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DIMENSION OF THE SPACE OF SOLUTIONS OF THE DIFFERENTIAL EQUATION y’ = wy
by
Alain ESCASSUT

Let K be an algebraically closed field of characteirstic O provided
with an ultrametric absolue value |.|. For all set D in K we will denote
by R(D) the K-algebra of the rational function h(x)eK(x) with no pole in
D. When D is closed and bounded, the algebra R(D) is provided with the
norm of uniform convergence on D denoted by I 9[51) that makes it a
normed K-algebra. Its completion for that norm is then a K-Banach algebra
denoted by H(D), the elements of which are called the analytic elements on
D[KS'A’El’Ezl'

A set D is said to be infraconnected if for all aeD, the adherance of
the set {|x-a||aeD}) in R is an interval. We know that a bounded closed set
D is infraconnected if and only if H(D) does not have non trivial
idempotent [Ezl.

In Chapter I we will prove the analytic elements with null derivative
on a clopen infraconnected set is a constant and more generally when the
derivative of an analytic element is an analytic element, we obtain the
Mittag-Leffler series of the derivative in deriving the Mittag-Leffler
series of the considered analytic element.

In chapter II we will study the dimension of the space of solutions of
the differential equation (&)y’ = fy with f,yeH(D), D a clopen bounded
infraconnected set. We will prove a solution is either invertible in H(D)
or strictly annulled by a T-filter on D [E:;]' If ¥ contains a solution
invertible in H(D) then ¥ has dimension 1. If H(D) has no divisors of
zero, then ¥ has dimension o or 1.

In Chapter III, we will suppose the residue characteristic p Iis
different from zero and we will construct clopen bound infraconnected sets
D with elements feH(D) such that ¥ has dimension n (neN) or infinite
dimension.

® Chapter II and III were made In common with Marle-Claude Sarmant. The
questions taken up here were pointed out to my attention in talking to
Labib Haddad at the Clermont Ferrand Analysis Seminary.
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I. DERIVATIVE OF ANALYTIC ELEMENTS ON INFRACONNECTED CLOPEN SETS

Asserting the theorems requires to introduce a lot of definitions and
notations.

For all aek, rEK+, d(a,r) denotes the disk {xeK||x-a| = r} d (a,r) is
the disk {xeK||x-a|<r}, and C(a,r) is the circle {x||x-a| = r}.

Let D be a bounded closed set of diameter R and let D be the disk
d(a,r) with aeD. Then D\D admits a partition by a unique family (Ti)l 1
where each 'l‘l is a disk d (al,r‘) and r, is maximal. The Tx are called the
holes of D.

Let T = d (a,r) be a hole of D, and let R(T) be the algebra of the

h(x)eR(K\T) such that lim h(x) = o. R(T) is then provided with the norm
| x| >
of the uniform convergence on K\T and we will denote by H(T) the Banach

algebra completed of R(T) for that norm.
o A
We know that H(T) is the algebra of the Laurent series J

n=1(x-a)

such

12|
that 1im[ o ): olA,K R
ndo \ r

Now assume D is infraconnected closed and bounded. We have the

Mittag-Leffler theorem [K,R] for an feH(D). There exists a unique sequence

of holes (Tn) « of D and a unique set of analytic elements (f )« with
neN neN

=]
fnef{(Tn) and f # o and a unique foeH(f)) such that the series }f_
n=o

converges to f in H(D) and satisfies|f| = max(|f | ., sup, anux\r ) .
D neN n
Here we will call a f-hole of any one of the holes ’I']n (neN).

The classical Theorem 1 is well known and it will be helpful :

Theorem 1.1. Let A be a bounded closed infraconnected set in K and let
geH(a). ZLet (Tn)nelN be the sequence of the g-holes of g on the
00
infraconnected set A and let A’= E\(nlen) Then g extends into an element

heH(A’) such that ghEA, = EgﬂA .

It is well known and easily seen that an analytic element on an open
set D has a derivative at each point of D [R]. Now we will look when f’
also belongs to H(D).

In all of the following theorems and corollairies we denote by D a
clopen bounded infraconnected set of diameter R in K ) by S
the set consisting of the diameter of the holes of D and the diameter R

or D and by A the lower bound of S. We denote by f an_element of H(D), by
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Q(f) the set consisting of R and of the set of the diameters of the
f-holes of D, and by p(f) the lower bound of Q(f).

[ -]
Let fo+ Y fn be the Mittag-Leffler series of f on D with f K H(D),
. n=1 -
f eH(T (T a f-hole of D) neN .
n n n

Theorem 1.2. Assume p(f) > o. Then f' belongs to H(D) and satisfies

f ©
» D . ’
It In = = and the series } f: converges to f'in H(D).

n=o

Corollary . Assume A>o. For all feH(D), f’ belongs to H(D) and
Ifl
D

'f’ln =X

The main problem we have got to study is whether the infraconnectedness
characterizes the implication "f’(x) = o whenever xeD » f = constant in D".

An answer is "yes" on the clopen set D. But it is not the same on a set
A that is only open but not closed.

Actually, we find solutions to those problems in answering a more
(-]

general question : if f’ belongs to H(D), does the series } f; converge
n=o0o

to f’ in H(D) ?

Theorem 1.3 . The three following assertions are equivalent :

a) £’ belongs to H(D)

-]
b) the series } f’ converges to f’ in H(D)
n=o

[ 4]
c) the series } f ; converges in H(D).
n=o

On the first hand, Theorem 1.3 helps us characterize the infraconnected

clopen bounded sets D such that all the elements geH(D) have derivative in

H(D).

Theorem 1.4. A is different from zero if and only if for every geH(D), g’
belongs to H(D).

On the second hand, Theorem I.3. gives us the implication : if f’(x)=o
for all xeA , then f is a constant, whenever A be a clopen infraconnected

set and this is characteristic of the infraconnected sets in the class of
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the clopen bounded sets. However, that characterization does not hold any
more when A is not supposed to be closed.Theorem 1.5. A clopen bounded set
E is infraconnected if and only if for every geH(E) such that g'(x) = o
for all xeE, g is a constant in E.

Remark.
The derivation clearly is not continuous in R(D). Like in the proof of
Theorem 1.5, consider a clopen bounded infraconnected set D with a

sequence of holes Tn = d_(bn.rn) with 1lim r =o and take a sequence

n>0
Al A
(A ) in K such that lim ———= o0 and lim —
n n>o l.n n>o r

n

Clearly, the sequence g = x_: converges to O although the sequence g;‘

n
o

does not converge. As a consequence the series Y g has a derivative that
n=1

does not belong to H(D).
However the following Theorem 1.6 will be helpfull in further articles.

Theorem 1.6 . Suppose f’belongs to H(D). For every € > o, there exists

heR(D) such that “f—hun = £ together with uf-_h."D < g .

