
REVUE FRANÇAISE D’AUTOMATIQUE INFORMATIQUE
RECHERCHE OPÉRATIONNELLE. INFORMATIQUE THÉORIQUE

G. LONGO

M. VENTURINI ZILLI
Complexity of theorem-proving procedures
: some general properties
Revue française d’automatique informatique recherche opérationnelle.
Informatique théorique, tome 8, no R3 (1974), p. 5-18
<http://www.numdam.org/item?id=ITA_1974__8_3_5_0>

© AFCET, 1974, tous droits réservés.

L’accès aux archives de la revue « Revue française d’automatique informa-
tique recherche opérationnelle. Informatique théorique » implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1974__8_3_5_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R-O.
(8e année, R-3, 1974, p. 5 à 18)

GOMPLEXITY
OF THEOREM-PROVING PROCEDURES 0):

SOME GENERAL PROPERTIES

par G. LONGO (*) et M. VENTURINI ZILLI (**)

Communicated by G. AUSIELLO

Abstract. — Theorem-proving procedures are considérée as a family of partial recursive
fonctions satisfying some axioms which express the properties of soundness and of decidability
for a solvable class of formulas including ail propositions, i.e. ground sentences, and an infinité
class of non ground sentences. By using whatever complexity, measure satisfying Blurn 's axioms
it is proved that such a family of functions is n^complete ; contains « difficult » proof-procedures ;
is such that every its éléments has some programs having the « oscillation property » ; does not
contain a « best » proof-procedure. Moreover a notion of approximation is defined according to
which the set of ail theorems of a first-order theory is approximable.

I. INTRODUCTION

In many existing papers complexity-comparisons between some theorem-
proving procedures can be found. But what it is meant by a theorenvproving
procedure? Usually it is meant a family of programs for Computing a
0-1 partial recursive function taking value « 1 » only on theorems of a first-
order theory. Hence comparisons concern families of programs, families
which sometimes contain just one program. Moreover several criteria are
used for the évaluation of complexity : most of them are based on an
arbitrary set of theorems used as a test set ; some suit particular procedures
(as r-m-size in [6]). It is worthnoting that usually the chosen criterium is
not applied on what has been generated by a theorem-proving procedure, but

(*) ISI, Université di Pisa.
(**) I.A.C.-C.N.R., Roma.
(1) Work carried out at IAC within the project of mathematical informaties.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle n° déc. 1974, R-3.

6 G. LONGO ET M. VENTURINI ZILLI

on proofs « cleaned » in some way, as it has been noted in [8] where a
distinction is proposed between complexity and difficulty.

The variety of approaches and criteria seem to require a sufficiently
gênerai and adequate approach. What we think useful to this aim is to
have a formai notion of theorem-proving procedure and to fixe for it a rea-
sönable class of complexity measures, where « complexity » has the intended
meaning of « difficulty » (as in [8]).

In [8] various trade-off phenomena concerning efficiency of resolution
stratégies have been examined : the existence of unavoidable oscillating
behaviours clearly turns out and some notions of best proof-procedures are
proposed and conjectured to be realistic.

The axiomatic approach proposed in [4] is, from a certain point of
view, very gênerai : in fact it just requires that the Turing machines repre-
senting the proof-procedures stop on theorems only ; on the other hand the
results in [4] concern Herbrand proof-procedures.

2, AXIOMS

If we think of programs for Herbrand or resolution proof-procedures
(from which most of the known theorem-proving procedures dérive), we see
that they « stop » also on some (infinitely many) closed formulas which are
non-theorems and which include all false propositions (i.e. false ground
sentences).

Hence we claim that properties that axioms for theorem-proving proce-
dures should capture are :

1) Soundness.

2) Convergence at least on the set of all propositions {Po).

3) To be a décision procedure for some class of formulas which, besides
Po, contains infinitely many theorems and infinitely many non-theorems.
Such an r.e. set of formulas will be called solvable.

