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DIMENSION OF THE SPACE OF SOLUTIONS OF THE DIFFERENTIAL EQUATION y’ = 03C9y

Alain ESCASSUT

Groupe d’Etude d’Analyse Ultramétrique
1987-1988

Let K be an algebraically closed f ield of characteirstic 0 provided

with an ultrametric absolue value ). j. For all set D in K we will denote

by R(D) the K-algebra of the rational function with no pole in

D. When D is closed and bounded, the algebra R(D) is provided with the

norm of uniform convergence on D denoted 1 that makes it a

normed K-algebra. Its completion f or that norm is then a K-Banach algebra

denoted by H(D), the elements of which are called the analytic elements on .

A set D is said to be infraconnected if f or all aeD, the adherance of

the in R is an interval. We know that a bounded closed set

D is infraconnected if and only if H(D) does not have non trivial

idempotent [E 2 ].
In Chapter I we will prove the analytic elements with null derivative

on a clopen inf raconnected set is a constant and more generally when the

derivative of an analytic element is an analytic element, we obtain the

Mittag-Lef f ler series of the derivative in deriving the Mittag-Leffler

series of the considered analytic element.

In chapter II we will study the dimension of the space of solutions of

the differential equation (~)y’ = fy with f,yeH(D), D a clopen bounded

infraconnected set. We will prove a solution is either invertible in H(D)

or strictly annulled by a T-filter on D [E 1. If F contains a solution

invertible in H(D) then ~ has dimension 1. If H(D) has no divisors of

zero, then ~ has dimension o or 1.

In Chapter III, we will suppose the residue characteristic p is

dif f erent f rom zero and we will construct clopen bound inf raconnected sets

D with elements feH(D) such that ~’ has dimension n or infinite

dimension.

. Chapter II and III were made in common with Marle-Claude Sarmant. The

questions taken up here were pointed out to my attention in talking to

Labib Haddad at the Clermont Ferrand Analysis Seminary.
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I. DERIVATIVE OF ANALYTIC ELEMENTS ON MFRACONNECTED CLOPEN SETS

Asserting the theorems requires to introduce a lot of def initions and

notations.

For all a~K, d(a,r) denotes the disk r} d ( a, r ) is

the disk and C(a,r) is the circle [ = r~.

Let D be a bounded closed set of diameter R and let D be the disk

d(a,r) with Then admits a partition by a unique family (1" ) lEI
where each T is a disk d ,r ) and rl is maximal. The T are called the

holes of D.

Let T = d (a,r) be a hole of D, and let R(T) be the algebra of the

such that lim h(x) - o. R(T) is then provided with the norm

..,

of the uniform convergence on KBT and we will denote by H(T) the Banach

algebra completed of R(T) for that norm.

We know that H(T) is the algebra of the Laurent series 03A3 03BBn n such

that l im 
|03BBn| n) 

= o[A,K ,R]. 

n=1(x-a? 

that )= 
n=l(x-a)

Now assume D is inf raconnected closed and bounded. We have the

Mittag-Leffler theorem [K,R] for an feH(D). There exists a unique sequence

of holes (T) . of D and a unique set of analytic elements (fnn~N * with
f ~H(T ) and f ~ o and a unique f ~H(D) such that the series 03A3 f
n n n o n

n=o

converges to f in H( D ) and satisfies~f~D = max(~fo~ , 

Here we will call a f-hole of any one of the holes T 
n

The classical Theorem 1 is well known and it will be helpful :

Theorem 1.1. Let A be a bounded closed infraconnected set in K and let

g~H(0394). Let (Tn)n~N be the sequence of the g-holes of g on the

infraconnected set fl and let At= ~B( u T ) Then g extends into an element
0=1 n

heH(A’) such that ~h~0394, = ~g~0394.
It is well known and easily seen that an analytic element on an open

set D has a derivative at each point of D [R]. Now we will look when f’

also belongs to H(D).

In all of the following theorems and corollairies we denote by D a

clopen bounded infraconnected set of diameter R ill K , !2Y S

the set consisting of the diameter of the holes of D and the diameter R

or D and by A the lower bound of S. We denote by f an element of HE D ), by
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the set consisting of R and of the set of the diameters of the

f-holes of D, and by the lower bound of Q(f).

00

Let f 0 + r f be the Mittag-Leffler series of f on D with fo ~ H(6),
° 
n=l - 

°

f )(T a f-hole of D) nEf4.
n n n ~ 

201420142014201420142014

Theorem L 2. Assume p(f) &#x3E; o. Then f’ belongs to H(D) and satisfies
0153

~f’~D ~ 03C1(f), 
and the f’n converges to 

Corollary . Assume For all feH(D), f’ belongs to H(D) and

The main problem we have got to study is whether the infraconnectedness

characterizes the implication tIft (x) = o whenever f = constant in D".

An answer is "yes" on the clopen set D. But it is not the same on a set

A that is only open but not closed.

Actually, we find solutions to those problems in answering a more

00

general question : if f’ belongs to H(D), does the series ~ f’ converge
n

n=o

to f’ in H(D) ?

Theorem i.~ . The three following assertions are equivalent :

a) f’ belongs to H(D)
00

b) the series ~ f’ converges to f’ in H(D)
n

n=o

oo

c) the series ~ f’ converges in H(D).
n 

n
n=o

On the f irst hand, Theorem 1.3 helps us characterize the infraconnected

clopen bounded sets D such that all the elements geH(D) have derivative in

H(D).

Theorem I.4. 03BB is different from zero if and only if for every g’

belongs to H(D).

On the second hand, Theorem 1.3. gives us the implication : if f’(x)=o

for all f then f is a constant, whenever A be a clopen infraconnected

set and this is characteristic of the infraconnected sets in the class of
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the clopen bounded sets. However, that characterization does not hold any

more when A is not supposed to be closed.Theorem 1.5. A clopen bounded set

E is infraconnected if and only t,~ for every geH(E) such that g’(x) = o

for all g is a constant in E.

Remark.

The derivation clearly is not continuous in R(D). Like in the proof of

Theorem 1.5, consider a clopen bounded infraconnected set D with a

sequence of holes T = d (b ,r ) with 1 i m r = o and take a sequence

(A ) in K such that I i m 2014I!2014= o and lim +00 .

À

Clearly, the sequence g converges to 0 although the sequence g’
n x-b n

n 
co

does not converge. As a consequence the series r g has a derivative that
n

n=1

does not belong to H(D).

However the f ollowing Theorem 1.6 will be helpf ull in f urther articles.

Theorem 1.6. Suppose f’belongs to H(D). For every c &#x3E; o, there exists

heR(D) such that c together c .

Recall brief ly the proof of Theorem 1.1.
00 

’

Let g = r g be the Mittag-Lef f lerian series of g on the infraconnected
n

n=o

set A with g o ~ and g n e H(T n ). For each n~N let h n = then hn
clearly belongs to H(A’). Now g E H(T ) c H(A’)and by the

Mittag-Leffler = ~gn+1~0394 hence ~hn+1-hn~0394, = ~gn+1~0394
n+l

and then the sequence h does converge in H(A’) to an element h which
n

extends to g. Finally, ~h~0394, ; ).