Recall briefly the proof of Theorem I.1.
[ ]
Let g =% g be the Mittag-Lefflerian series of g on the infraconnected

n=o

n
set A with ge H(A) and g € fl(Tn). For each neN let h = Zgj; then hn
J=o

clearly belongs to H(A'). Now g, € f-'l(Tnﬂ) c H(A’)and by the
Mittag-Leffler Theorem ﬂgn*lﬂx\l_m: le,l, hence |h -h |, = le,. .14

and then the sequence hn does converge in H(A’) to an element h which

extends to g. Finally, ﬂhﬁA, = g = max(goﬂ~; su ).
A

n€

Px ﬂg ﬂ
N n k\'l‘n
Proof of Theorem I.2.

Since D is open, it is well known and easily seen that f has a

derivative at each point of D (because in every disk d(a,r) < D,f(x) is
[

equal to a series ¥ Pl“(x—a)n which converges for |x-a| = r) [R].
n=o

Now let (Tn) be the sequence of the f-holes of f in D and let

-]
D’ = D\(yT). By Theorem L1, feH(D') and Ifl,.= |fin. Thus we can
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assume every hole of D is a f-hole.

let aeD and 1let r(a) be the distance from a to K\D. In

o0
d (a,r(a)),f(x) is equal to a series ¥ 7&1\(:-:—33n convergent for |x-a|<r(a)

n=o
(-]
is equal to a series } 7&ﬂ(x—a)n convergent for |x-a| < r(a) and then
n=o
© n-1 1 lfln
f'(x) =} nAn(x-a) does satisfy |f’(x)| = - |f|d(mm)s —

n=1

On the other hand, by definition of r(a), we can see that for all € > o
there exists a f-hole T included in the disk d(a,r(a)+ ¢€). Then

diam(T) = r(a) + € hence p(f) = r(a) + € . As that is true for all € > O
It}
clearly p(f) = r(a) hence |f’(x)|

. Finally, this inequality is
o y I quality
true for all xeD hence we obtain the inequality (1) ﬂf’ﬂD = D
[}
Now let ¥ f_be the Mittag-Leffler series of f in H(D) with f e H(D)

n=o

p(f) ’

and fne Fl(Tn), f“ # o. It is well known that f;e H(D) and in the same way

. » b
f; € H(Tn) for each neN . Then by (1) the series ¥} f‘n clearly converges in
n=o

H(D) to a limit £ We just prove £ = f’. Indeed, let € be a positive

number, and let N(e)eN be such that qunn = g p(f) for q = N(g). Then
q

If* - ¢ f!"[ID = € hence ||f’ - ZD = ¢ , finally f'= ¢ that ends the proof.
n=o .

Definition. Let D be an infraconnected closed bounded set and let feH(D).
Let T be a hole of D. By the Mittag-Leffler Theorem and by Theorem I.1.
there is a unique hT € H(T) such that f—h_r extends to an element of
H(DuUT); hT will be called the f-singular element associated to T with
respect to D.

The following proposition is then a direct consequence of the
Mittag-Leffler Theorem.

Proposition. Let D and D' be two infraconnected closed bounded sets such
that D’c D. Assume there is a hole T of D which is also a hole of D'. For
every feH(D), the f-singular element associated to T with respect to D has
a restriction on D’ that is the f-singular element associated to T with
respect to D’.



t 3
Notations. For all aeK, r’, r”eR+ with r* < r", we will denote by
F(a,r’,r") the annulus {xeK|r’< |x-a] < r"}, and by Aa,r’,r") the annulus

{xeK|r's |x-a| s r").

-
Lemme I.A. assume the series } f’ converges to a limit h in H(D).
n=o

Then h(x) = f'(x) for all xeH(D).

Proof. Let « be a point in D and let r > o be such that d(e,r) ¢ D. For
n

every nelN let g = h) f;, and let g be the restriction of g, to d(a,r). By

J=o
theorem 1.2, the sequence g converges to the restrictionh of f’ to d(«,r)

in H(d(e,r)) hence h(x) = f’(x) for all xed(a,r). This is true for all aeD

and that ends the proof.

Proof of Theorem 1.3. First b) trivially implies a) and c). After, by
Lemma I.A, it is easily seen that c) implies b), and then it only remains
to us to prove for example a) implies b).

Let us assume a) is true and prove b). For every hole T of D, let
fT(resp g_r) be the f-singular element (resp. the f’-singular element)
associated to T with respect to D. Let § be the set of the f-holes T such
that (fT)’== - and let § be the set of the f-holes such that (fT)’ = g2.
If we can show that § = @&, Theorem 1.3 is clearly proven. Suppose then § #
@. All of the g, are null except maybe a countable familyA of them. The

series } g _and Y g, obviously converge in H(D), and then

tey TES
=y (f)V + ¥ g
TE} T T€S |
By Lemma I.A, the series ¥ (fT)’ is clearly equal to the derivative
TES
of ¥ f.Let h= )X fT=f—Z f then h’ = f’ - § (fT)’ =3 g,
TES T€ES 1€ TEF T€G

Let D be the family of the diameters of the holes T that belong to §,
and let 8 be its lower bound. Suppose 8 > O. By Theorem 1.2, the series
Y f. converges to h’, hence } f;_ is the Mittag-Leffer series of h’ on

TeES TES
D, hence f,’r = g for all Te§ and that contradicts the definition of & .

Hence 8 = O.

Now, we will prove there exists a hole ¥ = d (a,r)e§ with an annulus
Ala,r,s) such that the set ¥ of the diameters p of the f-holes included in
Ala,r,s) has a strictly positive lower bound. Indeed suppose such a hole J
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does not exist. Then we can easily construct a sequence of f-holes T =
n
d(a,r) with (1) r s = and (2) la | = 2 | For example, assume the
n n n n n+l1 n
sequence has just been constructed up to the range q, satisfying (1) and

(2) for n = q . Since ¥ does not exist, then in A(a ,rq,g) we can find a

- . a q'q
f-hole T = d(a ,r ) with r < iand then the sequence is
q+1 q+l q+1 q+l q+1

clearly constructed by induction in taking first any f-hole T1 = d-(al,rl)

The sequence (Tn) clearly converges to a point weD and that contradicts
the hypothesis "D is clopen”". Hence we have now proven the existence of
the f-hole t with an annulus A(a,r,s) and a number & > O such that every
f-hole T ¢ A(a,r,s) satisfies (3) diam(T) = &

Let £ be that family of the f-holes included in A(a,r,s). Let

L= Y fT; by Theorem 1.2, the series Y (fT)’ converges to £ in H(D).
TES b(34
Now let ¢ = h-—t—ft. Clearly ¢ belongs to H(D) and no hole T (of D).

included in d(a,s) is a ¢-hole. Hence ¢ extends to an element of
H(D v d(a,s)). In d(a,s),p(x) is equal to a Taylor series
®(x)eH(d (a,s)), hence ®’eH(d(a,s)).

Thus in D n d(a,s),p’(x) is equal to the series ®’(x) and then for
every hole T of D included in d(a,s) the ¢’-singular element associated to
T with respect to D is null.

On the other hand, ¢* = h’-¢ (f ) = ¥ g_ -Y (f ) - (f_) and then
T T T T
T€S TeL
the ¢’-singular element associated to T with respect to D is gg—(ft)'== 0

so that we have a contradiction with ¢’eH(d(a,s)), and then Theorem 1.3 is

finally proven.