Then given an enumeration of all closed well-formed formulas of first-
order predicate calculus (Pi), let x, y, z, ... vary on such an enumerated set
and T be the set of all code numbers for theorems of Pv

Let (F be the set of partial recursive functions p taking values 0 and 1
such that :

Ax) p(x) = 1 => xe T , p{x) = 0 =>x e CT
A2) Dp = {x\p(x) = 0} 3 ? 0 0 and Tp = { x \p(x) = 1 } => P0 1

A) Dp - P o o and Tp - P0l are both infinité

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

COMPLEXITY OF THEOREM-PROVING PROCEDURES 7

where P01 is the set of tautologies of Po and Poo = Po — P01 ; Dp u Tp is
what we call solvable class.

From now on we consider ïF as the set of functions computed by theorem-
proving programs : then by a proof-procedure we mean each function of (f.

It is worthnoting that convergence on non-theorems is a relevant property
of a proof-procedure for at least two reasons : i) a sound négative answer
on a non-theorem is an information which is not less important or less
useful than a sound positive answer on a theorem; it) it is reasonable to
suppose that there is a connection between the complexity for obtaining
proofs and the complexity for recognizing non-theorems. In fact, concerning
Herbrand and resolution proof-procedures, it can be shown that if a program
of theirs accepts a theorem with a certain complexity then a non-theorem
strictly related to the accepted theorem is rejected with less than or nearly
the same complexity. Let us call oscillation property such a property. (On
the other hand if a program of either Herbrand or resolution proof procedure
rejects a non-theorem with a certain complexity then it is easy to obtain
a theorem from that non-theorem accepted with a complexity not exceeding
the complexity of the non-theorem. This dépends on the fact that all those
programs reject a non-theorem after having exhausted all the work they
can do on that formula.)

3, OSCILLATION PROPERTY FOR HERBRAND
AND RESOLUTION PROOF-PROCEDURES

Suppose that a program of a resolution strategy succeeded in proving y e T.
Let S be the uncodified set of clauses corresponding to y, Consider the
réfutation tree generated by the program applied to y. Construct a non-
theorem x in the following way :

STEP1. Starting from the bottom rename only one of the two leterals
giving D by a predicate symbol not occurring in S and generalize it by
putting a variable as one of its arguments if it has no variable.

STEP2. Go one level up and make ground by instantiation the comple-
mentary pair of literals resolved upon.

STEP3. Keep the renaming already done, use constants not already
used and go to step 2.

STEP4. Let x be the code number for the set of clauses obtained taking
the leaves of the tree modified by the preceding steps.

END

n° décembre 1974, R-3.

G. LONGO ET M. VENTURINI ZILLI

EXAMPLE :

2. Pjx^e.x^ _
3. P(x2, x4, xs)P{xu xS9 x6)i

>(x3, x4, x6)
4. P[xu x29 x3)P(x3, x4i x6)P{xl9 x5, x6)

L5. P{xl9a9e)

2.v P(xu e9 x^ 3. .P(x2, x4, xs)P(xl9 xS9 x6)P(x3, xA9 x6)
ƒ / b b e f e f c c c

• P{xug(xx\e)
b b

a e a c c c d a e

3. P(b,b,e)P(f,e,f)P(c,c,c)

5. Fifo, a, e)
L6. P(f,e9f)

Then the considered program applied to x cannot add more resolvents
to those included in the modified tree and then it works on x in an exhaustive
way without obtaining • and without increasing complexity, if, for instance,
as a complexity measure we define the number of resolvents or computation
time etc.. Hence such a program vérifies the oscillation property.

A similar fact also holds for programs of Herbrand proof procedures. In
fact suppose that one of those programs succeded in proving y e T9 that

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

COMPLEXITY OF THEOREM-PRO VING PROCEDURES 9

is it constructed a set of ground clauses containing a contradiction. Then
obtain a non-theorem x in the following way :

STEPL Consider the subset H's of the Herbrand universe Hs used by
the program for obtaining a contradiction and make ground in S all terms
containing functions by substituting variables inside them with some constants
of H's and put constants of #5 in place of constants of Hs — Hf

s.

