Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

Lothar Gerritzen

Periods and Gauss-Manin connection for the Mumford curve $y_{2}^{r_{2}} y_{1}^{r_{1}}-y_{2}^{r_{2}}-y_{1}^{r_{1}}+\lambda=0$

Groupe de travail d'analyse ultramétrique, tome 14 (1986-1987), exp. n ${ }^{\circ}$ 16, p. 1-12
http://www.numdam.org/item?id=GAU_1986-1987__14__A8_0
© Groupe de travail d'analyse ultramétrique
(Secrétariat mathématique, Paris), 1986-1987, tous droits réservés.
L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

PERIODS AND GAUSS-MANIN CONNECTION FOR THE
MUMFORD CURVE $\mathrm{y}_{2}{ }^{\mathbf{r}} \mathrm{y}_{1} \mathbf{r}_{1}-\mathrm{y}_{2}{ }^{\mathbf{r}}-\mathrm{y}_{1}{ }^{\mathbf{r}}+\lambda=0$
Lothar Gerritzen
Bochum, W. Germany

A method is introduced which allows to obtain explicit formulas for the periods $q(\lambda)$ of a family (C_{λ}) of smooth curves. It gives expressions for $q(\lambda)$ in the vicinity of a point λ_{0} for which the curve $C_{\lambda_{0}}$ is totally degenerate provided one knows Picard-Fuchs equations for differentials of the family (C_{λ}).

Techniques from rigid analytic geometry are used, see [T]. We work with the notion of periods for p-adic Schottky groups as defined by Manin-Drinfeld, [MD]. The result can certainly be applied to the usual complex periods. In this approach it is basic that one has a canonical basis for the De Rham cohomology classes.

In this manuscript only one example is treated. The curves C_{λ}^{r} given by the equation in the title are prestable and totally degenerate for $\lambda=1$. The p-adic Schottky uniformization is constructed in section 2. In section 3 a crucial formula for the Gauss-Manin connection is explained. The main application is the expression for the periods in proposition 4 of section 4 . For elliptic curves the result is classical, see [F]. It is planned to give a more complete account of this method in a joint paper with F. Herrlich. The relation to the work of B. Dwork, [D], shall be included.

1. The curve C_{λ}^{r}

Let K be a field of characteristic 0 and $r=\left(r_{1}, r_{2}\right)$ a pair of integers ≥ 2. Assume that there is a primitive root of unity ρ_{i} of
order r_{i} in K.
Let $\left(y_{1}, y_{2}\right)$ be a system of inhomogeneous coordinates for $\mathbb{P} \times \mathbb{P}$, where \mathbb{P} is the projective line over K and let λ be a parameter in K. The equation
defines a projective curve $C_{\lambda}^{\mathbf{r}}$ in $\mathbb{P} \times \mathbb{P}$.
If u_{i}, v_{i} are homogeneous variables for \mathbb{P} with $y_{i}=\frac{u_{i}}{v_{i}}$, then C_{λ}^{r} is the set of zeroes of the bihomogeneous equation

The curve C_{λ}^{r} is non-singular if and only if $\lambda(\lambda-1) \neq 0$. The curve C_{λ}^{r} is a union of $r_{1} \cdot r_{2}$ projective lines and prestable.
Let $\sigma_{1}\left(\right.$ resp.$\left.\sigma_{2}\right)$ be the automorphism on $\mathbb{P} \times \mathbb{P}$ for which

$$
y_{1} \circ \sigma_{1}=\rho_{1} \cdot y_{1}, \quad y_{2} \circ \sigma_{1}=y_{2} .
$$

