
RAIRO. INFORMATIQUE THÉORIQUE

I. H. SUDBOROUGH
Some remarks on multihead automata
RAIRO. Informatique théorique, tome 11, no 3 (1977), p. 181-195
<http://www.numdam.org/item?id=ITA_1977__11_3_181_0>

© AFCET, 1977, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1977__11_3_181_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
(vol. 11, n° 3, 1977 p. 181 à 195).

SOME REMARKS ON MULTIHEAD AUTOMATA(*)

by I. H. SUDBOROUGH (1)

Communicated by R. V. BOOK

Abstract. — Various relationships are described between families oflanguages defined by multihead
finite state automata and pushdown automata.The main resuit s are (1) a translational method for
bounding the complexity of multihead pda languages in terms of the complcxiiv of single head pda
languages, (2) a simulation algorithm which shows that nondeterministic pda with k heads are as
powerful as nondeterministic finite state automata with 2k heads, and (3) an improved hierarchical resuit
which shows that k + • 4 heads are better than k heads (forfinite state automata) even on languages over
a single letter alphabet.

INTRODUCTION

It is known that the family of languages recognized by multihead twoway
pushdown automata is identical to the family P-TIME oflanguages recognized
in polynomial time by deterministic multitape Turing machines [7]. It is also
known that the family oflanguages recognized by deterministic (nondeterminis-
tic) multihead two-way finite state automata is identical to the family
DLOG (NLOG) of languages recognized by deterministic (nondeterministic)
log (n)-tape bounded Turing machines [17]. It is not known whether or not P-
TIME = DLOG, P-TIME = NLOG, or DLOG = NLOG. These problems have
been investigated reeently in the literature [4-9,13,17,21, 22, 29, 30]. They can
be loosely interpreted in the following forms. Does adding an unbounded
auxiliary pushdown store increase the Computing power of a tape bounded
Turing machine ? Does allowing nondeterministic transitions increase the
Computing power of tape bounded Turing machines ?

It is known that every context-free language (i.e. nondeterministic one-way
pushdown automaton language) can be recognized by (1) a deterministic
multitape Turing machine in n2'81 steps [31], (2) a unit cost random access
machine (RAM) in n2 log n steps [32] and a deterministic multitape Turing

(*) This work is supportée in part by NSF Grant No. GJ-43228.
(*) Received, Aug. 1975 ; revised, Oct. 1976.
(*) Department of Computer Sciences, Technological Institute, Northwestern University,

Evanston, Illinois.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science, vol. 11, n° 3, 1977

182 I. H. SUDBOROUGH

machine within tape (log n)2 [25]. It is not known is these results are optimal. A
context-free language is known whose time or space complexity is the least upper
bound on the time or space complexity for the whole family of context-free
languages [14], For some special cases, better results are known ; the family of
linear context-free languages and the family of one counter languages are both
recognizable by deterministic Turing machines in time n2 [15, 24]. Two-way
nondeterministic one-head pushdown automata languages can be recognized in
space n2 and time n4 by deterministic Turing machines and time 0(n3) by RAM's
[1]. Two-way deterministic one-head pda languages can be recognized in space n
and time n2 log n by deterministic Turing machines [1] and in linear time by unit
cost RAM's [10].

The results described hère extend some of these complexity bounds for the case
of multihead automata. The main results are that (1) every nondeterministic one-
way /c-head pda language can be recognized by a deterministic Turing machine
in time n2m81k

9 and (2) every nondeterministic two-way 2/c-head finite state
automaton language can be recognized by a nondeterministic two-way /c-head
pda and, hence, by a deterministic multitape Turing machine in time n4* and by a
RAM in time 0(n3/c), (3) every nondeterministic two-way (one-way) /c-head finite
state automaton language can be recognized by a deterministic 2/c-head (/c-head)
pda and, hence, by a RAM in time 0(n2k) {0(nk)), and (4) that there are languages
over a single letter alphabet which are recognized by a nondeterministic
(deterministic) two-way (k + 4)-head finite state automaton but cannot be
recognized by any such automaton which k heads.

The reader is referred to [3, 11, 16-19] for formai définitions of multihead
automata, Turing machines, and random access machines. We assume that in
any transition of a multihead automaton only one of the heads is used to scan the
input tape and only that head may move to the right or to the left during that
transition. This means the set of states can be partitioned into collections of
states which "control" a particular head. (The reader is referred to [16] for
further details.) For any X in { D, N }, / in { 1, 2 }, and positive integer fe, let
lXFA(fc) (lXPDA(fe)) dénote the family of languages recognized by (one-way,
two-way) (deterministic, nondeterministic) finite state automata (pushdown
automata) with k read-only heads on the input tapei For the special case when
k = 1 we shall often omit the value 1. That is, the family 2NPDA (1) will be
denoted by 2NPDA. We shall say that a deterministic Turing machine
(deterministic random access machine) M accept s in time T[n) (accepts in
time 0(T(n)) if each input w accepted by M is accepted within T(\w\) steps (is
accepted within cT(|w|) steps, for some constant c > 0). A deterministic Turing
machine M with a two-way read-only input tape and a separate read-write
worktape accepts within tape L(n) if each input w accepted by M is accepted by a
computation in which M scans at most L (|w|) distinct cells on the worktape. For
X in { D, N } and any positive integer /c, let XSPACE(L(rc), k) dénote the family
of languages recognized by (deterministic, nondeterministic) L(n)-tape boun-