STEP2. Rename by a predicate symbol not occurring in S only one of
the two literals of the contradictory pair and generalize it substituting one
of its arguments with a variable.

STEP3. Let x be the code number of the set of clauses of S modified by
the preceding steps.

END

In this case it is easy to see that there exists an increasing total recursive
function ƒ such that the considered program applied on x works in an
exhaustive way with complexity /-bounded by the complexity needed for
proving y. Hence we may say that such a program vérifies the /-oscillation
property.

EXAMPLE :

~s] P(y,f(g(z)))
lQ(b)R(x)

Hs={a,bJ{g(a)),f{g(b)\„.}

P(a, a) A P(a, f(g(a))) A Q(b)R(a) A with a/x, a/y, a/z
A P{a, a) A P(ö, f{g(b))) A QJb)R(a) A with a/x, a/y, b/z
A P(a, a) A P(b, f{g(b))) A Q(b)R(a) A with a/x9 b/y, bjz
A P(a, b) A P(at f(g(a))) A Q{b)R(b) A with b/x9 a/y, a/z
A P{a, b) A P{b, f{g{a))) A Q(b)R{b) A with b/x, b/y, a/z
A P(a, b) A F{b,f(g{b))) A Q(b)R(P) A with b/x, b/y, b/z
AP(a,f(g(a)))AP(a,f(g(a)))AQ(b)R(f(g(a))) with f(g(a))/x,a/y,a/z

H>s={a,b,f(g(a))}

~S<\ P(y,f(g(a)))
L G(b)R{x)

Hs, = {a,b,f(g(a))}

The informai notion of complexity we used so far mainly refers to the
total number either of resolvents or of instances obtained from a set of
clauses, that is, as we already mentioned, it refers to a difficulty measure as
time or the total number of steps.

n° décembre 1974, R-3.

10 G. LONGO ET M. VENTURINI ZILLI

In the sequel, as a complexity measure we assume any measure satisfying
Blum's axioms [2], and if {<pt }ieN is an acceptable Gödel numbering of all
partial recursive fonctions, { <I> t} ieN will be the corresponding set of measure
functions(1).

We now remark that for any complexity measure and for any function
p e (T, there are some of its programs such that for every y there exists
x e Dp — Poo, x ^ y and x is rejected with a complexity not exceeding the
complexity for accepting y (i.e. those programs have the oscillation property).

In fact let's fitst suppose that we are given an enumeration of all closed
well formed formulas of predicate calculus ; then, given any /?e(f, let Tp be
the range of f, Dp — Poo be the range of d and Poo the range of a, with t,
d and a one-one total recursive fonctions. Suppose also that TpvDp has
been enumerated in the following way : compute d(0% rf(l)..., put t(Q) in
place 2f(0) and a(0) in 3 f (0); continue to compute d(m\ d(m + 1)..., put
t{n) in place 2 « 0) + " + '(n) anda(«) in place 3 r (0)+ - +'<">."

More formally Tp u D = { \l9 Ç2, ... } with t{x) = %} iSj = 2t(0)+-~ + t{x)

and a(x) = %k iff k = 3«°>+••• + '<*>. Given such a listing of Tp KJDP a pro-
gram q>(for Computing p is the following : let y G N

STEPL Enumerate r p uZ) p as before : if 3 j s.t. y = ^ go to step 2
with n = 0, diverge otherwise.

STEP2. Hj = V(0)+• • •+ t(n) give output 1 ; if/ < 2 t(0)+• • •+ t{n) give output 0 ;
if y >2 t (0) + - + t (n) go tos t ep3 .

STEP3. Increase n by 1 and go to step 2.
END.

This program wbrks like enumeration theorem proving procedures : but,
instead of enumerating only theorems, it can also recognize, by the same
technique, a class of non-theorems. Moreover (almost) every y e T9 y = %j is
« preceded » by some non ground x e CT, x = ^ i.e. h < j , with x > y :
in fact, since 2 t (0) + ' " + t(n) - 2n > t(n) (almost) always and, for y = t(n)
(i.e. / = 2 t (0) +"•+ Hn)) and k < j , there are at most 2n %k G T U POO, then there
exist some Çfc = x e Dp - Poo s.t. h < j and x = d(m) > t{n) = j .