(resp. $y_{1} \circ \sigma_{2}=y_{1}, y_{2} \circ \sigma_{2}=\rho_{2} \cdot y_{2}$).
The restriction $\sigma_{1} \mid C_{\lambda}^{r}$ of σ_{i} onto C_{λ}^{r} is an automorphism of C_{λ}^{r} and $\sigma_{1}{ }^{\circ} \sigma_{2}=\sigma_{2} \circ \sigma_{1}$. Let G denote the group generated by $\sigma_{1} \mid C_{\lambda}^{r}$ and $\sigma_{2} \mid C_{\lambda}^{r}$. It is canonically isomorphic to $\mathbb{Z} / r_{1} \mathbb{Z} \oplus \mathbb{Z} / r_{2} \mathbb{Z}$.
The field of K-rational functions of C_{λ}^{r} is generated by $y_{1} \mid C_{\lambda}^{r}$ and $y_{2} \mid C_{\lambda}^{r}$ if $\lambda \neq 0, \lambda \neq 1$. We will write in the sequel y_{i} instead of $y_{i} \mid C_{\lambda}^{r}$ and define x_{i} to be $y_{i}{ }_{i}$. Then

$$
\frac{d x_{1}}{x_{1}-1}=-\frac{d x_{2}}{x_{2}-1}
$$

because the rational functions x_{1}, x_{2} satisfy the relation

$$
x_{2} x_{1}-x_{2}-x_{1}+\lambda=0
$$

and thus

$$
x_{2} d x_{1}+x_{1} d x_{2}-d x_{2}-d x_{1}=0
$$

$$
\left(x_{1}-1\right) d x_{2}+\left(x_{2}-1\right) d x_{1}=0 .
$$

Let $I:=\left\{i=\left(i_{1}, i_{2}\right) \in \mathbb{Z}^{2}: 1 \leq i_{1}<r_{1}, 1 \leq i_{2}<r_{2}\right\}$.
For $i=\left(i_{1}, i_{2}\right) \in I$ we define

$$
\begin{aligned}
& \omega_{i}=\frac{d x_{1}}{y_{1}{ }_{1} y_{2}^{i}{ }_{2}\left(x_{1}-1\right)}=-\frac{d x_{2}}{y_{1}{ }_{1} y_{2}^{i}{ }_{2}\left(x_{2}-1\right)} \\
& \omega_{i}^{\prime}=\frac{d x_{1}}{y_{1}{ }_{1}{ }_{1} y_{2}^{i}{ }_{2}}
\end{aligned}
$$

Then the De Rham cohomology vectorspace $H_{D R}^{1}\left(C_{\lambda}^{r}\right)$ admits a direct decomposition

$$
\underset{i \in I}{\oplus}\left\langle\omega_{i}, \omega_{i}^{\prime}\right\rangle
$$

where $\left\langle\omega_{i}, \omega_{i}^{\prime}\right\rangle$ denotes the K-vectorspace of differentials generated by ω_{i} and ω_{i}^{\prime}. In fact $\left(\omega_{i}, \omega_{i}^{\prime}\right\rangle$ is the eigenspace of the canonical action of G on $H_{D R}^{1}\left(C_{\lambda}^{r}\right)$ with respect to the character $X: G \rightarrow K^{*}$ for which $x\left(\sigma_{1}\right)=\rho_{1}^{-i}, x\left(\sigma_{2}\right)=\rho_{2}^{-i}$.
As $\operatorname{dim} H_{D R}^{1}\left(C_{\lambda}^{r}\right)=2\left(r_{1}-1\right)\left(r_{2}-1\right)$ the genus of C_{λ}^{r} is $\left(r_{1}-1\right)\left(r_{2}-1\right)$.

2. p-adic uniformization

Let now K be complete with respect to non-archimedean valuation || and assume that $|\lambda-1|<1$ and that $r_{1} \cdot r_{2}$ is prime to the characteris.tic of the residue field. I want to show that C_{λ}^{r} is a Mumford curve. This will be achieved by constructing the non-archimedean or p-adic Schottky uniformization for C_{λ}^{r}.