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

SOME REMARKS ON MULTIHEAD AUTOMATA 183

ded Turing machines with a k symbol tape alphabet. Thus
DLOG = IJ* DSPACE(log n, k) and NLOG = (Jfe NSPACE(log n, k). We
shall assume throughout these remarks that the tape bounded Turing machines
have a one-way infinité worktape and that they have the power to detect when
the two-way worktape head is scanning the leftmost square. (The effects of
various changes in the basic tape bounded Turing machine model in a restricted
worktape symbol alphabet environment are discussed in [27]). It is well known
that constant factors are not important for tape or time bounds on multitape
Turing machines [18]. Thus we shall not be concerned in gênerai with the base of
the logarithm in discussing log (n)-tape bounded Turing machines. For symbol
restricted models constant factors are relevant and, in this case, log (n) will be
used as notational shorthand for the bound [log2(n)J, where [x] dénotes the
greatest integer less than x. (We shall also use the notation [x 1 to dénote the least
integer greater than x, where x is a real number, and |w| to dénote the length of a
string w of symbols over some alphabet).

TRANSLATION FROM MULTIHEAD TO SINGLE HEAD PDA

Our first resuit is obtained by a translational technique basically similar to
those described in [4-6,12,13,19,29]. It would seem to differ from these earlier
translations mainly in that it allows relationships to be described between one-
way multihead automata classes.

Let A = A(1) be an alphabet. For i > 2, let A(0 be the set
{ {cl9 c2, . . ., ct) | c l5 c2, . . . , ̂ are in A }. Let b2, b39 b4, . . . be a countably
infinité set of symbols which are not éléments of (J A(I). For any a in A let ha be

the length preserving homomorphism defined by :

M f c i ' C 2 , • • •, ct)) = (cl9c2, . . ., ci9 a) a n d ha(bj) = bj9

for ail positive integers i and j and symbols cx, c2, . . . , ct in A. For any string
x = a1a2 . . . an of n symbols over A, any integer i > 2, and any string y over
the alphabet A(l~1] (J { b2 , . . ., bi_1 }, define the string g(x, i, y) by :

g(x, U y) = K^bihjy^hjy^ihjy)^ . . . h^yfoh^y).

Define the strings ƒ(/, x), for i > 1, recursively by :

AU x)=x
f[Ux) = g(x9i9J{i - l ,x)) , for i > 2.

For/c > 1 and integers il9 Ï2 , . . ., ifc,suchthatl < ij < |x|forl < j < /c,the
position P%\il9 i2, • • •, ik) off{k9 x) is defined as follows :

j (1 2) r ()
+ (ik - l)(\f(k - 1, x)| + 1), for k ^ 2.

vol. 11, n° 3, 1977.

184 I. H. SUDBOROUGH

It follows by induction P{x\i2, i2> • • • > h)ls equal to

h + £ (h - 1)(|/C/ - 1^)1 ,+ 1)-
j=2

It is claimed that the symbol at position P^(il9 2i2 — 1, . . . , 2ik — 1) of
f(k, x) is (a^, ai2, . . ., aik), if x = a1a2 • . • an where each a} is a symbol in À. For
k = 1 this is clearly the case, since P(x}(i) = i and the symbol at position i of
/ (l , x) = x = a ^ ••• «nisa f . For the inductive step, assume that the symbol
at position P^ih, 2i2 — 1, . . . , 2ik — 1) of f[k, x) is (afl, ai2, . . . , a^). By
définition

/(fc + l , x) =flf(x,fc + \J{Kx))

= hai(f(k,x))bk+1hai(f(k,x))bk+1 . . . han{f{Kx))bk+1han(f{Kx)).

Since

, 2i2 - 1, . . . , 2îk - 1) + (2i t+1 - 2)(\J[k, x)\

and \f(k, x)\ + 1 is the length of ha(f[k, x))bk+1, for any symbol a, the symbol at
position Q oîf(k + 1, x) is the symbol at position

Q' =

of ha.(f{k, x)), where 7 = ik + 1 . By the inductive hypothesis the symbol at
position Q' of/(/c, x) is (ah, ah, . . . , au). Therefore, the symbol at position Q' of
ha.(f{k, x)), where7 = ik+1, is (a^, ai2, ..., «tk+1)- This establishes the claim.

Since Q =

£
J = 2

to move from position Q to position Q' = P^(il9 i2, . . ., ij + 1, . . . , ik)
requires moving the head m = (\f(j — 1, x)| + 1) squares. It can easily be
observed that each substring of/(/c, x) whichdoes not contain occurrences of any
symbol bh for / > j , has eactly m symbols between successive occurrences of the
symbol bj. This property allows one to measure the proper distances in
movements of the head in the algorithm expressed in the proof of the following
theorem.

LEMMA 1 : Let k^2and let M be a nondeterministic (de terminis tic) one-way k-
head pushdown automaton. A nondeterministic (de termini s tic) one-way one-head
pushdown automaton M' can be effectively constructed such that x is recognized
by M if and only iff(k, x #) is recognized by M'.

