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THE MINIMIZATION
OF BOOLEAN EXPRESSIONS (*)

by A. AIELLO, E. BURATTINI et A. MASSAROTTI (*)

Communicated by M. NIVAT

Summary. — According to the more recent theoretical resuhs the exact resolutions of a large
number of combinatorial problems are to be considérée/ practically unobtainable. In this work
starting from Johnson's approach to approximation algorithms we show that some good advan-
tages can be taken from reducibility among combinatorial problems. Minimization of Boolean
Expressions is demonstrated to be reducible to Set Co ver ing and consequently an already
known approximation algorithm for the latter is applied to the former. In the conclusions a
discussion is open about the prospects and limits of the proposed methodology.

1. INTRODUCTION

The increasing interest towards the development of an exhaustive theory
of the complexity of combinatorial problems, that is of a large class of
computational problems involving the détermination of properties of graphs,
integers, finite families of finite sets, boolean expressions, etc., is due to
the fact that they schematize practical problems which arise in very important
large areas of the social reality : economy, communications, transports,
electronics, computer science, and so on.

The first effort made by several authors was trying to classify the problems
or to define some hierarchy among them according to their computational
complexities. Within this ambit, the more remarkable results due to Cook [1],
Karp [3], Meyer and Stockmeyer [4] strongly suggest, although it is not
exactly proved, that a very large number of combinatorial problems will
remain intractable perpetually.

Therefore it appears sufficiently justified the research of algorithms able
to give approximate solutions even because the analysis of the behaviour
of these algorithms may introducé some further classification among those
problems which the classification of Karp considères all equally "hard".

(•) Received : May 1976.
(!) Laboratório di Cibernetica, Arco Felice, Naples, Italie.
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2. BASIC CONCEPTS

The concept which plays the leading rôle in the treatment of complexity
is that of reducibility among combinatorial problems. The following classical
définition of reducibility refers to the problems in terms of récognition
of languages :

a language L is reducible to Lo (L ce Lo) if there exists a polynomial-time-
bounded DTM (Deterministic Turing Machine) which couverts each string w
in the alphabet of L into a string w0 in the alphabet of Lo and w is in L if and
only ifw0 is in Lo.

A very remarkable resuit which is relevant to the concept of "reducibility"
is given by the well known theorem of Cook [1] :

IfLeNP then L oc Satisfiability,
which in simple words says that the still open question about the validity.
of the identity P = NP cornes down to ascertain wheather the Satisfiability
belongs to P or not.

So the reducibility among problems permits to define a wide équivalence
class (the class of NP-Complete Problems) whose éléments play the same
rôle as Satisfiability in Cook's theorem.

The studies made by Karp and successively those of Sahni [5] and
Ullman [7] have more and more enlarged this équivalence class which
constitutes the top of complexity for the NP-problems.

The "intractability" of NP, even if it appears demonstrated by a strong
circumstantial évidence, is still an open problem. But besides NP-problems
there exist some provably " intractable " problems in the hierarchy stated
by the computational complexity. On this subject, the resuit of Meyer and
Stockmeyer [4] related to extended regular expressions is remarkable in that
it states that the running time of a program for ascertain the emptiness of
languages generated by extended regular expressions increase more rapidly
than something as

2
2

2

for any finite number of 27s.

3. APPROXIMATE ALGORITHMS

Undoubtedly the main open problem in the theory of the computational
complexity is to ascertain whether P = NP is valid or not. This because
the very probably négative answer would implies the absolute impossibility
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of solving all the problems in a wide and important class by the aid of
today's computers. For this reason and since it seems that more problems are
being found, like that of the extended regular expressions, whose computa-
tional complexity is such as to discourage any realistic attempt of giving
computer programs for solving them, a certain interest arised about the
study of approximate algorithms. An approach particularly good in this
direction can be found in Johnson [2]. That work bases itself on the
observation that the most combinatorial problems can be formulated as
optimization problems and that an approximate algorithm for a problem
is defined as a method to yield one approximate solution among those
belonging to the set of permitted approximate solutions, when the input
is given.

Generally an approximate algorithm will use a certain number of heuristic
criteria for choosing which way, among those appearing to each step, seems
more likely to lead to the best approximate solution. Sometime it can happen
that more ways leading to solutions of different "goodness" can appear
equivalent for the heuristic in hand at certain steps during the computation.
Therefore, an approximate algorithm must provide some casual mechanism
of choice to resort to in the parity cases and this implies that more than
one solution may be "choosable" when iterating the computation for the
same input. Such solutions can have different "measures" so that an
"absolute performance" of an approximate algorithm can be defined either
as the average of these measures (average-case analysis) or as the measure
of the worst solutions (worst-case analysis). In the following we use the
latter kind of measure.

Before we proceed any further we need to recall briefly some parameters
already introduced by Johnson which will be adopted by us from now on.

Given an optimization problem p.
u* is the optimal measure relative to the input u :

u* = BEST{mp(x):xeSOLp(u)},

where BEST means MAX in maximization problems and MIN in minimization
problems, SOLp(u) is the finite set of "approximate solutions" relative to
the problem p and the input w, and mp(x) is a "measure" defined for all
possible approximate solutions ;

.V is an optimal solution if and only if
A* e SOLp(u) and mp(x) = u*.