Proof of Theorem I.4.
By the Corollary, if A > O, every geH(D) has its derivative g’ in
H(D). Now let us assume that A = O and let us find a geH(D) such that g’

does not belong to H(D). Let (Tn) . = (d—(an,rn)) « be a sequence of

neN neN
holes such that lim r = o.
n-ow A I
Now let (An) « be a sequence in K such that lim r—n—= O and
A | neN A IA | e R
lim —— = + @ . We know that | | = —"— and then the series ¥ ——
e T x-a n no1 X%,

n
converges to a limit g in H(D) and for each n, the g-singular element of
A
Tn with respect to D is obviously n , hence the Mittag-Leffler series

x-a
n




© A
ofgonpon Y oy

=1 n

n

o A
Now suppose g’ belongs to H(D) . By theorem 1.3, the series ¥

n=1(x-a )
n

A [
n |D = ————:—and that clearly shows
r

must converge to g’ in H(D). But |

(x-a ) n
© A n
the series - Y}

n=1 (x-a)
n

n

does not converge in H(D). Theorem 1.4 is then

proven.

Proof of Theorem I.5. It is well known that if E is not infraconnected,
H(E) has an idempotent u # O and 1 and then u(x) = O in a subset ‘E:l of E,
while u(x) =1 in Ez = E\El, hence u’'(x) = O for all x€E (though u is not
constant in E).

Now suppose E is infraconnected, let geH(E) be such that g'(x) = O
whenever x€E and let us prove that g is a constant.

Let Egn be the Mittag-Leffler series of g on E. Since g’ is the null

n=o

-]

analytic element, the series Y (gn)’ converges to zero in H(E) hence it
n=o

is easily seen that g; = O whenever n =z 1 and g, is a constant in D, and

that ends the proof of Theorem IL.5.

Proof of Theorem I.6.

0
Let d(a,r) = D and let g(x) = Y Am(x-—a)meH(ﬁ). For each geN, let (g)q

m=o
q —
be the polynomial ¥ Am(x—a)m. Now let T = d (b,r) be a hole of D, and let

© “-m m=o . a “m
tix) = Y} ; for each geN , let (t) =}
m=1 (x-5)" m=1 (x-5)"

Now let € be > O and let us find the heR(D) satisfying Theorem I.4.

N(E)

By Theorem 1.3, we have an integer N(g) such that (1) H r f - f“o = e
n
N(E) n=e
and (2) EZ fn-t‘gse.
n=o

On the other hand we obviously have an integer Q(g) such that

ifn - (fn)o(e)ln s € whenever n = O,...,N(g) and then by (1) and (2) it

N(E) [
is easily seen we have Inf:'_o (fn)o(e) - f’lD = ¢ and E I_:(fn)Q(e)- f l” =g
N(E h n=e
Putting h = ¥ (f l“)Q“:) we obtain the heR(D) we have been looking for.
n=o
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II THE DIFFERENTIAL EQUATION y’ = fy IN THE AI.GEBRAS H(D)
Here we take a clopen bounded infraconnected set D, a f in H(D), we

consider the differential equation (&) y’= fy with yeH(D), and we denote
by ¥ the space of the solutions geH(D) of (&).

By classical results, we know that ¥ may be reduced to {(0O}). (For
example, if D is the disk |x| = 1, it is easily seen the equation y' = y
has no solution in H(D)). Here we will give sufficient conditions on the

algebra H(D) to have dimension 1 or O for ¥ .

In the three Theorems that follow, D is a clopen bounded infraconnected
set, f belongs to H(D), () denotes the differential equation y’ = fy and
¥ is the linear space of the solutions of (&) in H(D).

The notions of T-filter and strictly annulled element involved in

Théorem II.2 will be recalled below.

Theorem II.1. If (&) has at least one solution g inversible in H(D) then
¥ has dimension 1.
Theorem I1.2. We assume () has at least one solution g non identically null.
Then g has no zero isolated in D. Beaidea

either g is invertible in H(D)

or g is strictly annulled by a T-filter on D.

Theorem I1.3. If H(D) has no divisor of zero, then ¥ has dimension O or 1.

The proof of Theorem 1 is easily obtained.

Proof of Theorem II.1. Let g be a solution of (&) invertible in H(D), and

let h be another solution. We verify g is a constant in H(D). Indeed, by

hypothesis, g does belong to H(D). Then (2)' = _h__g—Thg = f—grl—;lﬁi =0

g 3
and then by Theorem I.5 we know that 2 is a constant in D.

Now we have to recall the definitions linked to the Monotonous Filters.

Technical definitions and proof of Theorem II.2.

The technique used in the proofs of the Theorems requires a lot of
classical definitions previously given in [G’Ez’Es'Ea'Es]'

We will denote by "log" a real logarithm function of base w> 1 and by
v the valuation defined on K by v(x) = = - log|x]|.

Now we have to define the monotonous filters. Henceforth, D will denote



a closed bounded infraconnected set and we will specify when it is
supposed- to be open; f will denote an element of H(D); (&) is the equation
y' = fy with yeH(D).

We call an increasing filter (resp. a decreasing filterk) of center aeD
of diameter r the filter on D that admits for base the family of sets
F'(a,r,s) n D with O < s < r (resp. I'(a,r,s) n D with r < s).

We call a decreasing filter with no center on D a filter that admits
for base a sequence Dn in the form Dn = d(an,r'n) n D with

d(a ,rml) c d(an,rn), lim rn>0, A d(an,rn) = ¢

n+l n->0 n=1
and the limit of (rn) is called the diameter of the filter.

We call a monotonous filter a filter that is either increasing or
decreassing.

We know that if ¥ is a monotonous filter on D and feH(D), then the
function defined in D by |f(x)| has a limit along the filter ¥ and the

mapping f» lim|f(x)| is a multiplicative semi-norm on H(D) continuous with

respect to the norm ﬂ.HD[G.Eal.
If ¥ is a monotonous filter of center a, of diameter r, we also have

lim|f(x)| = lim |[f(x)].
g

xX- a >r
|x-a| #r
| xeD

For convenience we introduce the valuation function v‘(f ,i) defined by

v‘(f,-log r) = lim v(f(x) if lim |[f(x)]| # O
Ix-al > r |x—al > r
Ix-al #r lx-al % r
x€D x €D
va(f,—log r)=+ o if lim f(x) = O

Ix-al 2> r
'x-al # r

x €D

Let R be the diameter of D. Then for all a € D , the function
[T va(f ,u) is continuous and piecewise linear in its interval of
definition I. If a does not belong to a hole of D, I is [-log R, +x[. If a
belongs to a hole T = d (a,p), then I = [-log R, -log pl.

When a = O we will only write v(f,u) for ve(f,u)l

For p < v(a-b) we_have v.(f.p) = vb(f.p) for all heH(D). {El,Eal..
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By the definition of v.(r.u) it is easily seen that —loglfln =< va(r.p.)
for all aeD, and u = -log R. In particular, if f and geH(D) are such that
-log|f—g|D < v.(f.u) then v.(f.u) = v.(g,u).