Proof of Theorem 1.2.

Since D is open, it is well known and easily seen that f has a

derivative at each point of D (because in every disk d(a,r) c D,f(x) is
CO

equal to a series r À 
n 
(x-a) which converges for I :s r) [R).

n=o

Now let (T ) be the sequence of the f-holes of f in D and let
m 

n
co

D’ = By Theorem 1.1, and ~f~ = If 1 . Thus we can
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assume every hole of D is a f-hole.

Let acD and let r(a) be the distance from a to In
CO

d (a,r(a)),f(x) is equal to a convergent for 
~ 

n=o
co

is equal to a series 03A3 03BB
n 

convergent for I . x-a I  r(a) and then

On the other hand, by definition of r(a), we can see that for all e &#x3E; o

there exists a f-hole - T included in the disk d( a, r( a )+ e). Then

r(a) + c hence 03C1(f) ~ r(a) + c . As that is true for all c &#x3E; 0

clearly 03C1(f) ~ r(a) hence |f’(x)| ~ 20142014- . Finally, this inequality is
~ f 

!~)
true for all xeD hence we obtain the inequality (1) )f’t! ~ 201420142014 .

Now let r f be the Mittag-Leffler series of f in H(D) with f ~ H(D)
~ 

n o
n=o

and f ~ H(T ), f ~ o. It is well known that f’~ H(D) and in the same way
n n n o

~ * 
~

f ~ H(T ) for each n~N . Then by (1) the series f clearly converges in
n n n

n==o

H(D) to a limit ~. We just prove ~ == IT’. Indeed, let e be a positive

number, and let N(c)~M be such that jf ! D ~ e p(f) for q ~ N(c). Then

! ~’ " E ~’! ~ c hence 6f’ - )) ~ ~: , finally f’== ; that ends the proof.
n D D

n=o 
’

Definition. Let D be an infraconnected closed bounded set and let f~H(D).

Let T be a hole of ID. By the Mittag-Leffler Theorem and by Theorem 1.1.

there is: a unique h ~ H(T) such that f-h extends to an element of
T T

H(DuT); h 
T 

will be called the f-singular element associated to T with

respect to D.

The following proposition is then a direct consequence of the

Mittag-Leffler Theorem.

Proposition. Let 1) and D’ be two Infraconnected bounded sets such

that D’c ID. Assume there is a hole T ojf D which L? also a hole of D’. For

every f~H(D), the f-singular element assoclated to T with respect to D has

a restriction on E)’ that Is’ the f-singular element associated to T with

respect to D’.
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Notations. For all r’, r"~~R with r’  r~, we will denote by

the annulus (x’~t  ~"~ smd ~Y ~(a,r’,r") the annulus

X~K) r’~ )x-a( ~ r~~.

00

Lemme I.A. assume the series 03A3 IT’ converges to a limit h in H(D).
n

n=o

Then h(x) == f’(x) aH x~H(D).

Proof. Let 03B1 be a point in 1) and let r &#x3E; o be such that d(a,r) c I). For

n

every neM let g == ~ f, and let g be the restriction of g to d(a,r). By
n j=o ~ ,~ n n

theorem 1.2, the sequence g converges to the restrictionh of f to 
n

in H(d(a,r)) hence h(x) = f’(x) for all This is true for all x~D

and that ends the proof.

Proof of Theorem 1.3. First b ) trivially implies a ) and c ) . Af ter, by

Lemma I.A, it is easily seen that c) implies b), and then it only remains

to us to prove for example a) implies b).

Let us assume a) is true and prove b). For every hole T of D, let

f T(resp g ) be the f-singular element ( resp. the f’ -singular element)

associated to T with respect to 1). Let G be the set of the f-holes T such

that ( f T )’ # g and let J be the set of the f-holes such that ( f )’ == 

g .
If we can show 0, Theorem 1.3 is; clearly proven. Suppose then G ~

69. All of the g are null except maybe a countable family of them. The

series 03A3 g and 03A3 g obviously converge in 11(13), and then

By Lemma I. A, the series ~ (IT )’ is clearly equal to the derivative

of 03A3 f’ Let h = 03A3 fT = f - 03A3 fT; then h’ = f’ - 03A3 (f )’ = 03A3 S-
T~~

Let D be the family of the diameters of the holes T that belong to ~’,

and let 6 be its lower bound. Suppose 6 &#x3E; (3. By Theorem 1.2, the series

03A3 f’ converges to h’, henee 03A3 f’T is the Mittag-Lef f er series of h’ on

I~, hence f’ == gL- for all T~~ and that contradicts the def inition 

Hence 6 = 0.

Now, we will prove there exists a hole I = with an annulus

A(a,r,s) such that the set Y of the diameters p of the f-holes included in

A(a,r,s) has a strictly positive lower bound. Indeed suppose such a hole y
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does not exist. Then we can easily construct a sequence of f-holes T =

d (a r ) - with (1) r ~ 1 n and (2) | a | ~ 2 n . For example, assume the

sequence has just been constructed up to the range q, satisfying (1) and

(2) for n ~ q . Since G does not exist, then in A(a ,r ,2) we can find a

f-hole T = d (a ,r ) with r  and then the sequence is
q+l q+~ q+l q+l 

-

clearly constructed by induction in taking first any f -hole T = d (a ,r )

The sequence (T ) clearly converges to a point and that contradicts
n

the hypothesis "D is clopen". Hence we have now proven the existence of

the f -hole T with an annulus A(a,r,s) and a number 03B4 &#x3E; 0 such that every

f-hole T c A(a,r,s) satisfies (3) 

Let ~ be that family of the f-holes included in A(a,r,s). Let

~ = E f ; by Theorem 1.2, the series ~] (f )’ converges to t’ in H(D).

Now let 03C6 = Clearly 03C6 belongs to H(D ) and no hole T ( of D ) .

included in d(a,s) is a 03C6-hole. Hence 03C6 extends to an element of

H((D u d(a,s)). In d(a,s),~p(x) is equal to a Taylor series

(a,s)), hence 

Thus in D n is equal to the series ~’ ( x ) and then for

every hole T of D included in d(a,s) the 03C6’-singular element associated to

T with respect to D is null.

On the other hand, p’ = h’-t (f )’ = E gT - 03A3 ( f )’ - ( f )’ and then

the 03C6’-singular element associated to T with respect to D is gG-(f03C4)’~ 0
so that we have a contradiction with and then Theorem 1.3 is

f inal ly proven.

Proof of Theorem 1.4.