Let z be a coordinate for \mathbb{P}, and $s \in K,|s-1|<1, s \neq 1$ and let

$$
\begin{aligned}
& \sigma_{1}(z)=\rho_{1} \cdot z \\
& \sigma_{2}(z)=\frac{\left(s-\rho_{2}\right) z+\left(\rho_{2}-1\right) s}{\left(1-\rho_{2}\right) z+\left(\rho_{2} s-1\right)} .
\end{aligned}
$$

Then σ_{1}, σ_{2} are elliptic fractional linear transformation of \mathbf{P} and σ_{2} has the multiplier ρ_{2} and the fixed points 1 and s. One can show that the group $\left(\sigma_{1}, \sigma_{2}\right)$ is discontinuous in the sense of [GP], Chap. $I, \S 1$, and that the commutator subgroup Γ of $\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ is a free group freely

Let $z_{1}:=z, z_{2}:=\frac{z-s}{z-1}$. Then

$$
z_{1}=\frac{z_{2}^{-s}}{z_{1}-1}
$$

Let Γ_{i} the group generated by $\Gamma \cup\left\{\sigma_{i}\right\} i=1,2$.
Define

$$
\begin{aligned}
& y_{1}:=\prod_{\gamma \in \Gamma_{2}} \frac{z_{1} \circ \gamma}{\left(z_{1}^{\circ} \gamma\right)(1)} \\
& y_{2}:=\prod_{\gamma \in \Gamma_{1}} \frac{z_{2} \circ \gamma}{\left(z_{1}^{\circ} \gamma\right)(\infty)} .
\end{aligned}
$$

Both products converge on the domain Z of ordinary points for Γ. They are both meromorphic on Z and are Γ-automorphic forms on Z with constant factors of automorphy, see [GP], Chap. II, §2.

A direct computation gives

$$
\begin{aligned}
& y_{1} \circ \sigma_{1}=\rho_{1} \cdot y_{1} \\
& y_{2} \circ \sigma_{2}=\rho_{2} \cdot y_{2} .
\end{aligned}
$$

One can conclude that $y_{1}{ }_{1}, y_{2}{ }^{\mathbf{r}}$ are $\left\langle\sigma_{1}, \sigma_{2}\right\rangle$-automorphic and that y_{1}, y_{2} are $[$-invariant, see [GP], Chap. III, §], for the notions.
Let $\lambda:=y_{1}^{r_{1}}(s)$
Proposition 1: The mapping $\quad z \rightarrow\left(y_{1}(z), y_{2}(z)\right)$
gives a bianalytic mapping between the Mumford curve Z / Γ and the curve C_{λ}^{r}.

Proof: see [GH].
Remark: The mapping

$$
s \rightarrow \lambda(s)
$$

is a bianalytic mapping between $\{s \in K:|1-s|<1\}$ and

```
{\lambda\inK : |1-\lambda|<1} with \lambda(1) = 1. Moreover \lambda(s-1)= \lambda(s)
```


3. Gauss-Manin connection

There are canonical analytic r-automorphic forms with constant factors of automorphy such that $\alpha_{i}:=\frac{d u_{i}}{u_{i}}$ are analytic differentials on C_{λ}^{r} and such that $\left\{\alpha_{i}: i \in I\right\}$ is a basis of the K-vectorspace of analytic differentials on C_{λ}^{r}, see [GP], Chap. II, $\S 4$.
Let $q_{i j}:=\frac{u_{i} \cdot \gamma_{j}}{u_{i}} \in K^{*}$. The matrix $q:=\left(q_{i j}\right)$ is the period matrix of Γ with respect to the basis $\left\{\gamma_{i}: i \in I\right\}$, see $[M D]$, §2. Also there
 see [G2], p. 387, and [G1], section 3 .

The differentials $\beta_{i}:=d \zeta_{i}$ are of the second kind and $\left\{\alpha_{i}: i \in I\right\} \cup\left\{\beta_{i}: i \in I\right\}$ is a basis of $H_{D R}^{1}\left(C_{\lambda}^{r}\right)$.

We consider now C^{r} as a family of curves by letting λ vary through $\{\lambda \in K:|\lambda-1|<1\}$. The Gauss-Manin connection ∇ of C^{r} is a connection

$$
\nabla: \mathrm{H}_{\mathrm{DR}}^{1} \rightarrow \mathrm{H}_{\mathrm{DR}}^{1} \otimes \Omega
$$

where $H_{D R}^{1}$ is the sheaf of De Rham cohomology classes of C^{r} as family of curves over $S=\{s \in K:|s-1|<1\}$ and Ω is the sheaf of analytic differentials on S.