Therefore the « amount of work » (the complexity) needed for Computing
q>i{y) includes the amount of work needed for Computing cp((x).

(1) Blum's axioms : 1) <P((x) 1 <*• O,(x) i
2) Vi,x,y 0t(x) = y is decidable.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

COMPLEXITY OF THEOREM-PROVING PROCEDURES 11

4. UNSOLVABILITY OF 3*

In this paragraph we briefly present a few facts which teil us where the
set Q(T (of all indices for functions in (T) is located in the Kleene-Mostowski
hierarchy (i.e. its degree of unsolvability) and that Q(T can be neither recur-
sively enumerated nor recursively « represented ».

Lemma 1. Vx^peS such thatp(x) j .

Proof Lotpo G (T and define

ƒ 0 if y = x
\Po(y) otherwise,

1 if y = x

i otherwise

then/?x e ÎF iff x $ T, emdp2 eSiïïxeT.
Q.E.D.
Calling, as usual, a représentation of a set A of functions every set B <= QA

such that V ƒ G A 3i G B n Q {ƒ }, we have :

Teorem 2 : A) There is no r.e. représentation of 1T.
B) Q(T is aITrcomplete set.

Proof. A) Supposing the contrary, for all JC we may compute q>it(x) by
a dovetailing technique on i = 1, 2,... Then by lemma 1 we could décide Pv

Proof. B) Q$e U2 can be seen, using TarsknKuratowski algorithm, from

= 1 =>xeT) A (q>£(x) = 0 =>x
A (x G JP01 => x e Tv)
A (xeP00=> xe D%)
A 3y{y> x A yeT^ - i>01)
A 3z(z > x A z e D Ç f - P o o)

A (9 i W i o 9 ^) 6 (0 , 1 }))

and from {i\W(infinité } ^ m fiïT.

Q.E.D.

n° décembre 1974, R-3.

12 G. LONGO ET M, VENTURINI ZILLI

5. DIFFICULT PROOF-PROCEDURES

Let R be the set of total recursive functions and { Of } i e N any fixed
complexity measure.

Lemma 3. V ƒ e R, VL infinité r.e. set, L # N, 3g, 0 - 1 valued partial
recursive function, such that G = {x\g{x) = 1} c=L, G infinité and

Proof. Let / be the semicharacteristic function of L. Only one of the
following cases holds :

i) V* e Q {/} VxO^x) > ƒ (x) and then the lemma is true.

U) 3keQ{l} 3xOk(x) < ƒ (x). Then define

j - x otherwise.

Obviously V/Vx rffcJ(x) = 0 and a resuit in [1] easily gives, by a padding
technique, that 3s e R, with s(kj) e Q { Jfci} and s{kj) >j for ail j , and
3r G 7?, with r depending effectively on k and r(x, ƒ) > y, such that

x) < f(x) ~<I>s{kj)(x) ^ r(x, /(x))).

Therefore :

(3.1) V/ 3x G L s.t. (ps(M)(x) = 0 and Os(k j}(x) < r(x, ƒ (x)).

Moreover, since L # iV,

(3.2) 3z3/0 s.t. V/, ƒ > i0 i # y => q>s(k,i)(̂) ^ 9S(*.j)t4

that is {<ps{Jk,0 }ieiV is a set of programs for infinitely many distinct functions.

