REVUE FRANÇAISE D'AUTOMATIQUE INFORMATIQUE RECHERCHE OPÉRATIONNELLE. INFORMATIQUE THÉORIQUE

D. DE WERRA A note on graph coloring

Revue française d'automatique informatique recherche opérationnelle. Informatique théorique, tome 8, nº R1 (1974), p. 49-53

<http://www.numdam.org/item?id=ITA_1974__8_1_49_0>

© AFCET, 1974, tous droits réservés.

L'accès aux archives de la revue « Revue française d'automatique informatique recherche opérationnelle. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A NOTE ON GRAPH COLORING

par D. DE WERRA⁽¹⁾

Communiqué par R. CORI

Abstract. — A result concerning edge colorings in graphs is extended to the case of vertex colorings. Let $S_1, ..., S_k$ be a coloring of the vertices of G and let s_i be the cardinality of S_i . It is shown that there always exists a k-coloring with

$$|s_j - s_i| \leq (l-2) \min(s_i, s_j) + 1$$
 for any i, j .

where l is such that no vertex belongs to more than l maximal cliques.

A multigraph consists of a finite nonempty set X of vertices and a set U of edges. A *k*-edge-coloring is a partition of U into subsets H_1 , H_2 , ..., H_k such that no two edges in the same H_k are adjacent. Let h_i be the cardinality of $H_i(i = 1, ..., k)$, We will say that the sequence $(h_1, h_2, ..., h_k)$ where $h_1 \ge h_2 \ge ... \ge h_k$ is color-feasible in G.

The following proposition appears in [1] and [2] :

Proposition 1 : If $(h_1, h_2, ..., h_k)$ is color-feasible in G, then any sequence $(h_1, h_2, ..., h_k)$ with :

a) $h'_1 \ge \ldots \ge h'_k$

b)
$$\sum_{i=1}^{l} h'_i \leq \sum_{i=1}^{l} h_i \qquad l=1, ..., k-1$$

c)
$$\sum_{i=1}^{k} h'_{i} = \sum_{i=1}^{k} h_{i}$$

is color-feasible in G.

⁽¹⁾ Département de Mathématiques, École Polytechnique Fédérale de Lausanne (Suisse). Revue Française d'Automatique, Informatique et Recherche Opérationnelle nº mars 1974, R-1.

Let the chromatic index q(G) of G be the smallest k for which G has a k-edge-coloring. As a consequence of proposition 1 we have :

Proposition 2: For any $k \ge q(G)$, G has a k-edge coloring

 $H_1, ..., H_k$ with $|h_i - h_j| \leq 1, \quad i, j = 1, ..., k$

In this note we will extend these results to the more general case of vertex colorings.

A k-coloring of G is a partition of its vertices into subsets $S_1, S_2, ..., S_k$ of nonadjacent vertices.

(Note that whenever we are dealing with vertex colorings, we just have to consider *simple* graphs, i.e. graphs without multiple edges.)

The chromatic number $\gamma(G)$ of G is the smallest k for which G has a k-coloring.

A clique K in G is a subset of vertices such that any two vertices in K are adjacent in G. A clique K is maximal if there is no clique K' in G which strictly contains K.

Given a subset A of X, $\langle A \rangle$ will denote the subgraph spanned by A : its edges are those edges of G with both endpoints in A. The *degree* of a vertex x in G is the number of edges in G which are adjacent to x.

Let $S_1, S_2, ..., S_k$ define a k-coloring of G; s_i will denote the cardinality of S_i . We assume that no vertex in G belongs to more than l maximal cliques $(l \ge 2)$. If l = 1, each connected component G' of G is a clique.

Proposition 3 : The degrees in the subgraph $\langle S_i \cup S_j \rangle$ are at most *l* for any *i*, *j*.

Proof: Assume a vertex x in S_i is adjacent to p > l vertices $x_1, x_2, ..., x_p$ in S_j ; any two of these vertices are nonadjacent, so they cannot belong to the same clique. Hence the maximal cliques K_i containing x and x_i are distinct (i = 1, ..., p) which is a contradiction.

Proposition 4 : Let $S'_i \subset S_i, S'_j \subset S_j$ define a connected component $G' = \langle S'_i \cup S'_j \rangle$ of $\langle S_i \cup S_j \rangle$; then $|s'_j - s'_i| \leq (l-2) \min(s'_i, s'_j) + 1$.

Proof : Suppose $s'_i = p$ and $s'_j > (l-1)p + 1$; since G' is bipartite, it has at most $l \cdot p$ edges (no degree exceeds l); however G' has more than $p + (l-1)p + 1 = l \cdot p + 1$ vertices, hence it cannot be connected, so $s'_i \leq (l-1)p + 1$ and the proposition follows.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

Proposition 5 : Given a k-coloring $S_1, S_2, ..., S_k$ of a graph G where no vertex belongs to more than l maximal cliques, any two subsets S_i, S_j with $s_j > (l-1)s_i + 1$ may be replaced by two subsets \bar{S}_i, \bar{S}_j satisfying

$$\left|\overline{s}_{j}-\overline{s}_{i}\right| \leq (l-2)\min\left(\overline{s}_{i},\overline{s}_{j}\right)+1$$

Proof: Let $s_j = s_i + K$ with $K > (l-2)s_i + 1$; then $G' = \langle S_i \cup S_j \rangle$ is not connected and there is a connected component $\langle S'_i \cup S'_j \rangle$ of G'with $s'_j = s'_i + K'$ where $0 < K' \leq (l-2)s'_i + 1 \leq (l-2)s_i + 1 < K$.

By interchanging the vertices of S'_i and S'_j we obtain two subsets \bar{S}_i and \bar{S}_j of nonadjacent vertices.

