see [GH].

R. Coleman (Berkeley) has informed me that he has a completely dif-

ferent approach to this result.



4. Application to periods

The formulas for the Gauss-Manin connection and the Picard-Fuchs

equation allow to derive an explicit expression for the logarithmic

derivative of i j with respect to the variable A in the domain
{lrx-1] < 1}.

Proposition 4:

4. .
) = 5§ c., .E..
935 ker ik TKj
-i.k -i k
with c., =
ik Ty'T,
Ex; = Aij K
J .
S P 5
k. j k,j .
=1 - o V1 _ 202 kj cor.-
Agj =1 -7 P” Tt e .x,j " T1'T2
A= (1 - - i= 0 G- - -t
n=o
(E‘—) (2
= 1‘1 n T n n
F, = z (1-1)
k n=o (n!)7 .
. . k, k,
which is the hypergeometric function ,F,(+-, ==; 1; 1-1), see [MOS],
SR 2
Chap. II, (2.1).
Remark: In the special case Ty = T, = 2 the index set I consists of

(1,1) only and with q := q,q one gets

g - 4
T - LE (g s 15 1-3)

which is equivalent to a classical formula, see [F]. Be aware that A

is not the Legendre parameter as our equation is

2.2 2 2
YY1 - ¥z - ¥y + A =0.



We sketch now a proof of proposition 4.

. w. . s
1) Let u® := ot = £ pYla.. Then
i F;

jEI1 .
V,(w*) = I E,, - B
AVi keI ik k
i ij Q59
with E.k = T P .Y
Yoojer o Yk

Let L; denote the operator

. 2 1, 12 111,
Li A(]-X)Vk - [1 - (;— et 1)(1—A)]VX -
1 2 : 1°2
It is known that
Li(mi) = 0.
Now
Vi(Fio1) = F;V, (0]) + Fjof
2 *\ = 2. » r » »
VE(F;u¥) = F;Vy(0f) + 28,7, (oF) + Fi“i
2 3
and V (w*) = I E..B8
AMTd keI ik"k

Substituting into the equation Li(uﬁ) = 0 and looking for the coeffi-

cient at B, which must be zero gives

1, i,
. : - )
Eix _ _y Fs , 1 _ T1 T
E. - - - *
ik I1 T-X A

Solving this differential equation gives

~ ik
Eix = I

(1-2)A

with a constant Ajx € K. E;y is considered as a Laurent series in

(1-2); its residue at 1 is just Aik'

In a joint work with F. Herrlich we determined the constants Aik'
A careful study of the action of T on the Bruhat-Tits tree of IP

gives the result that the vanishing order ord qji of qji at the



point s = X = 1 is as follows:

4 : j =k
ord dik = 2:j#kandj, = k1 or j, = kz
1 : otherwise

dq.
Therefore the residue of —JX at A = 1 is ord q

a5y jk and the residue of

Eikdx at A =1 is

g ol wx ol a4 ik

jE€I .jfl .jEI
J1=ky I27k,
T5-1 s s . s .
. 2 ij, 1,5 ik
As 5 pl) = 3 0 1 1p 272 _ _ p11 1 and

jEI 5,1
J1=k4

.. ik - .

z le = - pz2 z and I le = 1 this residue is

jeI jer
Jz=k

indeed Aik'

2) Let T = T/[T,T] be the commutator factor group of I'; if is a free

Z -module generated by the images e; of Yi» ie€l.

Now G is canonically isomorphic to the factor group (01,02)/r and

~thus acts on T by inner automorphims; we consider T as G-module.
-1 i, i, -i, -1, -1
As oqvj0; = 0910970379 9 9
i +1 i, -i -1 -i
- 1 2 v, 2 -1
= 04 0,79, 0y °0, o4
i -1
2 2 -1
. . o *gq * O s 0
Y1]+],12 2 1 2 1
-1

Y; .Y
i;*+1,1, 1,1,
1 i, i, -iy -i, 1
and 0,Y;9," = 0,04 0,70y 0, ~ * 0y

iz -il ‘iz"

+1 -1 '11 . 0;1 .‘02 oo‘z fo] 1 0’2

.-.Q'Zg] 0'2 0]

-1
Y Yy o
1],1 11,12+1

the action of G is known.



Let M be the submodule of the group ring Z [ G] generated by

i
a; = (o

i
o - o,r -1

for all (11’12) € I. It is easy to verify that the mapping
k : T +M

which sends e; to a;, i € I, is indeed an isomorphism of G-modules.

In order to be able to work with a simpler basis we consider K & M
and let
woo:= g ol a; €K &M
jeT
where i-j is the multiplication in I considered as multiplicative
semi-group in the ring J =ZZ/r1ZZ QZZ/rZE and pi t= p?’ . pzz for
ie Z/rlz e Z /rzz .

Then w = I p+1303
i jes
L j
with o = 011 . 022 for j&€J
_ ‘i1
and o4W; = 04 . wi
ow _p t2 - wy
2 1i 2

This shows that {wi : 1 €1} is a basis of K8 M and thus
i jel 1373

with a matrix c = (cij), cij € K, of determinant # 0. In fact c is
the inverse of the matrix

+ij
(074, jer

A straight forward computation gives: cij = -l_?T-_ T,

for any i,j € I, i = (11112)’ j= (j‘i’jz)'
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3) From 2) we get that

a. = I c..w¥
i jer ij’)
Now Via.) = I —ik

B
17 xer K 4k

= I c..(Z

E.
je1 i) kel JkBk)

= £ (I c.,:E..)-B
q: _
and thus I cijEjk - ali which completes the proof.
jEI i
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