Construct now (see also a known technique for a resuit in [10])

f 1 — (p^x) if 3/ ^ x , i « not underlined »,
g(x) = <̂ s.t. ^.(x) ^ r(x, ƒ (x)) A /(x) - 1

L î otherwise

and when g(x) = 1 — ç^x) underline the corresponding L

Suppose now that u e O {g} ; if x < w it can be Ott(x) < r(x,f{x)).
When x ^ u and x € L, Ou(x) ^ r(x, ƒ (x)) holds only if an index i, i < M < x,
has been underlined in the computation of g(x), but this is possible only for u
values of x.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

COMPLEXITY OF THEOREM-PROVING PROCEDURES 13

Moreover, thanks to 3.1 and 3.2, each s(k,j) is underlined, soon or later,
during the construction of g, and almost all s(k,j) are underlined in cor-
respondence to an input x on which <ps(JU) assumes value zero (remember
that s(k, i) > i) : that is, since for any x at most one index is underlined and,
if it is an s(k,j) index, it is underlined only when x ^ s(kj) > j (Le. ƒ — x = 0).
Toghether with r(x, f(x)) > f(x) those facts give our thesis.

Q.E.D.

Lemma 4. Let zand ebes.t.^xç^x) = 0 = <pc(x);then

3teR3veR , v{x9y9z)

increasing with respect to y and z, s.t. :

1 if <ç>t(x) = 0 A <pj(x) = 0
0 if <Pe(*) = 0

Î otherwise

and Vx(q>l0 Jye)(x) = 1 => <t>t{U^(x) ^ v(xy O{(x), O^x)).

Proof. Define

f %ij,e)(x) i f ®t(x) = y A Hx) = z A <i>i(x) = °
P(i,j, e, x, y,z)= i A ^.(x) = 0

LU otherwise
00

and u(x, y, z) = 1 + max p(i, j , c, x, y, z). Then Vx

v{x, O-(x), O/x)) > Or(iJc)(x) if q>iaji„(x) = 1.

Q.E.D.
Next results in this paragraph show that for any solvable class there exists

a proof-procedure having all programs requiring an arbitrary amount of
« resource » for recognizing theorems and non-theorems in the solvable class.

Theorem 5. V/ie/? VM solvable class 3p e !T s.t. Tp = T n M and

00

Vx(x e Dp - Poo

Proof

Let q(x) = J]

otherwise

n° décembre 1974, R-3.

14 G. LONGO ET M. VENTURINI ZILLI

Take ƒ (x) — v{x, h{x\ Q>JQ(X)\ with v as in Lemma 4, L — M n C77 and
use Lemma 3 : there exist an r.e. infinité set G ci L and a partial recursive
fonction g s.t.

G = {x/g(x)=l} and V» e fl { g } Vx «,(*)>ƒ(*).

f 1 if X e M n 71

D e f ine />(*) = j 0 if x e ? o o u G
[î otherwise

then pe$ and, if 3i0 e O { />} such that 3x s Dp - Poo with <3>io(x) ^ h(x),
then, for e0 e Q { # } and f as in Lemma 4, t(io,jo, eo)eQ{g }° and

against the construction of g.
Q.E.D.

Theorem 6. VA eR VAf solvable class 3/? e fT s.t. Tp a T r\ M and
Z)p ci CT n M and

Vi e Q { p } Vx[(x G (Tp U Dp) - Po) => (*f(x) > *(*))]•

Proof. As for theorem 5 using Lemma 3 and 4 also for Z/ = T n M.
Q.E.D.

Notice that theorem 5 although weaker from a complexity point of view
concerns a complete proof procedure when M => T.

REMARK. At the end of paragraph 3 we showed that, for any p e$, there
exist some programs for p having the oscillation property.

More formally, since f : N -*N increasing implies f(x) > x, we have
shown that : V ƒ e R, f increasing, V/> G Ö* 3; e Q {p } s.t. Vy 3x 6 Dp - Poo,
x > y and <bj(x) < ƒ ($>j(y)). For any increasing ƒ G R let's call Hf the set of
all programs in Q(F which have the /-oscillation property : then Hf is a repré-
sentation of (T.

What we said in paragraph 3 about the oscillation property for Herbrand
and resolution programs (where, in the case of Herbrand programs, we
proved an /-oscillation property for a particular increasing ƒ e R) allows us
to point our interest on Hf and to consider the following corollary to theo-
rem 5 :

Corollary 7. V ƒ G R, f increasing, Vs eR MM solvable class, 3p e (F with

Tp = Tn M9Dp c= CT n M and Vi e Q {p } n Hf VxOf(x) > s(x).