They satisfy :

$$s_i = s_j - K < \bar{s}_j = s_j - K' < s_j$$
$$s_i < s_i + K' = s_i < s_i + K = s_j$$

Hence $|\overline{s}_j - \overline{s}_i| < K = |s_j - s_i|$.

If $|\bar{s}_j - \bar{s}_i| > (l-2) \min(\bar{s}_i, \bar{s}_j) + 1 > K$ the interchange procedure may be reiterated and finally we will obtain two subsets \bar{S}_i, \bar{S}_j satisfying

 $|\overline{s}_j - \overline{s}_i| \leq (l-2) \min(\overline{s}_i, \overline{s}_j) + 1.$

Quite similarly to the case of edge-colorings, we say that a sequence $(s_1, s_2, ..., s_k)$ with $s_1 \ge s_2 \ge ... \ge s_k$ is color-feasible in G if there exists a k-coloring $S_1, S_2, ..., S_k$ of G where S_i has cardinality $s_i (i = 1, ..., k)$.

According to Proposition 5, let $S = (s_1, s_2, ..., s_k)$ be color-feasible in G; if $S' = (s'_1, s'_2, ..., s'_k)$ is any sequence obtained from S by interchanges between subsets S_i, S_j with $|s_j - s_i| > (l-2) \min(s_i, s_j) + 1$, then S' is also color-feasible.

In particular, by making successive interchanges, we obtain :

Proposition 6 : Let G be a graph with chromatic number $\gamma(G)$ and where no vertex belongs to more than l maximal cliques ; then for any $k \ge \gamma(G)$, there exists a color-feasible sequence $(s_1, s_2, ..., s_k)$ with $s_1 \le (l-1)s_k + 1$.

We conclude this note with a few remarks :

REMARK 1: Proposition 6 should be related to a theorem of Hajnal and Szemerédi [3]: For any graph G with maximum degree h, there exists a color-feasible sequence $(s_1, s_2, ..., s_{h+1})$, with $s_1 \leq s_{h+1} + 1$.

In other words, if h + 1 colors are to be used for the vertices of G, then it is always possible to find an (h + 1) — coloring where all cardinalities of the S's are within 1.

nº mars 1974, R-1.

D. DE WERRA

However if less than h + 1 colors may be used, then it is not always possible to do so. As an exemple consider graph G_1 with 4 vertices u, v, w, x and 3 edges (u, v), (u, w), (u, x); the only way of coloring its vertices with 2 < h + 1 = 4 colors is $S_1 = \{v, w, x\}, S_2 = \{u\}$ and so we have $s_1 - s_2 = 3 - 1 = (l - 2)s_2 + 1 = 1 + 1 > 1$ since u belongs to l = 3 maximal cliques.

REMARK 2 : It is well known that an edge coloring problem in G may be reduced to a vertex coloring problem in a graph G' whose vertices are the edges of G : any two adjacent edges in G' are represented by adjacent vertices in G' and there exists in G' a family F of cliques such that :

a) each pair of adjacent vertices belongs to exactly one clique of F;

b) each vertex belongs to at most 2 cliques of F (F contains all maximal cliques of G' which are not normal triangles (4, p. 390]).

Thus any subset S of vertices in G' with $|S \cap K| \leq 1$ for any clique K of F represents a subset of nonadjacent edges in G.

It is thus possible to consider that the only « maximal » cliques of G' are those in F; so l = 2 and it follows from Proposition 5 that interchanges can be made between S_i and S_j whenever $|s_j - s_i| > 1$. This means of course that Propositions 1 and 2 are valid.

REMARK 3 : One could think of deducing the result of Hajnal and Szemerédi from Proposition 6 in the following way : if for any graph G with maximum degree h it is possible to introduce some edges in such a way that

a) the maximum degree is still h

b) each vertex belongs to at most 2 maximum cliques of the new graph, then obviously (since $\gamma(G) \leq h + 1$) it is possible to find an (h + 1)-coloring $S_1, ..., S_k$ with $s_1 - s_k \leq 1$.

Unfortunately, this is not true as is shown by considering graph G_2 with vertices $x_1, x_2, x_3, y_1, y_2, y_3$ and edges $(x_i, y_j)i, j = 1, 2, 3$; each vertex belongs to 3 maximal cliques and the introduction of any supplementary edge increases the maximum degree.

REMARK 4 : Finally Proposition 6 may be formulated in terms of hypergraphs (notions which are not defined here can be found in [4]); we want to color the edges of a hypergraph H in such a way that no 2 edges E_i , E_j with $E_i \cap E_j \neq \emptyset$ are of the same color. Now l is the rank of H i.e.

$$r(H) = \max_i |E_i| = l$$

and let q(H) be the minimum number of colors required to color the edges of H; then for any $k \ge q(H)$ there exists a k-edge-coloring $S_1, ..., S_k$ of Hwith $|s_i - s_j| \le (r(H) - 2) \min(s_i, s_j) + 1$.

REFERENCES

- [1] FOLKMAN J. and FULKERSON D. R., *Edge colorings in bipartite graphs*, in : Combinatorial Mathematics and its applications (University of North Carolina Press, Chapel Hill, 1969).
- [2] De WERRA D., *Equitable Colorations of Graphs*, Revue française d'Informatique et de Recherche Opérationnelle, R-3, 1971, p. 3-8.
- [3] HAJNAL A. and SZEMZRÉDI E., Proof of a conjecture of P. Erdös in : Combinatorial Theory and its applications, Balatonfüred, (Erdös, Rényi, V.T. Sos, éd.), North Holland, Amsterdam, 1970, p. 601-623.
- [4] BERGE C., Graphes et hypergraphes, Paris, Dunod, 1970.

nº mars 1974, R-1.