By the Corollary, 0, every g=H(D) has its derivative g’ in

H(D). Now let us assume that ~ == 0 and let us f ind a geH(D) such that g’

does not belong to H(D). Let (T ) , = (d (a ,r )) ~ be a sequence of
n n 

n~iN
holes such that l im r = O.

n

Now let (03BBn)n~N * be a sequence in K such that lim 2014201420142014== 0 and

lim |03BBn| 2 = + eo . We know that |03BBn| rn and then the series 03A303BBn x-an
n

converges to a limit g in H(D) and for each n, the g-singular element of
À

T with respect to D is obviously n x-a , hence the Mittag-Leffler series
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00 ~

of g on D on r # . ." 

x-a
’ 

n=1 n 00 À

Now suppose g’ belongs to H(D) . By theorem 1.3, the series ~ ~’ 2
n=i(x-a )

must converge to g’ in H(D). = that clearly shows
(x-a ) r

09 A
the series - 03A3 n 2 does not converge in H(D). Theorem 1.4 is then

n=1 
n

proven.

Proof of Theorem 1.5. It is well known that if E is not infra connected,

H(E) has an idempotent u *’ 0 and 1 and then u(x) = 0 in a subset E of E,

while u(x) = 1 in E = EBE , hence u’(x) = 0 for all xeE (though u is not

constant in E).

Now suppose E is infraconnected, let geH(E) be such that g’ (x) - °

whenever xeE and let us prove that g is a constant.
00

be the Mittag-Leffler series of g on E. Since g’ is the null
n

n=o 
OC)

analytic element, the series £ (g )’ converges to zero in H(E) hence it
n

n=o

is easily seen that g’ = 0 whenever 1 and g is a constant in D, and
n o

that ends the proof of Theorem 1.5.

Proof of Theorem 1.6.
oo

Let d(a,r) = D and let g(x) = £ À For each q~N, let (g)
m q

m=o

q

be the polynomial £ ~ (x-a)"~. Now let T = d (b,r) be a hole of D, and let
m

m=o
oo ~ q ~

t(x) = V m ; for each let (t) = T; m .
m=l (x- b) 

m q 
m=l (x-b) 

m

Now let c be &#x3E; 0 and let us find the heR(D) satisfying Theorem 1.4.

N(C)

By Theorem 1.3, we have an integer N(e) such that (1) I Y" f n - c

and (2) f’ - f’ ~ ~ c.
On the other hand we obviously have an integer Q(c) such that

6f - ~ e whenever n - 0,...,N(c) and then by (1) and (2) it

&#x3E; oo

is eas i ly seen we have y ( f ) n - 

and £ (f’) n - f’ D ~ £

Putting h = 03A3 (f ) R Q(0 obtain tile heR(D) we have been looking for.
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II THE DIFFERENTIAL EQATION y’ = f y IN THE ALGEBRAS 

Here we take a clopen bounded infraconnected set D, a f in H(D). we

consider the differential equation (8) y’= fy with y~H(D), and we denote

by ~ the space of the solutions geH(D) of (8).

By classical results, we know that ~ may be reduced to (Oh (For

example, if D is the disk I ~ I, it is easily seen the equation y’ = y

has no solution in H(D)). Here we will give sufficient conditions on the

algebra H(D) to have dimension 1 or 0 

I n the three Theorems that follow, D ~s a clopen bounded infraconnected

set, f belongs to H(D), (8) denotes the differential equation y’ = fy and

9’ is the linear space of the solutions of (E) In H(D).

The notions of T-f ilter and strictly annulled element involved in

Theorem 11.2 will be recalled below.

Theorem 11.1. If (g&#x3E; has at least one solution g inversible in H(D) then 

~P has dimension 1.

Theorem II.2. We assume (ö) has at least one solution g non identically null.

Then g has no zero isolated In D. 

either g is invertible in H(D)

or g is strictly annulled by a T-filter on D.

Theorem II.3. If H(D) has no divisor of zero, then J has dimension 0 or 1.

The proof of Theorem 1 is easily obtained.

Proof of Theorem 11.1. Let g be a solution of (ö) invertible in H(D), and

let h be another solution. We verify h g is a constant in H(D). Indeed, by

hypothesis, h g does belong to H(D). Then (-)’ h = h’g - = 

and then by Theorem 1.5 we know that - is a constant in D.
g

Now we have to recall the definitions linked to the Monotonous Filters.

Technical definitions and proof of Theorem II. 2.

The technique used in the proofs of the Theorems requires a lot of

classical definitions previously given in 

We will denote by "log" a real logarithm function of base fù} 1 and by

v the valuation def ined on K by v(x) = = - 

Now we have to define the monotonous filters. Henceforth, D will denote



49

a closed bounded fnfraconnected set and we will specify when it is

supposed to be open; f will denote an element of H(D); (~) is the equation

y’ = fy with yeH(D).
We call an increasing f ilter (resp. a decreasing filterk) of center aeD

of d~~eter r the filter on D that admits for base the family of sets

r(a,r,s) n D with 0  s  r (resp. r(a,r,s) n D with r  s).

We call a decreasing filter with no center on D a f ilter that admits

for base a sequence D in the form D = d(a ,r ) &#x3E; n D with :
n n n n

d(a ,r ) c d(a ,r ), 1 im r &#x3E;0, ~ d(a ,r ~ &#x3E; = ø
n+l n+l n n n n n

n=1

and the limit of (r ) is called the diameter of the filter.
n

We call a monotonous filter a filter that is either increasing or

decreassing.

We know that if J is a monotonous f ilter on D and feH(D), then the

function def ined in D by I has a limit along the f ilter ~ and the

mapping f~ I is a multiplicative semi-norm on H(D) continuous with
rg

respect to the 

If 5 is a monotonous filter of center a, of diameter r, we also have

For convenience we introduce the valuation function v defined by
a

Let R be the diameter of D. Then for all a = D , the function

~ -&#x3E; v (f,~) is continuous and piecewise linear in its interval of
&#x26;

definition I. If a does not belong to a hole of* D, I is [-log R, +oo[. If a

belongs to a hole ’I* == d"(a,p), then I == [-log R, -log pi.
When a == (3 we will only write for v (f,~).

0

For   v(a-b) we have v = v for all h~H(D). [E JE: I..
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By the definition of it is easily seen that -log~f~D ~ va(f, )

for all and  ~ -log R. In particular, if f and g~H(D) are such that

then v a (f.l1) = v 
Lef f belong to H(D). f is said to be strictly annulled by a increasing

filter (resp. a decreasing filter) of center a, of diameter r, if there

exists ~1  -log r ( resp. ~ &#x3E; -log r ) such that  + co whenever

]-log (resp. whenever r[) and if lim f(x) = o.

f is said to be strictly annulled by a decreasing filter J with no

center, of diameter r, of base (D ) with D = d(a, D, if there
n n n n

exists 03BB &#x3E; -log r such that v  +co whenever r I],

whenever n~N, and if 1 imf(x) = o.

Now recall a monotonous f ilter is called a T-f ilter if the holes of the

elements of its bases f orm a sequence that satisf ies a condition given in

[E 4 ] (we won’t explicitly need it in the present work). Then we know that

given a monotonous filter ~, there exist elements strictly annuled

par J if and only if Y, is a T-fllter [E 4 ]
An element feH(D) is said to be quasi-invertible if it factorizes in

the form P(x)g(x) with P a polynomial the zeros of which are in the

interior of D, and g an invertible element in H(D).