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

COMPLEXITY OF THEOREM-PROVING PROCEDURES 15

Proof. Set h(x) = max f(s(z)) and use theorem 5 :

3p e (f, Dp c Poo u L, s.t. W e fi { /> } Vx e Z)p - i»oo*i(*) > M*)-
00

Let's now suppose that 3yeQ {p } r\ Hf s.t. 3y$>j(y) ^ s(y). Then, by

définition of Hf, 3xeDp-P00 s.t. Qj{x) ̂ f{Qj(y)) ^ f{s{y)) ^ h(x)
against the définition of p.

Q.E.D.
This means, among other things, that it is not significant to rely on a

finite test set of formulas for evaluating complexity of theorem-proving
programs.

6. NON OPHMAHTY

Ehrenfeucht and Rabin have shown (unpublished) that there is no
« perfect » Herbrand proof procedure : that is a procedure which stops on
x e T after having generated only a minimally contradictory set of instances
of x. In [3] it is shown, using the preceding result, that there is np best
Herbrand proof procedure, where best is called a procedure which terminâtes,
Vx e T, after having generated a number of instances of x which is less than
or equal to the number gererated by any other Herbrand proof procedure
and, moreover, 3x e T on which this number is strictly less than the number
generated by any other Herbrand proof procedure.

Since the approach proposed in this paper notes the importance of négative
answers a proof procedure may give, and the notion of irrelevancy is not
reasonably definable for non-theorems, the above results cannot be extended
to be compatible with our approach.

Then defining :

1) p G (F is stronger than pf e (F iff D'p <= Dp and Tp <= Tp.
2) p0 e (T is strongest iff there is no stronger/? G (F, we have :

Theorem 8. There is no strongest proof procedure.

Proof. Let poe$ be the strongest, then by Lemma 1 a stronger pe(T
can be defined.

Q.E.D

3) Let ƒ e R, i e QïTis no worse by f thany* e OïTiff

n° décembre 1974, R-3.

16 G. LONGO ET M, VENTURINI ZILLI

4) p e 0* is better than p' e ïT iff 3 ƒ e R V/ e Q { p' }

3ieQ {p} i is no worse by ƒ than j .

5) p0 is *esr iff there is no better pe(F.

Corollary 9. There is no best proof-procedure.

Proof Since the best should be the strongest.
Q.E.D.

7. APPROXIMATION

On a computer a program for theorem-proving procedures runs within a
bounded amount of « resource » (time, space, etc.) : then, given a program
i € Q(T and a total measure function (clock, ...) <bj e { $; }ieN, what is actually
computed may be written :

|̂ i otherwise

and the following recursive sets are defined :

Ai} = { x/<psiiJ)(x) = 1 }

What one would expect is, informally, to approximate, in some way, the
set T of theorems by the above recursive sets. This problem may be so
formulated :

Def (Meyer, Lynch). Density of a r.e. set A is

dens (A) - lim - [{ 0?...? n - 1 } n A\ if it exists.

Def Given i G fî(T and ^ 6 { ̂ } n R, the set T£ of codified theorems of
a first-order theory £ is ij-approximable iff dens (Atj u .5^) = 1.

Now, we need to refer to the theory £, because, as it is well known [11],
the r.e. sets of theorems may stay on different m-degrees including the
complete w-degree while excluding the w-degree of simple sets. Moreover
there exist [7] créative sets which are not approximable according to the
following définition :

Def (Meyer, Lynch). A r.e. set E is approximable iff 3 A, 3£ recursive
sets s.t. A c E, B c CE and dens (A u B) = 1.

Let's first remark that a set is approximable iff it is //-approximable for
some /and j (<= obvious; => take a function which is always the maximum

Revue Française d'Automatique^ Informatique et Recherche Opérationnelle

COMPLEXITY OF THEOREM-PRO VING PROCEDURES 17

of the complexity of the characteristic functions of the recursive approxima-
ting sets : this will be the desired clock...).