Lef f belong to H(D). f is said to be strictly annulled by a increasing
filter (resp. a decreasing filter) of center a, of diameter r, if there
exists A < -log r (resp. A > -log r) such that v.(f.u) < + o whenever

u € l-log r,A]l (resp. whenever pel[A,-log rl) and if lim f(x) = O.
¥
f is said to be strictly annulled by a decreasing filter ¥ with no

center, of diameter r, of base (Dn) with Dn = d(an, rn)n D, if there

exists A > -log r such that v, (f,u) < +o whenever uel[A,-log rnl].
n
whenever nelN, and if limf(x) = O.
F
Now recall a monotonous filter is called a T-filter if the holes of the

elements of its bases form a sequence that satisfies a condition given in
[E4] (we won’t explicitly need it in the present work). Then we know that
given a monotonous filter ¥, there exist elements feH(D) strictly annuled
par ¥ if and only if ¥ is a T-filter [E4]

An element feH(D) is said to be quasi-invertible if it factorizes in
the form P(x)g(x) with P a polynomial the zeros of which are in the
interior of D, and g an invertible element in H(D).

Then if D is a clopen bounded infraconnected set, an element feH(D) is

not quasi-inversible if and only if it is annuled by a T-filter on D[E4l.

Proof of Theorem II.2. Let us assume g has an isolated zero a in D. Since
D is open we know g factorizes in the form (x-a)%h(x) with heH(D) and
h(a) # O [El’Ezl hence g’ = (x-a)%! (gh + (x-a)h’) hence gh = (x-a)(f-h’)
which contradicts the hypothesis h(a) # O, (since q # O). Thus g has no
isolated zero in D.

Now suppose g is not invertible; since it has no isolated zero it is
not quasi-invertible, and since D is open, that implies g is strictly

annulled by a T-filter on D [Ea;E4I.

Beaches, integrity and proof of Theorem II.3.
Let F be an increasing (resp.a decreasing) filter of center a, of

diameter r>0 . Let set of the xeD such that |x-a| = r (resp. |x-a| =r)
is called the beach of ¥ , denoted by P(¥). The beach P(¥F) of a decreasing
filter ¥ with no center is the empty set ¢ . We denote by B(F) the set



D\P(¥), by #(¥F) the ideal of the feH(D) such that limf(x) = O and by
F

.70(?) the ideal of the fe$(¥) such that f(x) = O whenever xeP(%). Then

3" 4" 5
Two monotonous filters ¥ and ¥ on D are said to be complementary if

P(F) v P(S) = D.
The Banach algebra H(D) has no divisors of zero if and only if D is

infraconnected with no couple of complementary T-filters [Esl'
In all of the following lemmas, D will denote a closed bounded

H¥F) and .90(9;) are closed prime ideals [E_JE ,E ].

infraconnected set and we will specify when it is open.

Lemma II.A Let aeD and let reR+. Assume f(x) = O whenever xed(a,r) n D.
Assume there exists beD such that f(b) # O. Then there exists a T-filter &
on D such that be6(¥) and d(a,r) ¢ P(F) [Esl.

Lemma II.B Let F be a T-filter on D with no complementary T-filter. Then
HF) = .90( F).

Proof of Lemma II.B. The equality H(¥F) = .90(3‘) is trivial when P(¥) = ¢
hence we will assume that ¥ has center a. Let r be its diameter and
let 8 = -log r. Let fe3(¥) and let us show fe.?o(?). For this, let us
assume f‘é.?o(?) and let beP(¥F) be such that f(b) # O.

Let A = v(a-b).

1) Assume ¥ is increasing.

1)a) Assume first va(f,A) < + oo,

By hypothesis since fe3(¥), we know va(f ,0) = + o . Hence there exists
7€[6,A] such that va(f,ar) = +0 and va(f,u) < + o whenever puely,A]. Then
f is strictly annulled by the decreasing filter § of center a, of diameter
s = w?. The filter § is then a T-filter complementary to (%) which

contradicts the hypothesis.

1)8) Assume now v‘(f,k) = +o . We know vb(f,A) = v‘(f,A) since
A = v(a-b) and therefore vb(f,?«) = +w, while vb(f.u) < +o when pu

approaches +o because f(b) # O.
It then exists ¥y =2 A such that vb(f.u) < +o whenever u > ¥ and

vb(f,z) = +w . Hence f is strictly annulled by the increasing filter of

center b, of diameter s = w 7. This filter is then a T-filter €. Since

S1



max(r,s) s |a-b|, § 1is complementary to ¥ which contradicts the
hypothesis.

2) Now, let us assume ¥ is decreasing. Then a and b belong to
P(¥) = d(a,r) n D therefore |a-b| = r hence v (f,8) = += .It then exists
¥ > 6 such that vb(f,w) = +o for all g > 7, hence the increasing filter of
center b, of diameter s = w? <r is a T-filter complementary to ¥ which
ends the proof of Lemma II.B.

Corollary II.C. If H(D) has no divisor of zero then for every T-filter ¥
on D, (%) = .90(9).

Definition. Let geH(D). We call support of g the set } of the xeD such
that g(x) # O, and § will be said to be reinforced if for every a,be} ,

the function pu - v, (f,u) is bounded in the interval [v(a,b),+o[.

Proposition II.LE. Assume H(D) has no divisor of zero. Then every
feH(D)\{O) has a reinforced support.

Proof. Let feH(D), let } be the support of f, let a,be) . Let us show
v‘(f ,u) is bounded when pelv(a-b),+w[. Indeed assume it is not. Since aej
f(a) # O, hence there exists ¥y eR such that va(f ,u) = v(f(a)) whenever
uzy. Since vn(f ,.) is a continuous function, if it is not bounded in
[v(a-b),+w[, there exists A = v(a-b) such that va(f ,u) < +o whenever p > A
and v.(f ,A) = +m, so that D has an increasing T-filter F of center a, of
diameter r = w

Assume first v‘(f ,v(a-b)) < o. Then there exists aelv(a-b),A] such that
va(f,u) < o whenever uelv(a-b),xl and va(f,oc) = +o which means that D has
a decreasing T-filter § of center a, of diameter 0% > r. Then § is
complementary to ¥, which contradicts the hypothesis "H(D) has no divisor
of zero". Thus va(f,u) is finally bounded in [v(a-b),+o[ and that ends the
proof of Proposition ILE.

Lemma II.LF. Let A and B be infraconnected closed bounded sets such that
A=B. Then AuBis infraconnected.

~

Proof . Let d(a,R) = A = B. Let aeA. Since AUB = d(a,R) = d(a,R) the set
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I(a) = {|x-a||xeAuB} is included in [O,R]. Since A is infraconnected, of
diameter R, the set I(a) = {|x-a||xeA} is dense in [O,R]. In the same way

aeB I(a) is still dense in [O,R] and that finishes proving Lemma IIF.

Proposition II.G. Assume D is open. Let feH(D) and assume the support ¥ of
f is reinforced. Then for every couple (a,ble ¥ x Y} , there exists a
clopen bounded infraconnected set Q: c Y and a number 8 > O such that

|f(x)| = 8 whenever er: .