Proof: M'is constructed to simulate on input/(/c, x #) a computation of M
on input x. (What M' does on input strings hot of the form/(/c, x #) is of no

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

SOME REMARKS ON MULTIHEAD AUTOMATA 185

concern.) M' will represent a configuration of M where heads 1,2, . . . , k are
scanning cells i2 , i2, • • •, h o n input x # , where # is the right endmarker, by
placing its head in position P%(il92i2 - 1, ...,2fk - 1). If
x # = a ^ • • • U„+I, where each af is an input symbol, for 1 < z < n, and
an+1 = # (the right endmarker), then M in this configuration would be
scanning the symbols ail9 aÎ2, . . . , aik with heads 1,2, . . ., k, respectively. As
previously observed, M'with its head at position P^l(i1, 2i2 — 1, . . ., 2ik — 1)
in/(/c, x #) will scan the symbol (ah, ah, . . ., a j . Thus M' has all the input
information on this one square that M has on the k squares its k heads scan.

It is sufficient to indicate how M'can simulate a move of one of the heads of M.
IfM has a transition that moves head ƒ to the right, for some 2 < j < fe, then M'
must move its head from position P%(i^, 2i2 — 1, . . ., 2f;- — 1, . . ., 2ik — 1)
to position P ^ (i l s 2i2 - 1, . . ., 2(/j + 1) - 1, . . ., 2ik - 1) on the input
/(/c, x #) . That is, as observed, M' must move its head to the right a distance
equal to twice the length oîf[j — 1, x #) in order to be in the proper position.
This may be dorie by simply (1) moving the head to the right to the first bj symbol
and adding a special symbol to the top of the pushdown store for each input
symbol passed, then (2) moving the head to the right one square for each special
symbol deleted from the pushdown store until all such special symbols are
deleted, and the (3) repeating steps (1) and (2) one additional time. That is, let
there be n symbols between each successive occurrence of the symbol bj in each
substring of/(/c, x #) which does not contain an occurrence of the symbol bu for
/ > j . Then steps (1) and (2) take the head from cell i of one of thesec' blocks" of
length n to cell n — i + 1 of the next such block to the right. Thus two
exécutions of steps (1) and (2) move the head from cell i of one such block to cell i
of the second süch block to the right. Since each such block in /(/c, x #) is of
length n = \f(j — 1, x #) | , the head has been moved by this process to the
correct position.

If M has a transition that moves head one to the right one square, then M'
need only move its head to the right one square. Thus, M' can with one head on
/(/c, x #) simulate M with its k heads on input x ; M' will accept/(/c, x #) if and
only if M enters an accepting state. Thus, M' accepts/(/c, x #) if and only if M
accepts x.

We observe that |/(/c, x #)\ < c |x|\ for some constant c which dœs not
depend upon x. That is, for any string x of length n, g(x, i, y) is of length
2n(\y\ + 1), for ail i > 1. Let D T I M E (7 ») dénote either the family of
languages recognized (1) in timeT(rc) by deterministic Turing machines, or (2) in
timeO(r(n))by deterministic RAM's.

THEOREM 1 : For any k > 2 and any nondecreasing function T(n) > n, if
INPDA(l) ç DTIME(T(n)), then lNPDA(k) ç DTlME(T(cn% for some
constant c.

Proof : Let M be a nondeterministic one-way /c-head pushdown automaton.
By Lemma 1 there is a nondeterministic one-way one-head pushdown

Vol. 11, n° 3, 1977.

186 I. H. SUDBOROUGH

automaton M'such that x is accepted by M if and only if/(/c, x #) is accepted by
M'. By hypothesis the latter question can be answered inO(T(|/(/c, x #)|) steps.
Since \f[k, x #) | < c |x|k, for some constante, andT(n) is nondecreasing, the
number of such steps is not greater than 0(T(c \x\k)) .Thus, one can décide whether
x is accepted by M by (1) generating f(k, x #) from x, and (2) using the given
algorithm to décide whether/(/c, x #) is accepted by M'. Step (1) requires at
most 0(|/(/c, x #)|) steps. Thus, at most 0(T(c \x\k)) steps are required for the
whole process.

In [31] Valiant has shown that context-free languages can be recognized in
n2 '81 steps by deterministic multitape Turing machines. In [32] it has been
shown that context-free languages can be recognized by random access machines
(RAM's) using the unit cost measure in 0(n2 log n) steps. Thus it follows from
Theorem 1, since 1NPDA(1) is the family of context-free languages, that every
lNPDA(/c) language can be recognized in n2m81k steps by a deterministic
multitape Turing machine and in 0(n2k\og n) steps by a unit cost RAM.

It is straightforward to modify Lemma 1 and Theorem 1 so that " one-way " is
replaced everywhere by "two-way". In fact, in this case many other suitable
transformations have previously been described [13, 19]. Thus from the fact
established in [1] that each 2NPDA(1) language is recognized by a random
access machine in 0(n3) steps and by a deterministic multitape Turing machine in
0(n4) steps we have an easy proof of the fact that each 2NPDA(/c) language is
recognized by a random access machine in 0(n3k) steps and by a deterministic
multitape Turing machine in 0(n4*) steps. Furthermore, the known fact that each
2DPDA(/c) language is recognized by a unit cost RAM in 0(nk) steps follows from
the proof of the case when k = 1 [10]. The proof for the case k = 1 is perhaps
easier to describe. This has been done in [3].