Then if D is a clopen bounded infraconnected set, an element feH(D) is

not quasi-inversible if and only if it is annuled by a T-filter on D[E4].

Proof of Theorem II.2. Let us assume g has an isolated zero a in D. Since

D is open we know g factorizes in the form (x-a)~h(x) with and

h(a) ~ 0 [E 1 ,E 2 ] hence g’ = (x-a)  (qh + (x-a)h’) hence qh =~ (x-a)(f-h’)

which contradicts the hypothesis h(a) * 0, (since q ~ 0). Thus g has no

isolated zero in D.

Now suppose g is not invertible; since it has no isolated zero it is

not quasi-invertible, and since D is open, that implies g is strictly

annulled by a T-filter on D (E 3 ;E 4 ].

Beaches, integrity and proof of Theorem 

Let J be an increasing (resp. a decreasing) filter of center a, of

diameter Let set of the xcD such that r (resp. r)

is called the beach of ~ , denoted by ~t~~. The beach of a decreasing
filter 5 with no center is the empty set ~ , We denote by ~~~~ the set
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~1&#x3E;(~)t by 9(~) the ideal of the feH(D) such that limf(x) = 0 and by
~

9’ (~) the ideal of the fe~~~ such that rex) = 0 whenever 
o

J(J) and J (J) are closed prune ideals (E ,E ,E ].
o 345

Two monotonous filters ~ and S’ on D are said to be complementary if

r(5) u = D.

The Banach algebra H(D) has no divisors of zero if and only if D is

infraconnected with no couple of complementary T-filters [E ].
5

In all of the following lemmas, D will denote a closed bounded

infraconnected set and we will specify when it is open.

Lemma II. A Let aeD and let r~R . Assume f(x) = 0 whenever xed(a,r) n D.

Assume there exists b~D such that f(b) *’ o. Then there exists a T-filter ~

on D such that and d(a,r) c 3~(SF) [E: ].
5

Lemma II. B Let ? be a T-filter on D with no complementary T-filter. Then

9(~) 
o

Proof of Lemma II. B. The equality ~T~~ = 9’ is trivial when ~~~ = ~
o

hence we will assume that J has center a. Let r be its diameter and

let S = -log r. Let and let us show f~g (J). For this, let us
o

assume f~9 and let be such that fCb) # O.
o

Let 03BB = v(a-b).

1) Assume SF is increasing.

l)x) Assume first v (f,À)  + co.
a

By hypothesis since f~~~~, we know v (f,e) = + co . Hence there exists
a

such that v (f,y) = +co and v  + co whenever Then
&#x26; a

f is strictly annulled by the decreasing filter !1 of center a, of diameter

s = ~ . The filter !:1 is then a T-filter complementary to (~F,) which

contradicts the hypothesis.

DP) Assume now v (f,~L) = 
. We know v (f,~) = v (f,À) since

a b a

À = v(a-b) and therefore v (f,/~) = +co. while v  +co when ub b

approaches +co because f(b) ~ O.

It then exists À such that  +co whenever ~ &#x3E; y and
b

v(f,y) = +s . Hence f is strictly annulled by the increasing filter of

center b, of diameter s = (ð -1’. This filter is then a T-filter g Since
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is complementary to ~ which contradicts the

hypothesis.

2) Now, let us assume ~ is decreasing. Then a and b belong to

1&#x3E;(~) = d(a,r) n D therefore r hence = +co .It then exists

y &#x3E; 9 such that +00 for all  &#x3E; y, hence the increasing filter of

center b, of diameter s = (ð -’1  r is a T-f ilter complementary to ~ which

ends the proof of Lemma II.B.

CorollarLll.C. If H(D) has no divisor of zero then for every T-filter 

on D, ~~~ = 3’ 
o

Definition. Let geH(D). We call support of g the set 03A3 of the xeD such

that g(x) * 0, and r will be said to be reinforced if for every t

the function ~, -&#x3E; v is bounded in the interval 
a

Prooosition II.E. Assume H(D) has no divisor of zero. Then every

has a reinforced support.

Proof. Let let [ be the support of f, let Let us show

v is bounded when Indeed assume it is not. Since a~03A3
f(a) ~ 0, hence there exists y e!R such that v (f,ll) = v(f(a)) whenever

Since v (f,.) is a continuous function, if it is not bounded in
a

[v(a-b).+0153(, there exists ~ ~ v(a-b) such that v  whenever ? a
a

and v (f ,03BB) = +co, so that D has an increasing T-filter J of center a, of

diameter r = (c) -7~ .
Assume first v (f,v(a-b))  oo. Then there exists such that

a

v  oo whenever and v +00 which means that D has

a decreasing T-f ilter G of center a, of diameter 03C9-03B1 &#x3E; r. Then !? is

complementary to ~, which contradicts the hypothesis "H(D) has no divisor

of zero". Thus v is finally bounded in and that ends the
a

proof of Proposition II. E.

Lemma II.F. Let A and B be infraconnected closed bounded sets such that

A = 13 . Then A u B is infraconnected.

Proof. Let = A = B. Let aeA. Since AuB = d(03B1,R) = d(a,R) the set
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I(a) ’ ~ ~ x-a ~ ~ is included in [O.R]. Since A is infraconnected, of

diameter R, the set I(a) = {|x-a||x~A} is dense in [0,R1. In the same way

a~~ I(a) is still dense in [0,R] and that finishes proving Lemma II.F.

Proposition II.G. Assume D is open. Let f~H(D) and assume the su p port 03A3 of
f ~? reinforced. Then f or every couple (a,b)~ 3] x ~ , there exists a

clopen bounded infraconnected set 03A9b ~ 03A3 and a number 03B4 &#x3E; 0 such that
a

! f(x) ( z: 3 whenever 

Proof. Let r = By hypothesis there exists such that

M and ~ M for all  ~ v(a-b). Then the equality

v(f(x)) = va(f,v(x-a)) (resp.v(f’(x)) = 
is true in all D n d(a,r) (resp. D n d(b,r)) except may be in a finite

number of circles of center a (resp. b) of radii p ~ rIE3].
Let (resp. ) be the circles of center a (resp. b)

that contain points x~D such that v(f(x)) ~ va(f,v(x-a))

(resp.v(f(x)) * vb(f,v(x-b))) and let 
m

= (d(a,r) n D)B ( u C (a,p)).~ 
1=1 

(resp. A" == d(b,r) n D) B ( u C ))). Then (resp. is clearlyb 
~el 

J ~ ~

inf raconnected and clopen.