Proof. Let r = |a-b|. By hypothesis there exists MeR, such that
va(f,u) < M and vb(f,u) =< M for all p = v(a-b). Then the equality

v(f(x)) = va(f,v(x—a)) (resp.v(f’(x)) = vb(f,v(x—b)))
is true in all D n d(a,r) (resp. D n d(b,r)) except may be in a finite
number of circles of center a (resp. b) of radii p = PIEsl'

(resp. C(b,0) ) be the circles of center a (resp. b)

Let C(a,p‘)ISlSm Disi=n
that contain points xeD such that v(f(x)) # va(f,v(x—a))

(resp.v(f(x)) = vb(f,v(x—b))) and let

A: = (d(a,r) n D)\ ( 3 C (a,pl)).
(resp. A: = d(b,r) n D) \ (v C (b,a‘j)l);l Then A: (resp. A:) is clearly
infraconnected and clopen. =

Moreover by hypothesis we have v(f(x)) = v‘(f ,vix-a)) = M in all A:.
Let us put Q: = A: u Ab . Then v(f(x)) = M whenever er: hence we can take
8 = w-M to obtain the relation |[f(x))| =z & in Q: .

Now Q° is clearly clopen. At last by Lemma ILE, Q: is infraconnected
a

because A® and A: are infraconnected sets such that K: = Z: = d(a,r).
a

Proposition II.F is then proven.

Proposition IILH. Let D be clopen, let feH(D) and let (8) be the
differential equation y' = fy. We assume (&) has a solution g whose
support is reinforced. Let h be another solution of (8) . Then there
exists AeK such that h(x) = Ag(x) whenever xe} .

Proof. Since D is open, } is clearly open in K, hence for every ae} there
exists a disk A(a) included in } . Let (6") be the equation y’ = f(x)y
for xeA(a); then (8‘) has non null solutions (like the restriction of g to

A(a)) hence the space of the solutions has dimension one by classical



results (and by Theorem II.1). It only remains to show A(a) is constant
when a runs in } .

Let us fix a and b in } . By Proposition II.G, there exists a clopen
bounded infraconnected set Q: c ¥ . with a,b € Q: , and 8 > O such that
|g(x)| = & whenever xeﬂ:. The restriction g of g to Q: is then invertible
in H(Q:). Hence the restriction (h/g) of h/g to {2: is a locally constant
element of H(Q:). As Q: is clopen and infraconnected, by Theorem I.5. we
know that h/g is a constant in H(Q:). hence h/g(b) = h/g(a) and then
Proposition II.H is proved.

Proof of Theorem II.3. Assume (&) has a non identically null solution g.
By Proposition E, the support } of g is reinforced. Let h be another non
identifically null solution. Since H(D) has no divisor of =zero, the
support }' of h does have common points with }. By Proposition H there
exists AeK such that h(x) = Ag(x) whenever xe€j. Since } n }' = ¢ ,
A can’t be zero. Hence h(x) # O whenever xe€} , therefore }’ > ¥ . By the
same reasoning we just have Y’ < ¥ hence ¥=}'. The relation h(x) = Ag(x)
is then true in ¥ and it is trivially true in D\} where h(x) =g(x) = O.

Theorem I1.3 is then proved.

III. ZERO RESIDUE CHARACTERISTIC

In the chapter we will suppose the characteristic p of the residue
class field k to be equal to zero.

D will still denote a clopen bounded infraconnected set, f an element
of H(D) and ¥ the space of the solutions of the equation & y' = fy with
yeH(D).

Theorem III. If ¥ is not reduced to {0}, is has dimension one and every
non identically null solution is invertible in H(D).

Before proving the Theorem, we have to establish the Lemmas and
Propositions A, B, C, D, E mainly dedicated to the behaviour of the
valuation function p =2 v(f,u) when the residue characteristic is zero.

Lemma III.A. Let r and ReR‘ with O<r<R and let D be I(o,r,R). Let u belong
to l-Log R, - Log r [and let f be a Laurent series ganx"e H(D) such that

-

v(f,u) = v(aq) + qu with q # 0. Then v(f,u) = v(f',u) + u.



+

Proof. f'(x) = ¥ u"x"'l hence v(f’,u) = inf, v(nan)+(n-1)u. Since the
. —o nel
residue characteristic of K is =zero, v(nan) = v(an) whenever n#0 hence

inf, v(nan)+(n+1)p = v(qaq)*-(q-—l)p = v(f,u) - p.
neZ

Lemma III.B. Let r’, r" be numbers such that O < r’< r" and let h(x) be a

rational function in K(x) such that v(h,u) is not constant in any interval

included in [r’,r"]. Then  v(h’,u) = v(h,u) - M whenever
pel-Log r", -Log r’l.
Since the function u - v(h,u) is continuous in p , it is enough to

prove the relation in J-Log r", -Log r’[. Let cel-Log r", -Log r’'l and let
s = w? . We will prove the relation at ¢ in considering tels,r"[ such

that h has no pole in TI'(o,s,t). Then h(x) is equal to a Laurent series

+00

Y ax and we can apply Lemma III.A that shows the relation is true
-0

whenever upel-Log r,ol. By continuity the relation then is true at o .

Proposition III.C. Let D be a clopen bounded infraconnected set, of
diameter R, such that O belongs to D. Let r be the distance from O to D
and let r’, r"e[R:be such that O < r’ < r" = R and r = r’. Let feH(D). We
H(D) assume the functionu-sv(f,u) is bounded in the interval
I = [-Log r", -Log r’]l and it is not constant in any interval % < 1. Then

v(f,u) = v(f’,u) + p whenever pel.

Proof. Let M be the upper bound of v(f,u) in I and let & = oM min(l,é—).
By Theorem 1.6 there exists heR(D) satisfying (1) |f-h| < & together
with ﬂf’-—h’[]n < & . Relation (1) also implies v(f-h,p) > M = v(f,u) hence
(3) v(f,u) = v(h,u) whenever uel.

By then the function p-v(h,u) is not constant in any interval included in
I, hence by Lemma III.B, we have (4) v(h’,u) = v(h,u)-p whenever pel.
Then relations (3) and (4) do show that v(f’,u) = v(f,u) - u whenever pel.

Proposition III1.D. Let D be a clopen bounded infraconnected set with a
T-filter ¥ and feH(D). We assume the equation y’ = fy admits a solution g
strictly annuled by ¥ . Then f is not annuled by ¥ .



Proof. We will first assume ¥ is increasing, of center a, of diameter R.
We can obviously assume a = O. Since g is strictly annulled by ¥ , there

exists A > ~Log R such that lim vig,u) = +o with v(g,p) < +o for
> L ogR

pel-Log R,Al, and then there exists a sequence of couples (A;.A;) with
-Log R > A’ > A", lim A" = lim A’ = -Log R and such that S(f,u)
n n >+ n m>+w n H

exists and is strictly negative whenever u.e[)t;,?&;]. By Proposition C we
know that v(g',n) = v(g,u) - p  whenever ue[A’,A"] therefore v(f,u) = pu
whenever uE[l;»l;]- Thus v(f,u) does not go to +o when u approache
- log R, which proves f is not annulle by ¥.

