@article{GAU_1987-1988__15__29_0, author = {Khoai, Ha Huy}, title = {Sur le th\'eor\`eme de {Morera} $p$-adique}, journal = {Groupe de travail d'analyse ultram\'etrique}, eid = {5}, pages = {29--34}, publisher = {Secr\'etariat math\'ematique}, volume = {15}, year = {1987-1988}, language = {fr}, url = {http://archive.numdam.org/item/GAU_1987-1988__15__29_0/} }
Khoai, Ha Huy. Sur le théorème de Morera $p$-adique. Groupe de travail d'analyse ultramétrique, Tome 15 (1987-1988), article no. 5, 6 p. http://archive.numdam.org/item/GAU_1987-1988__15__29_0/
[1] Transcendental numbers in the p-adic domain. Amer. J. Math. 88 (1966) 279-308. | MR | Zbl
.[2] An effective p-adic analogue of a theorem of Thue Acta Arith. 15 (1969), 279-305. | MR | Zbl
.[3] p-adic analysis : a short course on recent works. London lecture Notes in Math, N42. | Zbl
.[4] On functions in normed algebraically closed division rings. Isvestija AN SSSR 2 (1938) 417-498.
.[5] Algebraic independence of certain numbers in the p-adic domain. indag. Math. 34 (1971) 1-7. | MR
:[6] Indag. Math. 33 (1971) 1-7. | MR
.[7] Some applications of the Schnirelman integral in non-archimedean analysis Uspehi Math. nauk., 34 (1979) 223-224. | Zbl
.