Lemma 1 and Theorem 1 may easily be restated for other classes of multihead
automata and other complexity measures. For example, it is easily modified for
the multihead stack automata of [20]. It may also be observed that given x one
may produce/(/c, x #) on an output tape without using more than log (|x|)
worktape cells with the multitape transducer of [21, 26]. Thus the réduction
from x to f(k, x #) is a log-tape réduction [21, 26].

For the multihead finite automata of [4,12,17,19,29] and the multihead one
counter automata of [15] the results need to be somewhat modified. That is, the
pushdown store is no longer available to measure the distance needed to obtain a
new position (as described in the proof of Lemma 1). Thus, for multihead finite
automata the statement of Lemma 1 would need to be revised so that the
automaton M' is (1) a one-head finite state automaton with an additional
counter (which is linear bounded), or (2) a two-head finite state automaton.
Similar revisions would need to be made for multihead one counter automata,
since the " special symbol ", described in the proof of Lemma 1, cannot be used
in this case.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

SOME REMARKS ON MULTIHEAD AUTOMATA 187

MULTIHEAD FINITE AUTOMATA VERSUS MULTIHEAD PDA

The next resuit indicates that adding an auxiliairy pushdown store does add
some additional Computing power to a /c-head finite state automaton. We show
that2NFA(2/c) c 2NPDA(£). It is known that 2DFA(k) ç 2DFA(k + 2) and
2DPDA(/c) 5 2DPDA(/c + 1) for k > 1 [19]. The same hierarchical results
have been established for the nondeterministic families [19, 27]. Combining
these facts with our resuit we may conclude that if for any k there is an mk such
that 2NPDA(/c) c 2NFA(mfc), then mk > 2k.

Our resuit is similar to an earlier resuit in the literature which states
that NSPACE(log2rn, t) ç 2NPDA [2]. However, there is no apparent method
to obtain our resuit from this earlier one. Nor does there seem to be a method
to obtain the earlier resuit from ours. The best relationships known between
the number of symbols in the worktape alphabet and the number of heads is
given by (1) , 2DFA(/c) ç DSPACE{\og2 n, 2k) [17, 27] and (2)
DSPACE(log2 n, 2k) ç 2DFA(/c + 3). (The second relationship is established
in this paper ; both relationships are also valid for nondeterministic families.)
Our resuit, for example, gives 2NFA(2) ç 2NPDA. To obtain this from
the above relationships would seem to require showing
NSPACE(log2 w, 4) ç 2NPDA. This would be a nontrivial extension of the
results in [2].

THEOREM 2 : For k > 1, 2NFA(2k) c 2NPDA(/c).

Proof : Let M be a nondeterministic two-way 2/c-head finite state automaton.
Let the set of states of M be partitioned into two sets Sx and S2 such that 5X is the
set of ail states which control one of the heads numbered one through k and S2 is
the set of ail states which control one of the heads numbered k + 1 through 2k.
(S2 is the set of ail states not in Sl.) We construct a nondeterministic two-way k-
head pushdown automaton PM which indirectly simulâtes M. We shall consider
the steps in a computation by M as being divided into two sets : those steps
in vol ving states in S1 and, secondly, those steps in vol ving states in S2. Clearly, in
gênerai, a computation will alternate between steps involving states in Sl and
steps involving states in S2. We shall assume, without any loss of generality, that
the initial state and each final state is in S1.

A séquence of states Po, Pl9 . . ., P2m, P2m+i is called a transition séquence if
(l)for 1 < i < m, P2i-i i s inS 2 , (2)P2m + 1 and, forO < i < m,P2i a r e in5 l 5

(3) Po is the initial state of M, and (4) P2m+1 is a final state of M. A transition
séquence Po, P1, . . . , P2m , P2m+1 is S ̂ consistent on the input string x if there
exists a séquence Io, Il9 ..., Im, where 70 is the initial position for heads
numbered 1 through /c, such that, for 0 < j < m, if M starts in state P2j with
heads 1 through k in position /,- then there exists a séquence of steps such that M
enters state P2j+ x (which is in S2) with heads 1 through k in position Ij+1 and M
will not have entered any state in S2 at any earlier step in the séquence. Likewise,

vol. 11, n° 3, 1977.

188 I. H. SUDBOROUGH

a transition séquence P o , Pl9 . . . , P2 m , P2m + 1
 i s S2-consistent on the input

string x if there exists a séquence / 0 , Ix, . . . , Im _ j , where ƒ 0 is the initial position
forheads/c + 1 through 2k, such that, for 0 < j < m, if M starts in state P 2 j + 1

with heads k + 1 through 2fe in position Ij9 then there is a séquence of steps such
that M enters state P 2 j + 2 (which is in 5X) with heads fc + 1 through 2fc in
position Ij+ x and M will not have entered any state in 5x at any earlier step in the
séquence. It follows from the définitions that there is a transition séquence which
is both ^-consistent and S2-consistent on the input string x if, and only if, x is
accepted by M.