Hence our problem is whether, for a given C, rcis approximable or no t.
Def A ~ B ifF 3a recursive permutation s.t. A = <J(B).

Lemma 10. Vr, 0 < r = — < 1 V£ r.e. not co-isolated (Le. neither co-
n

finite nor simple) 3Z>, D = E, s.t. dens (D) = r and D is approximable.

Proof. Let E be r.e., ƒ e R increasing s.t. lim -Tf~\ — 0 aiM* 0 < m ^ /z.

Let Q be the set of the first m éléments of any interval [kn, (k 4- l)w[, with

keN \ dens (Q) = r = — and g is recursive.

Now if D = (g - {f(x)/xeN})Kj {f{x)/xeE} then D is r.e. and
dens {D) = dens (g) = r, because dens ({f(x)/x eN}) = 0.

Defining A = Q - { f(x)/x 6 N} and B = Cô - { ƒ(*)/* e iV }, we see
that A is recursive, A a D and dens (̂ 4) = r, while i? is recursive,

5 = C f i n C { / (x) / x e t f } = C(Qv{f(x)/xeN})
<=:C{Qu{f{x)/xeE})<z CD

and dens (B) = 1 — r.
Hence dens (i4 u 5) = 1.
Moreover :

i) £ < i D via ƒ : in fact if x e £ then ƒ (x) 6 Z> and if x $ E then ƒ (JC) $ D.
H) D < x E via a function # so defined :

jc i f

^} if y e 6 - { ƒ()/* e TV } v (3x ƒ (x) = j , A x e ^)
fc<3') otherwise

Where Wt a CE and Wv c E are infinité recursive sets (Eis not co-isolated)
enumerated in an increasing order by respetively q>̂ and <pv. Since g e R
and y ^ z => g(y) # gf(z) D = XE, that is [11] there exists (effectively)
a recursive permutation a s.t. D = cr(£).

Q.E.D.

Theorem 11. V£ first-order logic Vr 0 < r = — < 1 3t, effective one-one
n

enumeration of closed well fonned formulas of C s.t. dens (Tl) = r and 7*J
is approximable
n° décembre 1974, R-3.

18 G. LONGO ET M. VENTURINI ZILLI

Proof, Since T\ is not co-isolated5 whatever the effective one-one enume-
ration p is5 it is sufficient to set x = p o a with a as in Lemma 10.

Q.E.D.

REFERENCES

[1] AUSIELLO G., Complexity hounded universal fonctions, Conference Record of the
International Symposium on Theory of machines and Computations, Haifa, 1971.

[2] BLUM M., A machine independent theory of complexity of recursive fonctions,
JACM 14, 1967, pp. 322-336.

[3] BUNDY A., There is no bestproof procedure, ACM SIGART Newsletter, Dec. 1971,
pp. 6-7.

[4] COOK S, A., The complexity of theorem-proving procedures, III Annual Sympo-
sium on Theory of computation, Ohio, 1971, pp. 151-158.

[5] HAKTMANIS J. and HOPCROFT J., An overview of the theory of computationat
complexity, JACM 18, 1971, pp. 444-475.

[6] KOWALSKI R. and KUEHNER D., Linear resolution with sélection fonction, Artificial
Intelligence 2, 1971, pp. 227-260.

[7] LYNCH N.? Recursive approximation to the halting problem, Rep. of the Tufts
University, Medford, Masss., Jan. 1973, pp. 15.

[8] MELTZER B>, Prolegomena to a Theory of efficiency of proof procedures, in Artificial
Intelligence and Heuristic programs, American Elzevier, 1971, pp. 15-33.

[9] MEYER A. R., An open problem on créative sets, SIGACT News, April 1973, pp. 20.
[10] RABIN M. O., Degrees of difficulty of Computing a fonction and a partial ordering

of recursive sets, Tech, report n. 2, Jérusalem, 1960, pp. 18.
[11] ROGERS H., Theory of recursive fonctions and effective computability, McGraw

Hill, 1967, pp. 472.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle n° déc. 1974, R-3.