A (u) is the performance of the algorithm Ap for the input u:

Ap(u) = WORST { mp(x): x e SOLp(u) and x is choosable by Ap on
the input u } ,

where WORST is the opposite of BEST.
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rp(Ap9 u) is the measure of the relative worst case behaviour

r(A U) = 1UÏ/AP(U) if

p(u)K lf BEST = MIN.

R (Ap)(n) is the overall worst case behaviour of Ap :

R (Ap)(n) = MAX { r(Ap, u) : u e INPUTp and \u\ < n },

where the problem size \u\ is the number of symbols required to describe u
in some standard notation, and INPUTp is the set of the possible inputs
to the problem p.

4. MINIMIZATION OF BOOLEAN EXPRESSIONS (MBE)

The problem called MBE is that of finding the least number of implicants
whose disjunction represents a boolean expression equivalent to that assigned.
In this paper we will suppose, although a complete generalization can be
done, that boolean functions are assigned in their normal disjunctive forms or,
equivalently, by giving their "on-set'"s, which are subsets of the hyper-
cube {0, 1 }".

Thereafter we will use lower case letters to indicate boolean functions and
the corresponding capital's to indicate their on-sets. So if we call ƒ the
assigned boolean function, F = {Pu ..., Pz } will indicate its on-set; hère
each P. is an ordered n-tuple of O's and l's. If gf is an implicant of ƒ we will
have, for the définition of implicants, Gf Ç= F. Any implicant can be represented
by an ordered /3-tuple of I's, O's and — l's where l's stay for not comple-
mented variables, — l's for those complemented and 0's for those "don't
care". MBE can be schematized as follow :

1. INPUTMBE = {F : F is a finite set {Pl9 . . ., Pz } of ordered n-tuples
ofO's and Y s } ;

2. SOLMBE(F) = 1 X ^ {g :g implies f}:\/gf++f>;
\ 9f*X J

3- mMBE(X)= \X\;

4. BEST = MIN.

It is immédiate to observe that it is sufficient to give an algorithm which,
on the same input of MBE, yields as an output the following table of the
implicants :

T = { (gf9 Gf) :gf-*fandGf={Pir..., Pt } is the on-set ofgf }
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in a polynomial-bounded running time, to reduce MBE to the following
pure Set Covering problem :

1. INPUTSC = { E = { St }t j : Vi, 3(gf9 Gf)eT such that St = Gf } ;

2. SOLSC(E) = I E ' Ç E : \ J S J
[^ SeE' SeE

3. msc(E')= \E'\;
4. BEST = MIN.

Since E is a finite family of finite set, the optimization problem which
it represents can be solved approximately but satisfactorily by means of the
following heuristic Johnson's algorithm AJ :

1. Set SUB = 0 ; UNCOV = \J S;N = \E\;SET(i) = Si9 1 < / < N;
SeE'

2. /ƒ UNCOV = 0 , halt and return SUB ;
3. Choose j < N such that \SET(j)\ is maximized;
4. Set SUB = SUB u Sjf- UNCOV = UNCOV - SET(j);

SET(i) = SET(i) - SET(j), l < i < N;
5. Go to 2.

Let us observe that, according to Johnson, in the worst case the above
algorithm requires running time t3 proportional to N . z . log N . z where N is
the number of implicants and from here on z = \F\ is the number of points
belonging to the on-set F.

It is very simple to get an approximate solution X for MBE out of the
output SUB of the algorithm, the table Tof the implicants and the observation
that

X = [ g f : (gp Gf) e l a n d 3 S t e S U B such that Gf = S t ]

is an approximate solution of MBE.
To complete the discussion about the reducibility of MBE to Set Covering

we propose the following algorithm AR which gives the table of the
implicants T on the input INPUTMBE in a running time proportional to z3.

1. Set VPt = Pt, 1 < ƒ < z; S = |>g2 z j ;
n s n

V\ = (Î7T?T7T)/ R = 0; VLG(r) = (0 0), 1 < r <, z2;
CG(r, k) = 0, 1 < r < z2 and 1 < k < z;

2. IJ all the pairs (/, /) were exhausted halt and return the pairs
[VLG{r);CG(r, 1), .'.'., CG(r, z)] for r = 1, . . . , / * ;

3. Choose a new pair (ij)e { 1, . . . , z }2 (such that \\VPt © VP}\ is less
thanS);

vol. 11, n° 1, 1977



80 A. AIELLO, E. BURATTINI, A. MASSAROTTI

4. Generale all the points VP belonging to the term représentée! by
VLG = VPt + VPj - VI ;

5. If there exists at least a point VP generaled at 4 such that VP ^ VPt

for each i, go to 2 ;
6. Set R = R + 1 ; VLG{R) = VLG and for each k = 1, . . . , z set

CG(R, k) = 1 if and only if a point VP equal to VPk was generaled at 4 ;
7. Go to 2.
Above the prefix V indicates vectors; VLG(r) is the corrispondent of gf

in the previous symbolism and containes the previously described ternary
form (ordered fl-tuples of O's, I's and — I's) of an implicant of ƒ; the
z-tuples CG{r, 1 ) , . . . , CG(r, z) teil us the on-set Gr

f of gff; VPt © VPj is
a vector whose coordinates are the sums modulus 2 of the coordinates
of Pt and Pj and | |F| | is the arithmetic sum of the coordinates of V.
So || VPt © VPjW represents the Hamming distance between Pt and Pj. In
the point 4 of the above algorithm the opérations are the usual vectorial ones.