The /c-head pushdown automaton PM will operate in two phases. Phase I
consists of writing an ^-consistent transition séquence on the pushdown store.
Phase II is to détermine whether the pushdown store contains an S2-consistent
transition séquence. Some of the details of the manner in which PM exécutes each
phase is described below :

Phase I : In this phase PM constructs on its pushdown store an ^-consistent
transition séquence. PM begins by nondeterministically selecting a position / for
its k heads and a final state s in S t of M. (The position / is selected by moving the k
heads into that position.) Since it is desired that the transition séquence appear in
order on the pushdown store, the éléments of the séquence are obtained in
reverse order. That is, a final state is at the bottom of the pushdown store and the
initial state is on top. PM writes the state s on the pushdown store and exécutes
the following steps, for s0 = 0 and Io = I :

(1) Among the set of all states sinS1 and head positions / such that M may in
one step move from state s with heads 1 through k in position I to state s0 with
heads 1 through k in position Io, PM chooses one such state s' and position 7'. (If
the set is empty, then PM stops without accepting the input. Since each of the
possible head positions investigated must be obtained by moving a single head
either right of left from position ƒ0, PM has no difficulty keeping track of its
original head position Io during this investigation.) PM then moves its k heads to
position / ' , sets Io to ƒ', and sets s0 to s'. If the new s0 is the initial state of M and
ƒ0 is the initial position for the heads 1 through k of M, then PM may choose next
to enter Phase II. Otherwise, PM nondeterministically chooses whether to
exécute step (1) or step (2) of Phase I.

(2) PM writes the state s0 on its pushdown store, chooses nondeterministically
a state s in S2, writes s on the pushdown store, and exécutes step (1) of Phase I
with s0 = s.

Phase II. In this phase PM détermines whether the transition séquence which
appears in the pushdown store is S2-consistent. At the beginning of this phase s0

is set to the initial state of M and ƒ 0 is set to the initial position for heads fc + 1
through 2fc of M. PM places its fc heads in position Io and exécutes the following
steps :

(1) PM deletes the top two state symbols, say sx and s2, from the pushdown
store. If sx ^ s0, then PM halts without accepting the input string. Otherwise, if

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

SOME REMARKS ON MULTIHEAD AUTOMATA 189

Si = s0, then PM sets s0 to s2. If the pushdown store is empty, then PM halts and
accepts the input. Otherwise, PM exécutes next step (2) of Phase IL

(2) PM chooses nondeterministically a state 5 and position / such that M may
in one step move from state s0 with heads k + 1 through 2/c in position /0 to state
5 and heads h 4- 1 through 2/c in position /. PM sets s0 to s and Io to / , moves its k
heads to position I, and, if s0 is in Sx, then PM exécutes next step (1) of Phase II.
Otherwise, if s0 is in S2, then PM re-executes step (2) of Phase II.

It follows that PM recognizes those, and only those, input strings x for which
there is an S^consistent and 52-consistent transition séquence. As indicated, this
is equivalent to the statement that PM recognizes x if, and only if, M accepts x.

It is not known whether 2DFA(2/c) ç 2DPDA(/c) is true for any value of
k > 1. We conjecture that 2DFA(2) ç 2DPDA(1) is false. A "hardest"
language L for the family 2DFA(2) is described later in these remarks which is in
2DPDA(1) if and only if 2DFA(2) ç= 2DPDA(1).

It follows from Theorem 2 and our observations on the time bounds for
recognizing multihead pda languages that 2NFA(2/c) is contained in the class of
languages recognized in time n4* by deterministic multitape Turing machines
and time 0(n3k) by random access machines. That is, each language in 2NFA(/c)
can be recognized in time n4[k/2] by a Turing machine and time 0(n3[k/2]) by a
RAM. These are improvements on earlier stated time bounds [15].

The next resuit gives an upper bound on the number of heads needed by a
deterministic two-way pda to simulate a nondeterministic two-way /c-head finite
state automaton. It is known that for each k there is an mk such that
2NPDA(/c) ç 2DPDA(mfc) [7]. Itisalso known that mfcneed not belargerthan
12/c + 1 [23]. The following resuit yields a smaller bound for the class 2NFA(fc).

THEOREM 3 : For k > 1, 2NFA(k) ç 2DPDA(2k).

Proof. Let M be a nondeterministic two-way /c-head finite automaton. We
construct a deterministic two-way 2/c-head pushdown automaton PM to
recognize those, and only those, strings recognized by M. PM opérâtes basically
by trying ail possible computations of M on the given input. (The algorithm is
similar to the depth first search algorithm for finding paths in a graph given on
pages 16-18 of [13]). The auxiliary store of PM is used to record the most recent
attempted computation of M. PM uses k of its heads to simulate a computation
of M and the other k heads to count the number of steps of M s computation
simulated. Since a computation by M may not terminate, it would appear that
the extra heads used for a counter are necessary in gênerai. The fact that k heads
are sufficient to detect nondetermination follows from the observation that there
are only erf distinct configurations of M on an input of length n, for some c > 0.
Thus if M recognizes a word x then there must be a computation which indicates
acceptance of x and does not repeat a configuration. Finally, it is straightforward
to implement with k heads on an input x a counter to represent numbers as large

vol. 11, n° 3, 1977.