Moreover by hypothesis we have v(f(x)) = v (f,v(x-a)) ~ M in all A .
a a

Let us put Q = A u A . Then v(f(x)) ~ M whenever x~03A9b hence we can take
5 = to obtain the relation |(x))| 2= 6 in 

a

Now Q is clearly clopen. At last by Lemma II. E, Q is infraconnected
a a

because A and A~ are inf raconnected sets such that A = 6a - d(a,r).
a b a b

Proposition II.F is then proven.

Proposition II.H. Let D be clopen, let feH(D) and let (~’~ be the

dif f erential equation y’ = f y. H~e assume C@~ has a solution g whose

support ts reinforced. Let h be another solution o~’ (~~~ . Then there

exists 03BB~K such that h(x) = whenever 

Proof. Since D is open, ~] is clearly open in K, hence for every there

exists a disk A(a) included in 03A3 . Let (Ea) &#x3E; be the equation y’ = f(x)y
for then (Ea) has non null solutions (like the restriction of g to

A(a)) hence the space of the solutions has dimension one by classical
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results (and by Theorem 11.1). It only remains to show is constant

when a runs s

Let us fix a and b in ][; . By Proposition II.G, there exists a clopen
bounded infraconnected set Q ~ 03A3 , with a,b ~ cb , and § &#x3E; 0 such that

|g(x)| ~ 03B4 whenever The restriction g of g to Q is then invertible

in Hence the restriction (h/g) of h/g to Cb is a locally constant
a a

element of As Q is clopen and infraconnected, by Theorem 1.5. we

know that h/g is a constant in hence h/g(b) = h/g(a) and then

Proposition II.H is proved.

Proof of Theorem II.3. Assume (8) has a non identically null solution g.

By Proposition E, the support E of g is reinforced. Let h be another non

identifically null solution. Since H(D) has no divisor of zero, the

support E’ of h does have common points with E. By Proposition H there

exists 03BB~K such that h(x) = whenever Since L n E’ $ /J ,
À can’t be zero. Hence h(x) * 0 whenever therefore ~’ ~ ]~ . By the

same reasoning we just have hence ~=]~’. The relation h(x) = Ag(x)

is then true in 03A3 and it is trivially true in where h(x) =g(x) = 0.

Theorem II.3 is then proved.

III. ZERO RESIDUE CHARACTERISTIC

In the chapter we will suppose the characteristic p of the residue

class f ield k to be equal to zero.

D will still denote a clopen bounded infraconnected set, f an element

of H(D) and J the space of the solutions of the equation g y’ = fy with

y~H(D).

Theorem III. If J is not reduced to is has dimension one and every

non identically null solution is invertible in H(D).

Bef ore proving the Theorem, we have to establish the Lemmas and

Propositions A, B, C, D, E mainly dedicated to the behaviour of the

valuation function ~ -~ when the residue characteristic is zero.

Lemma III.A. Let r and R~R with and let D be r(o,r,R). Let  belong

to ]-Log R, - Log r [and let f be a Laurent series 03A3a x"e H(D) such that

= v(a ) + q  with q * O. Then = + .
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+co

Proof. f’(x) = E n hence = inf* vena Since the

residue characteristic of K is zero, v(na) = v(a) whenever hence
n n

Lemma III. B. Let r’, r" be numbers such that fl  r’  r" and let be a

rational function in K(x) such that is not constant in any interval

included in [r’,r"]. Then = - ~ whenever

r", -Log r’ ].

Since the function  -&#x3E; is continuous in  , it is enough to

prove the relation in ]-Log r", -Log r’[. Let r", -Log r’ [ and let

s = (j 2014o* . We will prove the relation at or in considering t~]s,r"[ [ such

that h has no pole in r(o,s,t). Then h(x) is equal to a Laurent series

+co

E a x 
n 

and we can apply Lemma III. A that shows the relation is true

-co

whenever ~]-Log r,r[. By continuity the relation then is true at 03C3 .

Proposition III. C. Let D be a clopen bounded infraconnected set, of

diameter R, such that 0 belongs to D. Let r be the distance from 0 to D

and let r’, such that 0  r’  r" ~ Rand r ~ r’. Let f~H(D). We

H(D) assume the is bounded in the interval

I = [-Log r", -Log r’] J and it is not constant in any interval J c I. Then

v(f’ ,Il) + jUL whenever 

Proof. Let M be the upper bound of in I and let 03B4 = j 

By Theorem 1.6 there exists heR(D) satisfying (1) l  õ together

with " !tf’-h’ "D J)  5 . Relation (1) also implies &#x3E; M 2: v(f,jLi) hence

(3) whenever 

By then the function is not constant in any interval included in

I, hence by Lemma III.B, we have (4) v(h’,p) = whenever 

Then relations (3) and (4) do show that v(f’,~) = whenever 

Proposition III.D. Let D be a clopen bounded infraconnected set with a

T-~’itter ~ and f~H(D). We assume the equation y’ = fy admits a solution g

strictly annuled by J . Then f is not annuled by J .
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Proof. We will first assume ~ is increasing, of center a, of diameter R.

We can obviously assume a = O. Since g is strictly annulled there

exists A &#x3E; -Log R such that lim = -Ha with  +00 for

R,A]. and then there exists a sequence of couples (ABA") with

-Log R &#x3E; À’ &#x3E; X" lim À" = lim A’ = -Log R and such that 

exists and is strictly negative whenever By Proposition C we
n n

know that = whenever therefore = ~

whenever ~[03BB’,03BB"]. Thus does not go to +ca when  approache
n n

- log R, which proves f is not annulle by ~.

In the case that J is decreasing we can do the same demonstration in

choosing a center of J (we can take it in a spherically complete

extension of K, if required).

Proposition III.E. Let D be a clopen bounded infraconnected set containing

0, let f belong to H(D) and let 03C6 belong to H(D) such that 03C6’= f03C6. We

assume the function y -~ to be linear tn an interval I = and

 +co whenever The function  -&#x3E; v(Ø,J.l) is also linear in I.

Proof. We assume v(~,~i) to be non linear in I. Then there exists a point

r~]A’,A"[ such that v’(~,cr) ~ v’(~,cr). With no loss of generality we can
d g

suppose (1’ = 0 in performing a suitable change of variable.

We will first construct an interval 9’ = [J.l’ ,fJ."] with ~’  0  such

that the function y -~ is linear in both [~i’,0] and and

is bounded in :1 . Since  +co whenever x~l, there exist

jn 1, 2 eI with 1 
 0  J.l 

2 
such that is bounded by a number L in the

interval :1 = ].

We can obviously choose 1,
2 

close to 0 enough to have the function

fJ. ~ v(03C6, ) linear in each one of the intervals [ i ,01 and ] because

it is bounded in 9, hence piecewise linear in 9. Since v ’(~,0) ~ 
g d

the function ~i -&#x3E; is not constant in at least one of the two

intervals t~i ,01 and ].
1 2

For example suppose first it is not constant in Since it is

linear, it is not constant in any one of the intervals included in [Jl 1,O]
and then we can apply Proposition III.C which proves = 

whenever .01 and therefore v(~’,~) is bounded in [JJ ,0] by a number

L’. In addition, since = it does exist 1 such that
1 2

v(03C6’, ) is bounded in by a number L’. Let us put = J.1 and
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L’ = max(L.L). The function  ~ v(03C6’, ) is then upper bounded by L’ in

while is upper bounded by L.