The main result of [G1] is a proof of
Proposition 2: $\quad \nabla\left(\alpha_{i}\right)=\sum_{i \in I} \beta_{j} \otimes \frac{d q_{i j}}{q_{i j}}$

$$
\nabla\left(\beta_{i}\right)=0 .
$$

We want to apply this formula to the differential of the first kind

$$
\omega_{i}=\frac{d x_{1}}{y_{1}{ }_{1}{ }^{i} y_{2}{ }_{2}\left(x_{1}-1\right)} .
$$

Proposition 3:

$$
\omega_{i}=F_{i}(\lambda) \cdot \sum_{j \in I} \rho_{1}^{i_{1}{ }^{j}}{ }_{1} \rho_{2}^{i_{2}{ }^{j}}{ }_{2} \alpha_{j}
$$

with $F_{i}(\lambda)=\sum_{n=0}^{\infty} \frac{\left(\frac{i_{1}}{r_{1}}\right)_{n} \cdot\left(\frac{i_{2}}{r_{2}}\right)_{n}}{(n!)^{2}}(1-\lambda)^{n} \quad$ and $(a)_{n}:=\prod_{i=0}^{n-1}(a+i)$.

Proof: The method of proof consist in the following: It is well known that the cohomology class ω of $\frac{d x}{y}, y:=x^{a}(x-1)^{b}(x-\lambda)^{c}$, satisfies the hypergeometric differential equation also known as Picard-Fuchs equation for ω :

$$
\lambda(1-\lambda) \nabla_{\lambda}^{2}(\omega)+[a+c-(a+b+2 c) \lambda] \nabla_{\lambda}(\omega)-(a+b+c-1) \omega=0
$$

see for instance [M], p. 378 or [D], Chap. I, p. 8.
In our case $a=\frac{-i_{1}}{r_{1}}, b=-1+\frac{i_{2}}{r_{2}}, c=\frac{i_{2}}{r_{2}}$.
A straightforward computation shows that the above F_{i} is up to a constant the only power series solution of the above differential equation.

But ω_{i} being a differential of the first kind admits a representation

$$
\omega_{i}=\sum_{j \in I} G_{i j}{ }^{\alpha}{ }_{j}
$$

with $G_{i j}$ analytic in S.
Thus $\nabla_{\lambda}\left(\omega_{i}\right) \equiv \sum_{j \in I} \dot{G}_{i j} \alpha_{j}$ mod H^{\prime} when H^{\prime} is the subspace generated by $\left\{\beta_{i}: i \in I\right\}$. Thus each $\dot{G}_{i j}=c_{j} \cdot F_{i}$ with $c_{j} \in K$, where the dot over $G_{i j}$ means the derivative with respect to λ. By considering the limit case for $s \rightarrow 1$ one obtains the above constants. For the details see [GH].
R. Coleman (Berkeley) has informed me that he has a completely different approach to this result.

4. Application to periods

The formulas for the Gauss-Manin connection and the Picard-Fuchs equation allow to derive an explicit expression for the logarithmic derivative of $q_{i j}$ with respect to the variable λ in the domain

$$
\{|\lambda-1|<1\} .
$$

Proposition 4:

$$
\begin{aligned}
& \frac{\dot{q}_{i j}}{q_{i j}}=\sum_{k \in I} \quad c_{i k} \cdot E_{k j} \\
& \text { with } c_{i k}=\frac{\left(\rho_{1}^{-i} k_{1}-1\right)\left(\rho_{2}^{-i}{ }_{2} k_{2}-1\right)}{r_{1} \cdot r_{2}} \\
& E_{k j}=\frac{A_{k j}}{(1-\lambda) \lambda^{\frac{k_{1}}{r_{1}}+\frac{k_{2}}{r_{2}}} \cdot F_{k}^{2}} \\
& A_{k j}=1-\rho_{1}^{k_{1} j_{1}}-\rho_{2}^{k_{2} j_{2}}+\rho^{k j}=c_{-k, j} \cdot r_{1} \cdot r_{2} \\
& \lambda^{a}=(1-(1-\lambda))^{a}:=\sum_{n=0}^{\infty}\binom{a}{n}(1-\lambda)^{n} \cdot(-1)^{n} \\
& F_{k}=\sum_{n=0}^{\infty} \frac{\left(\frac{k_{1}}{r_{1}}\right)_{n} \cdot\left(\frac{k_{2}}{r_{2}}\right)_{n}}{(n!)^{2}}(1-\lambda)^{n}
\end{aligned}
$$