In the case that ¥ is decreasing we can do the same demonstration in
choosing a center of ¥ (we can take it in a spherically complete

extension of K, if required).

Proposition III.LE. Let D be a clopen bounded infraconnected set containing
0O, let f belong to H(D) and let ¢ belong to H(D) such that ¢'= f¢. We
assume the function p - v(f,u) to be linear in an interval 1 = [A’,A"] and

v(¢,u) < +o whenever pe€l. The function p > v(¢,n) is also linear in 1.

Proof. We assume v(¢,u) to be non linear in I. Then there exists a point
celA’,A"[ such that v;(¢,o~) # v;(dz,o"). With no loss of generality we can
suppose ¢ = O in performing a suitable change of variable.

We will first construct an interval § = [u’',u"] with pg° < O < u" such
that the function p > v(¢,u) is linear in both [u’,0] and [O,n"] and
v(¢’,u) is bounded in § . Since v(¢,u) < +o whenever xel, there exist
ul.uzel with H, < 0(« n, such that v(¢,u) is bounded by a number L in the
interval ¢ = lul.uzl.

We can obviously choose BoH, close to O enough to have the function
u > vi¢,u) linear in each one of the intervals [#1.01 and [0.}42] because
it is bounded in ¥, hence piecewise linear in %. Since vé(«ﬁ,o) #* v;(¢.0),
the function p - v(¢,u) is not constant in at least one of the two
intervals [#1.01 and lo,uzl.

For example suppose first it is not constant in {“1’01‘ Since it is
linear, it is not constant in any one of the intervals included in {pl.ol
and then we can apply Proposition III.C which proves v(¢’,u) = vi¢,n) - pu
whenever ue(pl.ol and therefore v(¢’,u) is bounded in [px.ol by a number
L;. In addition, since v(¢’,0) = v(¢,0) it does exist u"e[O,uzl such that
v(¢',u) is bounded in [O,u"] by a number L;. Let us put ' = B, and
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L = max(Ll,Lz). The function pu > v(¢’,n) is then upper bounded by L’ in
[p’,u"] while v(¢,u) is upper bounded by L.

In the same way, if we suppose v(¢,u) to be non constant in [0,512] we
have a symetric construction and therefore we finally have an upper bound
L’ for v(¢’,u) in the interval [u’,u"] in all cases.

We set M = Max(L,L’). By definition ¢ satisfies

(1) v(i¢,u) = M whenever ped
(2) v(¢’,u) = M whenever ued.
Now by Theorem 1.6 there exists ¢ € R(D) satisfying ﬂ¢-¢ﬂn < o™
and ﬂ¢’-w'ED < o™ and therefore we have
(3) v(¢-y,u) > M  whenever pe¥,
together with
(4) vi¢’-y’,u) > M whenever ped.
Then (1) and (3) imply
(5) vi¢,u) = v(y,u) whenever ued

while (2) and (4) imply v(¢’,u) = v(y’,n) whenever uef, hence
v(g- M) = v(% ,u) = v(f,u) whenever pef,

which proves that v(% ,u) is linear in %,
in the form qu+B with qeZ.

Now y factorizes in the form g 6 where P and Q are monic polynomials
that have all of their zeros in C(0,1) = {x||x| = 1) and @ belongs to R(D)
and has no zero in C(0,1).

Since vc’i(rp,O),v;(q),O) # v;(w,o), by (5) we have V;(l/l,O) ‘'so that P and

m
)

Q don’t have the same number of zeros in C(0O,1). Let P(x) = £ aJx and
m I=o

let Q(x) = X Bx". Then m # n and
Jj=o

(6) a =B =1

On the other hand, since P and Q have all of their zeros in C(0,1) we

see
]ajl =< 1 whenever j = O,...,m,
]BJI = 1 whenever j = O,...,n
7 v(P,0) = v(Q,0) = O.
m+n-1
P’Q - PQ is then a polynomial z l"xJ with ]Aj] =< 1 whenever
J=o

Jj = 0,...,m+n-1 and by (6) we have A = m-n, hence |A =1,
m+n m

+n-1'
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Then v(P’Q-PQ’,0) = O, hence by (7) we see

(8) ‘ (B Q-PQ’

PO ,0) = 0.

Now we will show
(9) vg.050.
Since @ has neither any zero nor any
pole in C(0O,1), there exist r’, r" such that r’d<r" and such that € has

neither any zero nor any pole in I'(O,r’,r") and therefore 6 is equal to a

+00
Laurent series aﬂxn convergent in [(O,r’,r"). Moreover, there exists teZ
-0
such that |a | x|t > la_| | x| "whenever xel(O,r’,r"). Let us factorize 6 in
+00
the form xt'y. Then in I'(O,r’,r"), 7 is equal to a Laurent series £ b x"
n
-0

with bo =a, and we see that

v(7’,0) = inf v(nb ) = inf v(b ) > v(b ) = v(7,0)
neZ n n#o n °

.e—’— E]

from which v(% ,00. As
v(§ .0 = v

which finishes showing (9).

+ —t— we see
X t 71
,0) + v(= ,0) = v(=,0) >0
X ¥

R[ow R

Now let us consider %: g+ P—Q-;—-g—g— By (8) and (9) we have
v(2 ,0) > v(g—g-é—P—Q—,O) and therefore there exists an interval U = [-p,p]
such that v(g',u) > v(—P—'—g—él—;&: ,u) whenever peU. Then we have
(10) v(g’,u) = v(P—% ,M) whenever pu.

_ P'Q-PQ’ .

Let us put h(x) = —pq Since P(x)Q(x) has exactly m+n zeros in

C(0,1), and P’Q-PQ’ has at most m+n-1 zeros in C(O,1) we see that

(11) v;(h,O) > v;(h,O).
Now by (10) we have v;(g ,0) = v;(h,O) and v;(% ,0) =v;(h,0) hence by
(11) we obtain v;(% ,0) > v;(§ ,0) which contradicts the fact v(% ,H) is a

linear function in ¥ , and that finishes proving Proposition III.E.

Proof of the Theorem III .

Let us assume that (&) admits a non identically null solution g and
assume g is not invertible in H(D). By Theorem II.2.,, g is strictly
annulled by a T-filter ¥ on D and by Proposition III.D., f is not strictly



annulled by .

For example let us assume ¥ is increasing of center O, of diameter R
and assume first f is annulled by F . Since f is not strictly annuled by
¥, there exists relO,R[ such that v(f,u) = +» whenever ue[-Log R,-Log r]
hence (1) v(g’,u) = + o whenever ue[lLog R,-Log rl]. But since g is strictly
annuled by ¥ , there exists an interval in $ < [Log R,~-Log r] such that
v(g,u) is a linear non constant function in ¥, and by Proposition III.C
we know that v(g’,u) = vig,u) - u, which contradicts (1). Thus, f is not
annulled by ¥.

Now we know the function p » v(f,u) is linear in an interval [~Log R,Al]
[EB.E4,G]. By Proposition III.LE the function pu - v(g,u) is also linear in
[-Log R,A] and that contradicts the hypothesis "g strictly annuled by #".