In the same way, if we suppose v(t/&#x3E;,f.1) to be non constant in ] we

have a symetric construction and theref ore we finally have an upper bound

L’ f or in the interval [ ~e’ , ~c~ ) in al l cases.

We set M = Max(L,L’). By definition ~ satisfies

(1) v(t/&#x3E;,f.1) $ M whenever 

(2) v(~’,~) s M whenever 

Now by Theorem 1.6 there exists 03C8 ~ R(D) satisfying ~03C6-03C8~D  03C9-M
 M 

-1.4 
and theref ore we have

(3) &#x3E; M whenever 

together with

(4) v(~’-~B~) &#x3E; M whenever 

Then ( 1 ) and (3 ) imply

(5) v(~,~) = whenever 

while (2) and (4) imply = whenever hence

= v(’ , ) = v(f, ) whenever 

which proves that is linear in 9,

in the form with qel.

Now 03C8 f actorizes in the f orm P a where P and Q are monic polynomials
that have all of their zeros in x I = 1} and 9 belongs to R(D)

and has no zero in C(O,I).

Since by (5) we have so that P and

Q don’t have the same number of zeros in C(O,I). Let P(x) = E a xj and

m

let Then m * n and

On the other hand, since P and Q have all of their zeros in C(O,l) we

see

1 whenever j = 0,...,m,

1 whenever j = 0,...,n

(7) v(P,O) = v(Q,O) == o.

P’Q - PQ’ is then a polynomial 1: 03BBixj with I ~ 1 whenever
~

j = 0,...,m-t-n-l and by (6) We have À 
m+n 

= m-n, hence ) = I.
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Then = O, hence by (7) we see

Now we will show

"

Since 9 has neither any zero nor any

pole in C(O,l), there exist r’, r" such that r’1r" and such that e has

neither any zero nor any pole in r(O,r’ ,r") and therefore e is equal to a

+00

Laurent series 1: a xn convergent in r(O,r’ ,r"). Moreover, there exists tel
n

-00

such that |at||x|t &#x3E; I a n ||x| nwhenever xer(O,r’ ,r"). Let us factorize 9 in

the form xt’1. Then in r(O,r’ ,r"), ’1 is equal to a Laurent series 1: b xn
n

-co

with b = a and we see that
o t

v(’1’ ,0) = inf v(nb ) = inf v(b ) &#x3E; v(b ) = v(’1,O)

, 0" ~’ t
from which v(1’ ,0»0. As ä = ! + - we see’1 a’ 

~ l’ x 
t ’

,0) = v(- ,0) + v(- ,0) = v(r ,0) &#x3E; °

which finishes showing (9).
9’ P’Q-PQ’

Now let us consider -- = 9 + 2014---r?.2014. By (8) and (9) we have
9’ P’Q-PQ’ ’f’ .

v(g ,0) &#x3E; v(2014" 
" ,0) and therefore there exists an interval U == [-p,p]

such that v(e &#x3E; 
" whenever ~U. Then we have

Let us put h(x) = . Since P(x)Q(x) has exactly m+n zeros in

and P’ Q-PQ’ has at most m+n-1 zeros in we see that

(11) v’(h,O) &#x3E; v’(h,O).
Now by (10) we have v’d(03C8’ 03C8 ,(3) = v’(h.O) and v’g(03C8’ 03C8 ,0) =v’(h,0) hence by

(11) we obtain &#x3E; which contradicts the fact v(- is a

linear function in 1 , and that finishes proving Proposition III.E.

Proof of the Th~~~en3 III .

Let us assume that (g) admits a non identically null solution g and

assume g is not invertible in H(D). By Theorem II.2., g is strictly
annulled by a T-filter 5 on D and by Proposition f is not strictly
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annulled by 3F.

For example let us assume ? is increasing of center 0, of diameter R

and assume f irst f is annulled by ~ . Since f is not strictly annuled by

~, there exists such that -Ha whenever R,-Log r]

hence (1) v(g’, ) = + co whenever ~[Log R,-Log r]. But since g is strictly

annuled by J t there exists an interval in J ~ [Log R, -Log r] ] such that

is a linear non constant function in 9’ t and by Proposition III.C

we know that = v(g,y) - ~e, which contradicts (1). Thus, f is not

annulled by 9~.

Now we know the function  ~ v(f,y) is linear in an interval [-Log R,1]

[E 3,E 4,G]. By Proposition III.E the functian  ~ v(g, ) is also linear in

[-Log and that contradicts the hypothesis "g strictly annuled by 
In case ~ is decreasing we can perf orm a similar demonstration, (in

taking a center in a spherically complete extension of K if required).
Thus g is invertible in H(D) and then by Theorem II.1. we know that the

space of solutions of (g) has dimension 1.

IV. p * 0 AND f NON QUASI-INVERTIBLE

Here we assume p * 0 and we put (ù = p . We will denote by the

dif f erential equation y’ = f y and by the space of the

solutions of @(f) in H(D). We will prove there does exist infraconnected

clopen bounded sets with elements feH(D) annulled by a T-filter ~ with non

identifically null solutions of E (f ) annulled by J and such a situation

may provide any f inite dimension f or and even an inf inite dimension.

Theorem IV. 1. There exists an infraconnected clopen bounded set ð with a

T-filter J and elements strictly annulled by J such that has

solutions strictly annulled by ~ together with dim = I.

Theorem I V.I. will be proven in constructing concretely the set A and the

in Proposition IV. D.

Theorem IV.2. Let there exists an infraconnected clopen bounded set D

and elements strictly annulled by n increasing T-filters two by two

complementary such that n.
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Theorem IV. 3. There exists an infraconnected cLopen bounded set D with a

sequence of increasing T-filters (J) two by two complementary, andn~N

elements f~H(D) strictly annulled by each one of the J , such that 
n

isomorphic to the space of the sequences (03BB) such that lim 03BB = o.
n n~M n

The proofs of Theorem 2 and 3 will require the following Lemma FV.A,

and Proposition IV.B.

Lemma IV.A. Assume D has a sequence of increasing T-filters (Jn) _aJ such

that C(J ) n C(J ) = 0 whenever n -. m. Let f~H(D) be such that rex) = 0
n m

whenever x~ n !P(3P ) and assume there exists a sequence(f.) IN 
in H(D)

such that f (J ) and f(x) = f (x) whenever ), for every nett
non n n

Then the series L f converges to f in H(D).