190 I. H. SUDBOROUGH

as c \x\k, for any c > 0. In the following algorithm we shall refer to the number
represented by the position of heads k + 1 through 2k as " the counter. " Let the
variable s be set initially to the initial state of M and the variable; be set initially
to one. Heads 1 through k ofPM are placed initially on the left endmarker and the
counter is set to zero. Let h be the head select or function of M. For each state t of
M and input symbol a we shall order the possible transitions of M in state t
scanning a with head h(t). Therefore, we may refer to choice i, for 1 < i < m,
where m is the number of such choices. (If m is zero, then there are no transitions
in state t scanning the symbol a.) A choice will be a pair (t\ X) consisting of a next
state t' and an indication that head h(t) is moved right X squares
(Xe{- 1 ,0,1}).

(1) If M in state s with head h(s) scanning the symbol scanned presently by
head h(s) of PM does not have a j-th choice, then PM next exécutes step (2).
'Otherwise, let (t, X) be choice;. PM writes (5, X, j) on the pushdown store, sets 5
to t, sets; to one, moves head h(s) to the right X cells, and adds one to the counter.
If the new state 5 is a final state, then PM stops and accepts the input. If the state s
is not final but the counter is presently at its maximum value, then PM next
exécutes step (2). Otherwise, PM exécutes step (1) again.

(2) If the auxiliary store of PM is empty, then PM stops and rejects the input.
'Otherwise, PM takes the top triple (s', X\ j') off the store, sets s to s', moves head
h(s') to the left X' cells, sets; to ƒ + 1, decreases the counter by one, and exécutes
step (1). D

For nondeterministic one-way /c-head finite state automata we may obtain a
better resuit. That is, the previous algorithm required k additional heads, used as
a counter, to detect nondeterminating computations by the nondeterministic k-
head automaton. In the special case of one-way /c-head finite state automata one
can eliminate transitions that leave each head fixed in place ; therefore, one can
eliminate nonterminating computations. That is, if M is a one-way fe-head
automaton with s states and M has more than s consécutive transitions which
leave every head in the same position, then M has a shorter equivalent
computation. Therefore, any such automaton M can be replaced by an
equivalent automaton M' with the same number of heads that does not possess
transitions which leave every head in the same position. By eliminating the k
heads used for a counter in the previous algorithm one obtains the following
resuit.

COROLLARY 2 : For k > 1, lNFA(k) ç= 2DPDA(k).

It follows from our earlier observations on time bounds for multihead pda
languages that any language in lNFA(/c) can be recognized in time 0 ^) by a
RAM. It is unknown whether or not lNFA(k -h 1) ç 2DPDA(k) is valid for
any value of k > 1.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

SOME REMARKS ON MULTIHEAD AUTOMATA 191

AN IMPROVED HIERARCHICAL RESULTS FOR MULTIHEAD FINITE AUTOMATA

The next resuit shows that NSPACE(log2 n, 2fc) ç 2NFA(fc + 3) and
DSPACE (log2 n, 2k) ç 2DFA(/c + 3). This improves on earlier results [17,
27]. First we establish a special case (which settles an open question posed by
Seiferas (27]) :

LEMMA 2 : DSPACE(log2 n, 2) ç 2DFA(4)

NSPACE(log2 n, 2) ç= 2NFA(4)

Proof : Let T be a [Iog2 ^ J tape bounded Turing machine with two work-tape
symbols. We construct a four-head finite state automaton MT which indirectly
simulâtes Tas folio ws. One of the heads of MTis used to simulate the mo vemen ts
of the input head of T. Let the other three heads be called heads A, B, and C.
Then MT with heads A and B shall represent the contents of Ts worktape as two
integers in 2-adic notation. That is, let Thave the worktape symbols 1 and 2. If T
has the string aoa1 . . . amam + 1 . . . am+p on its worktape, where at is
either the symbol 1 or 2 (1 < i < m + p) and am + 1 is the current symbol
scanned by T, then M will represent this worktape configuration by
placing head A on square ao2

m + a^l™'1 + . . . + am and head B on square
am+l + am+22 + . . . + am+p 2p~l. Head C is used in the process of halving
or multiplying by two these head positions in order to represent a new
worktape configuration of T and in detecting whether the symbol scanned
is 1 or 2. That is, as either head A or head B moves toward the left end-
marker head C may, starting at the left endmarker, move two squares to the
right for each square head A or head B passes. Thus when head A or head B
reaches the left endmarker head C is at a position twice as far to the right
as where head A or B started. A similar process may also be used for halving
the head positions.

MTmay detect which symbol is scanned by Tby halving the position of head B
and in the process detecting whether the position was an odd or even number of
squares to the right. The position is an odd number of squares to the right if and
only if the symbol scanned is 1. MTmay then return head B to its original position
by reversing this process.

M rmay represent a transition of T which prints the symbol d1 over the symbol
d2(d1, d2 in { 1, 2 }) and moves the worktape head to the right by : (1)
multiplying by two the position of head A and then moving dx more squares to
the right and (2) moving head B to the left d2 squares and then halving the new
position of head B. In a similar manner MT may represent transitions of T which
move the worktape head left.

Thus MTmay simulate T with only four heads. MT will be nondeterministic if
and only if T is nondeterministic. •

We can extend Lemma 2 to the gênerai case in many ways. The technique
described here is due to Seiferas [28]. It is known that the family of languages

vol. 11, n° 3, 1977.