In case ¥ is decreasing we can perform a similar demonstration, (in
taking a center in a spherically complete extension of K if required).

Thus g is invertible in H(D) and then by Theorem II.l1. we know that the

space of solutions of (&) has dimension 1.

IV. p # O AND f NON QUASI-INVERTIBLE

Here we assume p # O and we put w = p . We will denote by &(f) the
differential equation y’* = fy (feH(D)) and by ¢(f) the space of the
solutions of &(f) in H(D). We will prove there does exist infraconnected
clopen bounded sets with elements feH(D) annulled by a T-filter ¥ with non
identifically null solutions of & (f) annulled by ¥ and such a situation

may provide any finite dimension for #(f) and even an infinite dimension.

Theorem IV.l. There exists an infraconnected clopen bounded set A with a
T-filter ¥ and elements feH(A) strictly annulled by ¥ such that &(f) has
solutions strictly annulled by F together with dim ¥(f) = 1.

Theorem IV.l1. will be proven in constructing concretely the set A and the
feH(A) in Proposition IV.D.

Theorem 1IV.2. Let nelN; there exists an infraconnected clopen bounded set D

and elements feH(D) strictly annulled by n increasing T-filters two by two
complementary such that dim(¥(f)) = n.
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Theorem IV.3. There exists an infraconnected clopen bounded set D with a
sequence of increasing T-filters ( S)nex two by two complementary, and
elements feH(D) strictly annulled by each one of the S’n, such that ¥(f) is

isomorphic to the space of the sequences (An}n en such that lim An = 0.
n->ow
The proofs of Theorem 2 and 3 will require the following Lemma IV.A,

and Proposition IV.B.

Lemma IV.A. Assume D has a sequence of increasing T-filters (3“)n N such
that 8(3") n E(?m) = O whenever n # m. Let feH(D) be such that f(x) = O

whenever x€e n P(F ) and assume there exists a sequencel(f n)ne in H(D)

neN n N
such that fn € 9°($n) and f(x) = fn(x) whenever xeﬁ’(?n), for every nel.

Then the series I fn converges to f in H(D).
neN

Proof. Suppose first the series X f'n converges to a limit h in H(D). Then

h is clearly equal to f because by definition when x € n ?(?n), fn(x)=0
neN
for all n, hence h(x) = f(Xx) = O, and when x € Q(ﬁn) then xe?(?n) for all

n # q hence h(x) = fq(x) = f(x).

Now we only have to prove the series £ f , converges and that means to
neN
prove the sequence |f nBD goes to zero. Suppose the sequence gfnﬂo does

have a subsequence q—)nf n “ z & whenever qeN. Consider now the sequence
q
of T-filter (¥ ) and for each qeN let a €B(¥ ) be such that
nq qeN q n a

|f (aq)] N
Suppose first we can extract a subsequence m—>aq such that (1)
m
la - a ] = r whenever j#m. Let us set b = a ,and § =% ;. with no
q q m q m n
m ) m q
loss of genrality we can obviously assume bo = o.
By classical results [Eal we know that v(f,-Log C) = v(f(bm) is true

for all m except maybe a finite number. Hence we see that v(f,-Log C) =
-Log 8 . Let A = v(f,-Log r). We know that v(f(x)) = A is true in C(O,r) n
D except (maybe) in a finite number of disks d_(bm,r).

Consider an meN such that v(f(x)) = A for xed_(bm,r) n D. Then
triviallylim v(f(x)) = A < + o hence that contradicts the hypothesis
5
m



fe.‘f(?n) for all n. Hence the sequence msa_ satisfying (1) does not exist.
m
Then we know we can extract a subsequence m—)aq such that the sequence
m
- a_ | is strictly monotonous, of limit rlE_].
qm+l m
Let us put again § =% (meN) and b = a
m n m q
q m
m
Suppose first r = 0. The sequence m —>bm converges to a limit « in D

|a

and we can assume a = O. Since f is continuous and |f (@ )| = & there

exists p>0 such that |f(x) = % for |x| = p hence |f(x)| zlg for xeB(§ )
and that contradicts f e.?(s?n) for all neN for all neN. Hence r = O.

Suppose now the sequence lbmd- bm] is strictly increasing. We can
obviously assume bo = O hence the sequence |bm| is strictly increasing of
limit r.

Consider v(f,u) when p > - log r. Since v(f (bm)) s - log 8 we know that
there exists N such that v(f,v(bm)) = v(f(bm)) =z N and then v(f,u) is
upperbounded by - Log & in an interval [A,- Log rl, and there exists
y€lA,-Log r[ such that v(f(x)) = v(f,v(x)) = - Log & for all
xer‘(o.p—w,r). Then that contradicts the hypothesis fe.?(?m) when bme
F(o,p-7.r).

Thus we have contradiction when the sequence -bml is strictly

Ibm+1
increasing. We obtain a similar contradiction when this sequence is
strictly decreasing of limit r # O. Finally that finishes proving Lemma

IV.A.

Proposition IV.B.

Assume D has a sequence of increasing T-filters (':?n)new such that
8(9n) n 8(9"“) = @ whenever n # m. Assume for each ieN there exists
fn € 3‘0(9n) such that &(fn) has a solution g 2. 90(?n) and such that the

series I f converges in H(D). Let f = X f . The family {(g )ne!N}—is a
neN " neN " n
linearly free family of solutions of &(f).

Moreover, if the (?n)mE are the only T-filters on D, then for every

N

solution g of E&(f) there exists a unique sequence (An)n &N in K such that

the series T A g converges to g in H(D).
neN

Proof. The family (gﬂ)n N is clearly linearly free because the supports
of the g are two by two disjointed. Let us show if D has no T-filter but
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the (ifn)n eN ° every solution g of &(f) is the sum of a series I Angn.

_ nelN
Indeed, let gef(f) and first consider g(x) when er(S’q) for certain qeN

We know f(x) = fq(x) whenever xe@(?q) and then every he¥(f) has a

restriction to G(gq) that is a solution of (Eq). Since D has no T-filter
except the (?n). and since the !?(?n) are two by two disjointed, one sees

6(?q) has no T-filter except ?q. Hence H(!S(?q)) has no divisor of zero

hence by Theorem II.3, the differentiel equation 8(?q) defined in &(¥F ) by
q

the restriction fq of fq to 8(9“1) has a space of solution of dimension 1,
hence there exists Aqe K such that f(x) = Ang(x) whenever xet‘:’(?q).

Now by hypothesis gq € io(ﬂiq) hence ge.?(:’,‘q). We will shaw g(x) = O
whenever x € n P(F ). Indeed let A =6(F ) u (n PF)).
neN q a neN n
Clearly ?q is secant to A and then A has no T-filter complementary to S‘q.