At the point 3, consider the pairs (/, /) ordered as follow:
(1, 1). (1, 2) (1, .V). (2, 1) (/, Af), (/ + 1, 1) (N, N\

For what concerns the condition between brackets, although it evidently
improoves the algorithm, its effects cannot be shown by the worst-case
analysis we are adopting. From other side in this approach we have omitted
every trick which should have not affected the worst-case performance
of the algorithm. Furthermore in the practical application it may be necessary
some supplementary instructions, omitted here, which, for example, avoide
the génération of the same implicants more times as well as take in account
of the prime implicants which contain only one point.

It is very immédiate to observe that for a given z = \F\ the number of
implicants N, produced by the above algorithm, is upperly bounded by the
number z2 of choosable pairs at point 3. At point 4, standing the bound
on the distance between VPt and VP^ can be generated at most 25 = 2 Llog2 z-l < z
points VP. Therefore, taking into account also of point 5, the running time tR

of the given algorithm is upperly bounded by something proportional to z3.
Now we can give the running time tMBE of the global process, composed

by the algorithm of réduction AR and that of Johnson's AJ, and the
"goodness" RMBE of the solutions as functions of the size |INPUTMBE | = z:

W = IR + h = O(z3) + ü ( r J l o g r 3 ) = 6>(z3logz),

this because t3 = O(N . z . log N . z) and N = O (z2).
For what concerns RMBE it is evident that it cannot grow faster than Rsc,

that is :
RvlBI(z) < Rsc(: . \) = tf (log |_-| . |.V|) = O(logr).

where we use Johnson's result according to which Rsc(n) = O(\ogn).
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5. CONCLUSIONS

The main aim of this paper is to emphasize the fundamental role which
reducibility plays in the study of combinatorial problems not only when
we consider these in their classical forms but still when we try an approach
to the analysis of the approximate algorithms.

Before we gave an example in which for an TVT-problem an approximate
solving process was elaborated by combining a well-known approximate
algorithm, created for a quite different problem in the class A^P-complete,
and an algorithm for transforming appropriately the inputs of the given
problem. The "goodness" of the solutions given by the global computational
process and the "goodness" of the solutions given by the pre-existent
algorithm are of the same order. We think that such a metodology may be
extended to other cases too. For example, since the Clique is réductible
to the Node Cover and since each of them can be transformed into the
other by a simple complémentation of the graph they refer to, it should not
be too difficult to fmd a satisfactory approximate algorithm for the former,
starting from that given by Johnson for the latter.

Nevertheless we must observe that such a methodology has not a quite
gênerai applicability. Really it happen that, even if two problems are
reducible each other, when we describe them in terms of optimization
problems, the two sets of approximate solutions are incompatible. This is
the case when for example we consider Graph Coloring and Exact Cover.
In fact, Graph Coloring is reducible to Exact Cover but if we apply the
approximate algorithm elaborated for the latter to the former, we might have
solutions of the Graph Coloring such that, although the number of the
colors would be minimized, the guarantee of having for no pair of adjacent
nodes the same color could be lost. This because to approximate Exact
Cover implies to release the constrain prescribing the disjunction among the
sets of the covering given by the approximate solutions.

From there it follows evidently that further deepenings and extensions of
this methodology cannot leave a preliminary careful re-examination of the
primitive problems out of considération, as well as the practical conséquence
implied by manipulations of abstract formulations must be investigated.
The conséquence of such kind of analysis may yield remarkable upsetting
in the hierarchy of computational complexity of combinatorial problems.
For example, in the case of Travelling Salesman the suppression of the
vinculum which prevents the Salesman from passing more than once through
the same node, permits us to find (for the modified problem) a polynomial-
time-bounded algorithm (based essentially on the réduction to the Shortest
Path i. e. to a P-problem) which sometimes gives solutions which are better
than those optimal ones relative to the original problem. On the contrary,
the suppression of any condition on the length of the itinerary does not change
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at all the "intractability" of that problem when the previous vinculum is
held. This because, after ail, neglecting the length of the arcs we obtain the
still " intractable " problem of Hamiltonian Cycle. As regards this, it was
shown by Sahni et al. [6] that really the existence of an approximate algorithm
in this case would implies the validity of P = NP.

In conclusion we say that further efforts can surely be done in the field
of approximate algorithms for TVP-problems starting from the available
known algorithms and analyzing the mechanisms which in the spécifie cases
permit the reducibility among problems.
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