192 I. H. SUDBOROUGH

recognized by [log2 (w)J-tape bounded Turing machines with 21e worktape
symbols is identical to the family of languages recognized [by k L log2 («)]-tape
bounded Turing machines with two worktape symbols. Using this observation
we see that k " pages" each of length [log2 {n)\ c a n be represented by k + 1
heads, where two of these heads, as in the proof of Lemma 2, are used to
represent the currently scanned page. With the bookkeeping head C and the
head used for simulating the input head, as described in the proof of Lemma 2,
we have a total of k + 3 heads. Therefore, we have established the following
resuit :

THEOREM 4 : DSPACE(log2 n,2k) ç 2DFA(k + 3)
NSPACE(log2 n,2k) <= 2NFA(k + 3)

COROLLARY : For k > 1, there is an L ç { 1 }* which is in

2NFA(k + 4) - 2NFA{k) (2DFA{k + 4)-2DFA(k)).

Proof : Seiferas has shown the existence of an L ç { 1 }* which is in
NSPACE(log2 n, 2fe+1)-NSPACE(log2 n, 2k) (DSPACE(log2 n, 2fe+1)-
DSPACE(log2 n, 2k)) [27]. The resuit then follows from the relationships
NSPACE(log2 n, 2k + 1) ç= 2NFA(k + 4), 2NFA(fc) Ç= NSPACE(log2 n, 2fe),
and the similar relationships for deterministic classes. Q

This hierarchical resuit improves on earlier results in [4,12,27]. It is unknown
whether 2NFA(/c + 3) - 2NFA(/c) or 2DFA(/c + 3) - 2DFA(/c) contains a
language over a single letter alphabet.

We note in conclusion that each of the families 2DFA(/c), 2NFA(/c),
2DPDA(/),and2NPDA(/),for/c > 2 and/ > 1, possess a language Lo with the
property that for any language L in the family there is a homomorphism h such
that L — { e } = h~1(L0). That is, there is a hardest language in each of these
families. (A hardest context-free language is described in [14].) That each of
these families is closed under the opération of inverse homomorphism is easily
verified. Thus if $£ x and if 2 are two such families then S£ ̂ ^ if 2 if and only if
the language Lo for the family if\ is in if'2. Furthermore the time and tape
complexity of the hardest language Lo for a class i^ is the least upper bound for
the complexity of the whole class. (This is true if the complexity bounding
function ƒ for the hardest language is semihomogeneous. That is, for every c > 0
there is a d > 0 such f(cn) > df(n), for ail n.)

Corresponding to each /c-head automaton M with input alphabet { 0, 1 } we
may associate a unique encoding string eM over an alphabet not containing the
symbols 0 or 1. This encoding function should satisfy the property that (1) the set
of ail encodings is a regular set and (2) there is an automaton V in the class
encoded such that if V is provided with a string representing a state of an
automaton M, also in the class, (this string being provided either by the position
of one of the heads on a substring of the encoding of M, in the case of a class of
multihead finite state automata, or by the initial portion of the contents of the

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

SOME REMARKS ON MULTIHEAD AUTOMATA 193

pushdown store, in the case of a class of multihead pda) and if V is provided with
an input symbol and, in the case of a class of multihead pda, the top pushdown
store symbol, then V is able to détermine from an input string eM the set of
possible next transitions of M. Most row by row encodings of transition tables
for automata satisfy these conditions. For any given class, let
Lo = { a1xa2x . . . anx | n > 1 and xis the encodingofan automaton M in the
given class such that M recognizes axa2 . . . an }. Let L be a language in one of
the stated classes. If M is a /c-head automaton that recognizes L, then let h be the
homomorphism defmed by h(0) = OeMand/z(l) = leM. It foliows that for any
nomempty string x over the alphabet { 0, 1 } that/z(x)isinL0ifandonlyifxisin
L. Furthermore, by the conditions imposed on the encodings, Lo is recognized
by an automaton in the given class. It is clear that for languages L in the given
class which are not over the alphabet { 0, 1 } there are languages L' ç { 0, 1 }*
in the class such that L = g~l(L). Therefore, the claim has been established. As
an illustration of the information obtained from this observation we note that
2DPDA(/c) ^ DLOG for any k. A different technique has been used to show
that 2DPDA(1) ^ DLOG in [13]. Our observation follows from the known

facts that DLOG - Uk 2DFA(/c) and 2DFA(/c) c 2DFA(/c + 2) for all k [17,
19]. That is, DLOG cannot possess a hardest language (in the sensé indicated)
and, therefore, cannot be identical to any class which does. Whether or not
DLOG ç 2DPDA(/c) for some k or 2DPDA ç DLOG is unknown. Galil has
shown that 2DPDA ç= DLOG if and only if P-TIME = DLOG [13].

Note added in proof : The author has recently shown that
2NPDA(/c) ^ 2DPDA(4 k + 1) which improves on results cited in the paragraph
before theorem 3. This improved resuit and other results relevant to the topics
described in this paper are contained in Separating Tape Bounded Auxiliary
Pushdown Automata Classes, Proceedings of the Ninth Annual ACM
Symposium on Theory of Computing, held in Boulder, Colorado (U.S.A.),
May 2-4, 1977.

REFERENCES

1. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, Time and Tape Complexity of
Pushdown Automata, Information and Control, 13, 3, 1968, 186-206.

2. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, On the Computational Power of
Pushdown Automata, J. Computer and System Sri., 4, 2, 1970, 129-136.

3. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, The Design and Analysis of
Computer Algorithms,Addison-Wesley, Reading, Mass., 1974.

4. C. BEERI, Réductions in the Number of Heads for the Nondeterminancy Problem in
Multihead Automata, Technical Report, Institute of Mathematics, The Hebrew
Institute of Jérusalem, Israël.

5. R. BOOK, Translational Lemmas, Polynomial Time, and (Log (n))j-Space,
Theoretical Computer Science, 1, 1976, 215-226.

vol. 11, n° 3, 1977.

194 I. H. SUDBOROUGH

6. R. BOOK, Comparing Complexity Classes, J. Computer and System Sci., 9,1974,213-
229.

7. S. A. COOK, Characterizations of Pushdown Machines in Terms of Time-Bounded
Computers, J. ACM, 18, 1971, 4-18.

8. S. A. COOK, An Observation on Time-Storage Trade Off, J. Computer and System Sci.,
9, 1974, 308-316.

9. S. A. COOK and R. SETHI, Storage Requirements for Deterministic Polynomial Time
Recognizable Languages, Sixth Annual ACM Symposium on Theory of Computing,
1974; 40-46.

10. S. A. COOK, Linear Time Simulation of Deterministic Two-Way Pushdown Automata,
Proceedings of IFIP Congress, 1971, North Holland Publishers.

11. S. A. COOK and R. A. RECKHOW, Time Bounded Rondom Access Machines, J.
Computer and System Sci., 7, 1973, 354-375.

12. P. FLAJOLET and J. M. STEYAERT, Décision Problemsfor Multihead Finite Automata,
Proceedings of Symposium and Summer School on the Mathematical Foundations
of Computer Science, High Tatras, Czechoslavakia, 1973, 225-230.

13. Z. GALIL, Two-Way Deterministic Pushdown Automaton Languages and Some Open
Problems in the Theory of Computation, Proceedings of Fifteenth Annual IEEE
Symposium on Switching and Automata Theory, 1974, 170-177.

14. S. A. GREIBACH, The Hardest Context-Free Language, SIAM J. on Computing, 2,
1973, 304-310.

15. S. A. GREIBACH, A Note on the Récognition of One Counter Language, Revue
Française d'Automatique, Informatique et Recherche Opérationnelle, 1975, 5-12.

16. M. A. HARRISON and O. H. IBARRA, Multitape and Multihead Pushdown Automata,
Information and Control, 13, 1968, 433-470.

17. J. HARTMANIS, On Nondeterminancy in Simple Computing Devices, Acta Infor-
matica, 1, 1972, 336-344.

18. J. E. HOPCROFT and J. D. ULLMAN, Formai Languages and Their Relation to
Automata, Addison-Wesley, Reading, Mass., 1969.

19. O. H. IBARRA, On Two-Way Multihead Automata, J. Computer and System Sci., 7.
1973, 28-36.

20. O. H. IBARRA, Characterizations ofSome Tape and Time Complexity Classes ofTuring
Machines in Terms of Multihead and Auxiliary Stack Automata, J. Computer and
System Sci., 5, 1971,88-117.

21. N. D. JONES, Space-Bounded Reducibility among Combinational Problems,
J. Computer and System Sci., 11, 1975, 68-85.

22. N. D. JONES and W. T. LAASER, Complete Problems for Deterministic Polynomial
Time, Proceeding of Sixth Annual ACM Symposium on Theory of Computing, 1974,
33-39.

23. T. KAMEDA, Pushdown Automata with Counters, J. Computer and System Sci., 6,
1972.

24. T. KASAMI, A Note on Computing Time for Récognition of Languages Generated by
Linear Grammars, Information and Control, 10, 1967, 209-214.

25. P. M. LEWIS, R. E. STEARNS and J. HARTMANIS, Memory Boundsfor the Récognition
of Context-Free and Context-Sensitive Languages, Proceedings of Sixth Annual IEEE
Conference on Switching Circuit Theory and Logical Design, 1965, 199-212.

26. A. R. MEYER and L. J. STOCKMEYER, Word Problems Requiring Exponential Time,
Proceedings of Fifth Annual ACM Symposium on Theory of Computing, 1973,1-9.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science

SOME REMARKS ON MULTIHEAD AUTOMATA 195

27. J. SEIFERAS, Nondeterministic Time and Space Complexity Classes, Ph. D.
dissertation, MIT, 1974. Project Mac Report TR-137, MIT, Cambridge, Mass.

28. J. SEIFERAS, personal communication.

29. I. H. SUDBOROUGH, On Tape-Bounded Complexity Classes and Multihead Finite
Automata, J. Computer and System Sci., 10, 1975.

30. I. H. SUDBOROUGH, On Deterministic Context-Free Languages, Multihead
Automata , and the Power of an Auxiliary Pushdown Store, Proceedings of Eighth
Annual ACM Symposium on Theory of Computing, 1976, 141-148.

31. L. VALIANT, General Context-Free Récognition in Less than Cubic Time, J. Computer
and System Sci., 10, 1975, 308-315.

32. R. WEICKER, General Context Free Language Récognition by a RAM with Uniform
Cost Criterion in Time n2log n, Technical Report No. 182, February, 1976, The
Pennsylvania State University, University Park, Pa.

vol. 11, n° 3, 1977.