which is the hypergeometric function ${ }_{2} F_{1}\left(\frac{k_{1}}{r_{1}}, \frac{k_{2}}{r_{2}} ; 1 ; 1-\lambda\right)$, see [MOS], Chap. II, (2.1).

Remark: In the special case $r_{1}=r_{2}=2$ the index set I consists of $(1,1)$ only and with $q:=q_{11}$ one gets

$$
\frac{\dot{g}}{q}=\frac{4}{(1-\lambda) \lambda \cdot{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ; 1-\lambda\right)}
$$

which is equivalent to a classical formula, see [F]. Be aware that λ is not the Legendre parameter as our equation is $y_{2}^{2} y_{1}^{2}-y_{2}^{2}-y_{1}^{2}+\lambda=0$.

We sketch now a proof of proposition 4.

1) Let $\omega_{i}^{*}:=\frac{\omega_{i}}{F_{i}}=\sum_{j \in I .} \rho^{i j} \alpha_{j}$. Then

$$
\nabla_{\lambda}\left(\omega_{i}^{*}\right)=\sum_{k \in I} E_{i k} \cdot \beta_{k}
$$

with $E_{i k}:=\sum_{j \in I} \rho^{i j} \frac{\dot{q}_{j k}}{q_{j k}}$

Let L_{i} denote the operator

$$
L_{i}=\lambda(1-\lambda) \nabla_{\lambda}^{2}-\left[1-\left(\frac{i_{1}}{r_{1}}+\frac{i_{2}}{r_{2}}+1\right)(1-\lambda)\right] \nabla_{\lambda}-\frac{i_{1} i_{2}}{r_{1} r_{2}} .
$$

It is known that

$$
L_{i}\left(\omega_{i}\right)=0
$$

Now

$$
\begin{aligned}
& \quad \nabla_{\lambda}\left(F_{i} \omega_{i}^{*}\right)=F_{i} \nabla_{\lambda}\left(\omega_{i}^{*}\right)+\dot{F}_{i} \omega_{i}^{*} \\
& \\
& \quad \nabla_{\lambda}^{2}\left(F_{i} \omega_{i}^{*}\right)=F_{i} \nabla_{\lambda}^{2}\left(\omega_{i}^{*}\right)+2 \dot{F}_{i} \nabla_{\lambda}\left(\omega_{\dot{i}}^{*}\right)+\ddot{F}_{i} \omega_{i}^{*} \\
& \text { and } \nabla_{\lambda}^{2}\left(\omega_{i}^{*}\right)=\sum_{k \in I} \dot{E}_{i k} \beta_{k}
\end{aligned}
$$

Substituting into the equation $L_{i}\left(\omega_{i}\right)=0$ and looking for the coefficient at β_{k} which must be zero gives

Solving this differential equation gives

$$
E_{i k}=\frac{A_{i k}}{(1-\lambda) \lambda^{\left(\frac{i_{1}}{r_{1}}+\frac{i_{2}}{r_{2}}\right)} F_{i}^{2}}
$$

with a constant $A_{i k} \in K$. $E_{i k}$ is considered as a Laurent series in ($1-\lambda$); its residue at 1 is just $A_{i k}$.