Hence by Lemma II.LB we know that ge&o(?q) hence g(x) = O whenever

X € T(?q) n A hence g(x) = O whenever x € n ?(9’n) and then g(x) = O.
neN
By Lemma IV.A. we know that g is the sum of the convergent series Z Angn

neN
The sequence (Rn) is clearly unique. Indeed suppose g = X ne - Then

n€N
when xe@(?n) we have g(x) = ungn(x) because gm(x) = O for all m # n hence

}J.n = An.
Proposition IV.C. Let h be a series convergent in d (0,1) and let D be a

clopen bounded infraconnected set containing O, of diameter R = 1, such
that h and D satisfy

(1) h(x) # O for all xeD n d (0,1)
(2) lim _ |h(x)]| = +»

| x| -1

X €D
(3) lim 21X

| x| =1

X €D
Let ¢ and f be the functions defined in D by e¢(x) = el
fix) = - h—(h(% whenever xeD n d (0,1). ¢(x) = f(x) = O whenever

xeD \ d (0,1). Then ¢ and f belong to H(D) and ¢ satisfies &(f).

Proof. Since (2) we know that ¢ belongs to H(D) by results of {Szl. In the

h’(x)
same way, since lim (_T_Y) = O we know that f belongs to H(D) [S ]
Y | x| 51 hix & 4
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Then ¢ obviously satisfies (&(f)).
The following Proposition IV.D clearly proves Theorem IV.l1 in showing
how constructing D, f and the solutions of &(f).

Proposition IV.D.
Let (an) be the sequence defined as follows :

a =0,
o

an = 1 when n is neither O nor in the form pm for any meN

n % when n is in the form pm for some meN.

[
Let h(x) = £ a x"; then h is convergent in d (0,1).
n=o

Let A be the set of the xed (0,1) such that v(h(x)) = v(h,v(x)) and assume
Dnd(0,1) =A. Then

(1) hix) =0 for all xeD
(2) lim  _ |h(x)| = +e
| x| »1
X €D
. h’ (x)
(3) lim  _ =0
|x| s~ PO
X €D

Moreover the increasing filter ¥ of center O, of diameter 1 is a T-filter

and it is the only one T-filter on A.
In addition, the function f and ¢ defined in A by f(x) = - % and
¢ = -}1; belong to H(A) and they both are strictly annulled by ¥ ; ¢ is a

solution of &(f) and it generates ¥(f).

Proof. First, it is easily seen that h converges for [xl(l because we

n_—
verify that lim Vv |a | = L
n->o n
Next, it is well known [A,Szl that the relation v(h(x)) = v(h,v(x)) is

true in all d (0,1) except in a set included in a union of circles in the
-]

form v C(O,r ) with lim r = 1. This set A is obviously infraconnected
n=1 n n>®
and clopen.

As h(0) = a#* O, (1) is satisfied by definition of A because
v(h(x)) = v(h,v(x)) < + o, for all xeA.

As the sequence [an{ is not bounded, we know that lim vih,u) = + o
p-0
[A,Sal, hence Relation (2) is clearly satisfied.



- -]
Now h’ is bounded in d (0,1) . Indeed h'(x) = £ nax"! with
n

|nan| = |n| =1 when n is not a pm and Ipma m[ =p "pm =n1 ;:ence ]nan[ =<1
whenever neN. Finally |h'(x)] = 1 inpd-(O,l) hence (3) is clearly
satisfied.

On the other hand, by definition f, ¢,p’are strictly annulled by the
increasing filter ¥ of center O of diameter 1. Hence ¥ is a T-filter. By
definition of A it is easily seen that A has no T-filter different from %.

By Proposition IV.C, ¢ and f belong to H(A) and by construction they
are strictly annulled by ¥. Hence ¢ is obviously a solution of &(f).

On the other hand, since ¥ is the only one T-filter on A , H(A) has no
divisor of zero [Esl hence ¥#(f) has dimension = 1. As ¢ # O, we see that ¢

generates ¥#(f), and that finishes proving Proposition IV.D.

Proof of Theorem 1IV.2. Consider again the set A obtained in
Proposition IV.D. Let R be>l, and let al....,an be points in d(O,R) such

that |al-aj| =z 1 whenever i%j. For all i = 1,...,n let Al = a + A =
n

{a, + x|xeA}, let D = (d(O,RN\d (a,1)) v A and let D = n D,
=1

1

By Proposition IV.D, the set D has the increasing filters 9’" of center

a, of diameter 1 (obtained from ¥ by translation of al). Hence for every

i = 1,...,n there exists fl € ¥ (?l) such that 8(f1) admits solutions g,
o

#0

€ .90(9’l) strictly annulled by ?l. Since ?l has diameter 1 and |al—aj|=1
#0

for i # j the ﬁ(?l) satisfy E’(?l)(lsisn).

n
Now let f = Z f‘l . Then it is easily seen that
1=1

f(x) = fx(X) whenever xe@(?l)

n
f(x) =0 whenever  Xe n?(%‘l).
1=1
For each i = 1,...,n, g, is then solution of g(fx) and therefore it is
solution of &(f).
At last, by Proposition IV.B. the (gl)1 <= 2r€ linearly independant. As

?x....,?n are the only T-filters on D, - - is then a base of the

space of solutions by the last assertion of Proposition IV.B.

Proof of Theorem 1V.3. The proof will roughly follow the same process as

in Theorem IV.2, with a sequence of filters §n instead of a finite number



of (?‘). Let R be >1 and consider a sequence (an)n N in d(O,R) such that
]an-anl = 1 for n # m. For every neN let h be a Taylor series defined
n

like h in Proposition IV.D. in specifying here hn(O) = p , and let An be
the set of the xed (0,1) such that v(hn,v(x)). Then v(hn,u)s—n for all wO

h’ (x)
n -n
hence v(hn(x)) < -n and therefore . H"T;r— sp whenever xeAn.
(-} - 00
Now we set A =a + A and B = d(O,LR\(v d (an’n)) and D = Bu( v An)
n=1 n=1

Obviously B has no T-filter, each An has an increasing T-filter ?n of
center a of diameter 1. Each ?n induces a T-filter on D and we will still

denote it by ?n and D has no T-filter other than the 9n.

h'(x-a )
n n
Now we put fn(x) = - -—(-—Hn %a_ for xeAn and fn(x) = O for xeD\An. By
]
(1) we have ufnﬂn = p " and then the series Zf converges to a limit
n=1
feH(D) such that f(x) = fn(x) whenever xeAn and fn(x) = O whenever
[+ ]
xeD\( v A ).
n=1 n »*
By Proposition IV.C. for each neN , there exists a solution

gne(.‘f(fn) n 50(97“))\(0) and we can obviously choose the g to satisfy (2)
“gnﬂn = 1. By Proposition IV.B the set (gn]ne!N) is linearly free and

every solution g of &(f) may be written of a unique matter in the form
[+ ]

A g (with A eK).
n n n

n=1

#(f) is then isomorphic to a subspace of KN. On the other hand by (2) a

o0
séries T A g converges in H(D) if and only if lim A = O. If (A)
n=1 n n >0 n n
(-]
is such a sequence, the series X An gn converges to a limit g. Thus
n=1
&(f) is isomorphic to the space of the sequences (An)n &N such that

lim 7\“ = O and that ends the proof of Theorem IV.3.
n>
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