Proof. Suppose first the series 21 f converges to a limit h in 11(13). Then
n

h is clearly equal to f because by definition when x e n ~(~ ), f (x)=O

for all n, hence hex) = f(x) = (3, and when x E ~(~ ) then for all
n n

n * q hence hex) = f (x) = f(x).
q

Now we only have to prove the series 1: f converges and that means to.

prove the sequence t D goes to zero. Suppose the sequence f J D does

have a subsequence q~~fnq~ ~ ð whenever q~N. Consider now the sequence

of T-filter (:f n ) and for each q~N let a ~C(Jnq) be such that

! f(a ) ) ~ 5.
’ q

Suppose first we can extract a subsequence such that (1)
q
m

)a - a I = r whenever j~m. Let us set b = a , and ~ = ~ ;. with no
q q m q m n
m Jt m q

loss of genrality we can obviously assume b = o.
. 

0

By classical results [E3] ] we know that v(f,-Log C) = v(f(b ) is true

for all m except maybe a finite number. Hence we see that v(f,-Log 

-Log ð . Let A = v(f,-Log r). We know that v(f(x)) == A is true in C(O,r) n

D except (maybe) in a finite number of disks d (b ,r).
m

Consider an m~K such that v(f(x)) = A for xed (b ,r) n D. Then
m

triviallylim v(f(x)) = A  hence that contradicts the hypothesis
!J
m
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f or all n. Hence the sequence m~a satisf ying ( 1 ) does not exist.

Then we know we can extract a subsequence such that the sequence

)a - I is strictly monotonous, of limit r[E 3 ].
Let us put again G = J (meN) and b = a .

m n m q
q m
m

Suppose f irst r = O. The sequence m -~b converges to a limit a in D
m

and we can assume a = O. Since f is continuous and |f(03B1qm)| ~ 03B4 there

e ’ ?D su that f (x) ~ 03B4 2 for |x| ~ 03C1 e ce f x ~ 03B4 2 for x~C(Gm)exists p&#x3E;0 such that f(x) &#x26; - for I x I =s p hence f(x)J I 2: l for 

and that contradicts f~J(J) f or all neN f or all Hence r * 0.
n 

.

Suppose now the sequence I b - b I is strictly increasing. We can

obviously assume b 
o 

= 0 hence the sequence I b m I is strictly increasing of

limit r.

Consider v(f,p) when  &#x3E; - log r. Since v(f(bm)) ~ - log 6 we know that

there exists N such that v(f,v(b )) = v(f(b )) ~ N and then is
m m

upperbounded by - Log 6 in an interval Log r], and there exists

r[ such that v(f(x)) = v(f,v(x)) =s - Log 6 for all

x~r(o,p ~,r). Then that contradicts the hypothesis when b e
m m

Thus we have contradiction when the sequence I b -b I is strictly’ m+l m

increasing. We obtain a similar contradiction when this sequence is

strictly decreasing of limit r * o. Finally that f inishes proving Lemma

IV.A. -

Proposition IV.B.

Assume D has a sequence of Increasing T-filters (Jn)n~N such that

C(J ) ~ C(J ) = ø whenever n * m. Assume for each there exists
n m

fn ~ Jo(Jn) such that has a solution gn~o~ Jo(Jn) and such that the
series E fn converges in H(D). Let f = 1: f . The family {(gn)n~N} -is a

linearly free family of solutions of 

Moreover, if the (Jn)n~N are the only T-filters on D, then for every

solution g of g(f) there exists a unique sequence in K such that

the series 03A3 03BBngn converges to g tn H(D).

Proof. The family is clearly linearly free because the supports
of the g 

n 
are two by two disjointed. Let us show if D has no T-filter but
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the , every solution g of g{f) is the sum series ~ 
~, À g ..nn~ 

n~ 
n n

Indeed, let and first consider g(x) when for certain q~N

We know f(x) = f ( x ) whenever and then every has a

restriction to C(J ) that is a solution of (E ). Since D has no T-filter
q q

except the (Jn), and since the C(Jn) are two by two disjointed, one sees

C(Jq) has no T-filter except 5 . Hence H(?(y )) has no divisor of zero

hence by Theorem II.3, the differentiel equation 8(f ) defined in C(J ) by
_ 

q q

the restriction f of f to ~(3F ) has a space of solution of dimension 1,
q q q

hence there exists À e K such that f ( x ) = À g ( x ) whenever ).
q q q q

Now by hypothesis g ~ ~ (3P ) hence g~~(~ ). We will shaw g ( x ) = (3
q 0 q q

whenever x E n ~(3P ]L Indeed let A = ~(~ ) u ( n ~(~ )).

Clearly ~ is secant to A and then A has no T-f ilter complementary to ~ .
q q

Hence by Lemma II.B we know that hence g(x) - 0 whenever

x ~ P(Jq) n A hence g(x) = 0 whenever x E n P(Jn) and then g(x) = o.

By Lemma IV.A. we know that g is the sum of the convergent series E 1 g
nEIN n n

The sequence (a ) is clearly unique. Indeed suppose g = II g . Then
n 

when we have g(x) = 1..1. g (x) because g (x) - 0 for all m * n hence
n n n m

U = X .
n n

Proposition IV.C. Let h be a series convergent in and let D be a

clopen bounded infraconnected set containing 0, of diameter R ~ 1, such

that hand D satisf y

(1) h(x) ~ 0 for att x~D n 

Let 03C6 and f be the functions defined in D by = 1 
,

f(x) = - whenever d (0,1). f(x) = 0 whenever

and f belong to H(D) and 03C6 satisfies 

Proof. Since (2) we know that 03C6 belongs to H(D) by results of [S2]. In the

same way, since i im - (h’(x) h(x)) = 0 we know that f belongs to H(D) [S4 ].
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Then 03C6 obviously satisf ies (8(f».

The following Proposition IV. D clearly proves Theorem IV. 1 in showing
how constructing D, f and the solutions of 

Proposition IV. D.

Let (a ) be the sequence de f ined as follows :

a # 0,
o

a = 1 when n is neither 0 nor ~ the form pm for any m~N
a n = - 1 when n is in the form for some m~.
n n 

oø

Let h(x) = E a x~; then h is convergent in d ( t~,1 ) .
n

n=o

Let A be the set of the such that v(h(x)) = v(h,v(x)) and assume

D n d"(0,l) = A . Then

(1) 0 for all xeD

Moreover the increasing filter J of center Ot of diameter 1 is a T-filter

and it is the only one T-filter on å.

In addition, the function f and 03C6 defined in 0394 by r(x) = - h’(x) h(x) and

~p = h belong to H(A) and they both are strictly annulled by Y, ; rp is a

solution of t;&#x3E;(f) and it generates 

Proof. First, it is easily seen that h converges for because we

n

verify that lim  |an| = 1.

Next, it is well known ] that the relation v(h(x)) = v(h,v(x)) is

true in all d ((3,1) except in a set included in a union of circles in the
oo

form u C(O,r ) with lim r = 1. This set A is obviously infraconnected
n n

n=l 

and clopen.