In a joint work with F. Herrlich we determined the constants $A_{i k}$.
A careful study of the action of Γ on the Bruhat-Tits tree of \mathbb{P} gives the result that the vanishing order ord $q_{j i}$ of $q_{j i}$ at the
point $s=\lambda=1$ is as follows:

$$
\text { ord } \dot{a}_{i k}=\left\{\begin{array}{l}
4: j=k \\
2: j \neq k \text { and } j_{1}=k_{1} \text { or } j_{2}=k_{2} \\
1: \text { otherwise }
\end{array}\right.
$$

Therefore the residue of $\frac{\mathrm{dq}_{j k}}{q_{j k}}$ at $\lambda=1$ is ord $q_{j k}$ and the residue of $E_{i k} d \lambda$ at $\lambda=1$ is

$$
\sum_{\substack{j \in I \\ j=k}} \rho^{i j}=-\rho_{2}^{i_{2} k_{2}} \text { and } \sum_{j \in I} \rho^{i j}=1 \text { this residue is }
$$

indeed $A_{i k}$.
2) Let $\bar{\Gamma}=\Gamma /[\Gamma, \Gamma]$ be the commutator factor group of Γ; if is a free \mathbb{Z}-module generated by the images e_{i} of $\gamma_{i}, i \in I$.

Now G is canonically isomorphic to the factor group $\left\langle\sigma_{1}, \sigma_{2}\right\rangle / \Gamma$ and thus acts on $\bar{\Gamma}$ by inner automorphims; we consider $\bar{\Gamma}$ as G-module.
As $\sigma_{1} \gamma_{i} \sigma_{1}^{-1}=\sigma_{1}: \sigma_{1}^{i_{1}} \sigma_{2}^{i_{2}} \sigma_{1}^{-i_{1}} \sigma_{2}^{-i_{2}} \cdot \sigma_{1}^{-1}$

$$
\begin{aligned}
& =\sigma_{1}^{i_{1}+1}{ }_{\sigma_{2} i_{\sigma_{1}}{ }^{-i_{1}-1} \cdot \sigma_{1} \cdot \sigma_{2}^{-i_{2}} \cdot \sigma_{1}^{-1}}^{=\gamma_{i_{1}+1, i_{2}} \cdot \sigma_{2}^{i_{2}} \cdot \sigma_{1} \cdot \sigma_{2}^{-i_{2}} \cdot \sigma_{1}^{-1}} \\
& =Y_{i_{1}+1, i_{2}} \cdot \gamma_{1, i_{2}}^{-1}
\end{aligned}
$$

and $\sigma_{2} \gamma_{i} \sigma_{2}^{-1}=\sigma_{2} \sigma_{1}^{i_{1}} \sigma_{2}^{i_{2}} \sigma_{1}^{-i_{1}}{ }_{\sigma_{2}^{-i}}^{2} \cdot \sigma_{2}^{-1}$

$$
\begin{aligned}
& =\sigma_{2} \sigma_{1}^{+i} 1_{\sigma_{2}}^{-1} \sigma_{1}^{-i} 1 \cdot \sigma_{1}^{i_{1}} \cdot \sigma_{2} \cdot \sigma_{2}^{i_{2}}{ }_{\sigma}^{-i} 1_{1} \sigma_{2}^{-i_{2}^{-1}} \\
& =\gamma_{i_{1}, 1}^{-1} \quad \gamma_{i_{1}, i_{2}+1}
\end{aligned}
$$

the action of G is known.

Let M be the submodule of the group ring $\mathbb{Z}[G]$ generated by

$$
a_{i}=\left(\sigma_{1}^{i_{1}}-1\right) \cdot\left(\sigma_{2}^{i_{2}}-1\right)
$$

for all $\left(i_{1}, i_{2}\right) \in I$. It is easy to verify that the mapping

$$
\kappa: \bar{\Gamma} \rightarrow M
$$

which sends e_{i} to a_{i}, $i \in I$, is indeed an isomorphism of G-modules. In order to be able to work with a simpler basis we consider K M and let

$$
w_{i}:=\sum_{j \in I} \rho^{+i j} \cdot a_{j} \in K \otimes M
$$

where $i \cdot j$ is the multiplication in I considered as multiplicative semi-group in the ring $J=\mathbb{Z} / r_{1} \mathbb{Z} \oplus \mathbb{Z} / r_{2} \mathbb{Z}$ and $\rho^{i}:=\rho_{1}^{i_{1}} \cdot \rho_{2}^{i_{2}}$ for $\mathrm{i} \in \mathbb{Z} / \mathrm{r}_{1} \mathbb{Z} \oplus \mathbb{Z} / \mathrm{r}_{2} \mathbb{Z}$.