As h(O) = a * 0, ( 1 ) is satisfied by definition of A because
0

v(h(x)) = v(h,v(x))  + 09, for all 

As the sequence I is not bounded, we know that lim + m

[A,S 3 J, hence Relation (2) is clearly satisfied.
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Now h’ is bounded in d-(O,l) . Indeed h’(x) = 1: na with
n’ 

~ 
n=1 

|nan| = |n| ~ 1 when n is not a p and p-mpm = 1 hence ) i

whenever Finally I :s 1 in hence (3) is clearly
satisfied.

On t h e other hand, by def inition f, ~p.~are strictly annulled by the

increasing f ilter ~ of center ° of diameter 1. Hence ~ is a T-filter. By

definition of A it is easily seen that A has no T-filter different from ~.

By Proposition and f belong to H(A) and by construction they

are strictly annulled by ~. Hence ~ is obviously a solution of 8(f).

On the other hand, since 5 is the only one T-filter on A , H(A) has no

divisor of zero ] hence !f(f) has dimension ~ l. 0, - we see that ~

generates ~(f ), and that finishes proving Proposition IV. D.

Proof of Theorem IV.2. Consider again the set A obtained in -

Proposition IV.D. Let R be&#x3E;1, and let a 1 ,...,a n be points in d(O,R) such

that 1 whenever For all i = l, ... , n let ~i - a 1 + A =

n

{a I + x let D I = v A I and let D = n D .

By Proposition IV.D, the set D has the increasing filters Ji of center

a, of diameter 1 (obtained from J by translation of a ). Hence for every

i = 1,...,n there exists f ~ Jo(Ji) such that 8(f) admits solutions g
~ strictly annulled by ’g,. 1 Since ~ 

1 
has diameter 1 and 

~~01 i ~ i j

for i * j the C(Ji) satisfy C(J1)(1~i~n).

Now let f = E f. Then it is easily seen that

f (x) = f (x) whenever 

f(x) = 0 whenever P(Ji ).

For each i = 1,...,n, g is then solution of E(fi) and therefore it is

solution of 8(f).

At last, by Proposition IV. B. the are linearly independant. As

3F ..., Jn are the only T-filters on D, g ..., gn is then a base of the

space of solutions by the last assertion of Proposition IV. B.

Proof of Theorem IV.3. The proof will roughly f ollow the same process as

in Theorem IV.2, with a sequence of filters ~ instead of a finite number
n
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of (SP ). Let R be &#x3E;1 and consider a sequence in d(O,R) such that

[ = 1 for n ~ m. For every nEN let h be a Taylor series defined

like h in Proposition IV. D. in specifying here h (0) == p -n, and let 0394 be
n n

the set of the xed (0,1) such that v(h ,v(x)). Then v(h for all ~?Q
n n

h’ (x)
hence and therefore . p-n whenever 

ao 00

Now we set 0 - a + A and B = u d (a n)) and D = å)
n n n 

. n’ n
n=1 n=1

Obviously B has no T-filter, each A has an increasing T-f ilter ~ of
n n

center a of diameter 1. Each ~ induces a T-f ilter on D and we will still
n n

denote it by J and D has no T-f ilter other than the J .
n n

h’ ( x-a )
Now we put f (x) = - f or xeå and f ( x ) = 0 f or By

n h x-a ) n n n

( 1 ) we have ~fn~ Q = p n and then the series 03A3 f 
n 

converges to a limit

feH(D) such that f(x) = f (x) whenever xcA and f (x) - 0 whenever
~ 

n n n
co

xeD’( u A ).
n

n=1 -

By Proposition IV.C. f or each there exists a solution

g (~ ))B{0} and we can obviously choose the g to satisfy (2)
n non n

D 
= 1. By Proposition IV. B the set ~gn ~ is linearly f ree and

every solution g of may be written of a unique matter in the form
00 .

E 1 g (with À eK).
n n n

n=l

~(f) is then isomorphic to a subspace of K~. On the other hand by (2) a

00

series E À g converges in H(D) if and only if lim 03BB = (3. If (1 )
n n n n

n=1 

oo

is such a sequence, the series E A g converges to a limit g. Thus

g(f) is isomorphic to the space of the sequences such that

1 i m 1 - (3 and that ends the proof of Theorem IV. 3.



66

REFERENCES

[A] AMICE (Y), Les nombres p-adiques, P.U.F. (1975).

[B] DWORK (B.), Lectures on p-adic Differential Equations. Springer

Verlag New-York-Heidelberg-Berlin.

[E1] ESCASSUT (A), Algèbres de Krasner, C.R.A.S. Paris, t. 272 (1971).

[E2] ESCASSUT (A), Algèbres d’éléments analytiques en analyse non

archimédienne, Indagationes Mathematicae, t. 36 (1974), p.339-351.

[E3] ESCASSUT (A), Elements analytiques et filtres percés sur un ensemble

infraconnexe, Annali di Mat. Pura ed. Appl. Bologna, t. 110 (1976).

[E4] ESCASSUT (A), T-filtres, ensembles analytiques et transformation de

Fourier p-adique. Ann. inst. Fourier, Grenoble, t. 25 (1975)p.45-80.

[E5] ESCASSUT (A), Algèbres de Krasner intègres et noethériennes,

Proceedings Koninklijke Nederlandse Akademie van Wetnschappen, Series

A, vol. 78, n°4 (1976), p. 109-130.

[E6] ESCASSUT (A), Derivative of Analytic Elements on Infraconnected

clopen Sets. Indigationes Mathematicae 51 Fasc1 (1989) 63-70.

[E7] ESCASSUT (A), SARMANT M.C., The Differential Equation y’- fy in the

Algebras H(D). To appear in Collectanea Methematica.

[E8] ESCASSUT (A), SARMANT M.C., The equation y’ = fy in zero residue

characteristic. Submitted to the Proceedings of the A.M.S.

[G] GARANDEL (G), Les semi-normes multiplicatives sur les algèbres

d’éléments analytiques au sens de Krasner, Indagationes Mathematicae,

vol. 37 n°4 (1975), p. 327-341.



67

[K1] KRASNER (M), Prolongement analytique dans les corps valués

complets : préservation de l’analycité par la convergence uniforme

et par la derivation; théorème de Mittag-Leffler généralité pour

les éléments analytiques, C.R.A.S. Paris 244 (1957), p. 2570-2573.

[K2] KRASNER (M), Pronlongement analytique uniforme et multiforme dans

les corps valués complets. Les tendances géométriques en algèbre et

théorie des nombres, Clermont-Ferrand 1964, p. 97-141. Centre

National de la Recherche Scientifique (1966) (Colloques
internationaux du C.N.R.S. Paris, 143).

[R] ROBBA (Ph.)., Prolongement analytiques sur les corps valués

ultramétriques complets, Prolongement analytique et algèbres de

Banach ultramétriques, Astérisque, t.10 (1973), p. 109-220.

[S] SARMANT (M.C.)., ESCASSUT (A)., T-suites idempotentes. Bulletin des

Sciences Mathématiques, t. 106 (1982) p. 289-303.

UNIVERSITE BLAISE PASCAL

( CLERMONT II)

MATHEMATIQUES PURES

B. P. 45.

63177 AUBIERE