Then

$$
w_{i}=\sum_{j \in J} \rho^{+i j} \sigma^{j}
$$

with

$$
\sigma^{j}=\sigma_{1}^{j_{1}} \cdot \sigma_{2}^{j_{2}} \text { for } j \in J
$$

and

$$
\begin{aligned}
& \sigma_{1} w_{i}=\sigma_{1}^{-i_{1}} \cdot w_{i} \\
& \sigma_{2} w_{i}=\rho_{2}^{-i_{2}} \cdot w_{i}
\end{aligned}
$$

This shows that $\left\{w_{i}: i \in I\right\}$ is a basis of $K \otimes M$ and thus

$$
a_{i}=\sum_{j \in I} c_{i j} w_{j}
$$

with a matrix $c=\left(c_{i j}\right), c_{i j} \in K$, of determinant $\neq 0$. In fact c is the inverse of the matrix

$$
\left(\rho^{+i j}\right)_{i, j \in I}
$$

A straight forward computation gives: $c_{i j}=\frac{\rho_{1}{ }_{1}{ }_{1}{ }_{1}-1}{r_{1}} \cdot \frac{\rho_{2}^{i_{2}{ }^{j}{ }_{2}-1}}{r_{2}}$ for any $i, j \in I, i=\left(i_{1}, i_{2}\right), j=\left(j_{1}, j_{2}\right)$.
3) From 2) we get that

$$
\alpha_{i}=\sum_{j \in I} c_{i j} \omega_{j}^{*}
$$

Now

$$
\begin{aligned}
\nabla\left(\alpha_{i}\right) & =\sum_{k \in I} \quad \beta_{k} \frac{\dot{q}_{i k}}{q_{i k}} \\
& =\sum_{j \in I} c_{i j}\left(\sum_{k \in I} E_{j k} \beta_{k}\right) \\
& =\sum_{k \in I}\left(\sum_{j \in I} c_{i j} E_{j k}\right) \cdot \beta_{k}
\end{aligned}
$$

and thus $\sum_{j \in I} c_{i j} E_{j k}=\frac{\dot{q}_{i k}}{q_{i k}}$ which completes the proof.

[D]	Dwork, B.	Lectures on p-adic differential equations, Springer-Verlag New York 1982
[F]	Fricke, R.:	Die elliptischen Funktionen und ihre Anwendungen, Leipzig-Berlin, Teubner 1922
[G1]	Gerritzen, L.	Periods and Gauss-Manin connection for families of p-adic Schottky groups, Math. Ann. 275, 425-453 (1986)
[G2]	Gerritzen, L.	Integrale zweiter Gattung auf Mumfordkurven, Math. Ann. 270, 381-392, (1985)
[GH]	Gerritzen,L.-	: Explicit formulas for periods of curves, in preparation
[GP]	Gerritzen, L.	,M.: Schottky groups and Mumford curves, Lectures Notes in Math. 817, Springer-Verlag (1980)
[M]	Messing, W, :	On the nilpotence of the hypergeometric equation, J. Math. Kyoto Univ. 12 (1972), 369-383
[MD]	Manin, Yu.- D	Periods of p-adic Schottky groups, J. reine angew. Math. 262/263, 239-247 (1973)
[MOS]	Magnus,W.- Ot	,F.- Soni,R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag New York 1966
[T]	Tate, J.:	Rigid Analytic Spaces, Invent. math. 12, 257-289 (1971).

[^0]
[^0]: Ruhr-Universität Bochum,
 Fakultät und Institut für Mathematik Universitätstrasse 150, D-4630 Bochum

