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DATA TYPES AS LATTICES:
RETRACTIONS, CLOSURES AND PROJECTIONS (*) («)

by Luis E. SANCHIS (2)

Communicated by M. NIVAT

Abstract. — The application of lattice theory to data types définition involves a number
of frequently considered notions: retractions, closures, projections and représentations. This
paper provides a systematic theory from a rather gênerai point of view, namely by considering
monotonie rather than continuous operators. The results are applied to characterize some
special lattices.\ injective and compactly generated lattices.

0. INTRODUCTION

0.1 . This paper considers the mathematical principles of lattice theory oriented
toward the theory of computation. This relatively new direction can be traced
back to the explanation of recursive définitions as fixed point of monotonie
(actually continuous) operators. The usual operational explanation (Kleene's
first recursion theorem) is replaced by a pure" lattice theoretical existence
theorem.

Another problem for which the lattice approach provided a significant
clarification was the so-called self-application of functions. Introduced first
in some formai Systems of X-calculus and combinatory logic it was accepted
later as a proper procedure for the définition of algorithms in programming
languages, the implication being then that there existed a clear operational
meaning for such procedure. Again the discovery by Scott of models in which
such self-application was available provided a mathematical meaning for an
operational notion. But it is important to notice that-contrary to the situation
for recursive definitions-it is not clear whether the mathematical notion of
self-application corresponds to the operational.

More recently (see [7]) the lattice approach has been found useful for the
définition of data structures. In all these applications a number of constructions
appear frequently: retractions, projection, représentations.

0.2. We attempt hère a systematic treatment of the lattice theory involving
the définition of data structures. We consider monotonie rather than conti-
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330 LUIS E. SANCHIS

nuöus functions and show that a number of results appear quite natural in
this more gênerai setting. Then we try to characterize whenever possible the
situation arising by assuming continuity.

0.3. Most of the notation we use is standard in lattice theory or in the work
of Scott. What we call hère a lattice is usually called a complete lattice. We use
the shorter expression only because this is the only type of lattice considered in
the paper. The name représentation originates from Reynolds (see for ins-
tance [4]) who actually refers only to what we call continuous représentation.
It should be noted that the gênerai notion of représentation is quite old and
apparently was introduced by Ore in [3] as Galois connection. The formulation
is not exactly the same but it is clear that the notions are equivalent. In
Everett [2] the expression Galois correspondence is used.

In place of continuous lattice we use injective lattice; a term which is also
used by Scott. Since the qualification continuous is used in many places in
this paper we think it is wiser to avoid using the same term with a different
connotation. Finally compactly generated lattices are known from Crowley [1]
and appear as algebraic lattices in Scott [7] with some extra restrictions.

1. DEFINITIONS AND NOTATIONS

1.1. Domains

A domain is a non empty set D with a partial order on D. Such partial order
will be denoted in the form x c y. We use D to dénote both the set and the
partial order. If D' is another partial order we write x ç= ' y to indicate the
relation in D' ; but if there is no danger of confusion we may write just x <= y.

If D is a domain and D' is a subset of D then we consider D' as a partial
order where the order relation is the restriction to D' of the order relation in D.
We call then D' a subdomain of D.

If D is a domain and I ç D i s such that X is not empty and whenever x e X
and y e X there is v e X such that x Ç v and y ç v then we say that X is a
directed subset of D.

1.2. Lattices

If D is a domain and X ç D then the notion of upper bound of X (u. b. of X)
and lower bound of X (1. b. of X) is defined in the usual way. In case there is
a least upper bound of X (1. u. b. of X) it is denoted u X\ and in case there is
a greatest lower bound of X (g. 1. b. of X) it is denoted n X. The domain D
is called a lattice in case u X and n X exists for every X ç= D. It is well known
that in order for D to be a lattice it is sufficient that u X (or n X ) exists for
every X ç D.

If D is a lattice, D' is a subdomain of D and D' is itself a lattice then D' is
called a sublattice of D. Notice that this does not mean that for any X ç D'
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the 1. u. b. in D is the same as the 1. u. b. in D'. Whenever we have to distinguish
we shall note by u 'Jf and n 'JTthe 1. u. b. and g. 1. b. of X'm D\ respectively.
Note that u X = u 'X if and only if u Xe D'\ and similarly for n X. A
sublattice of D' of D is said to be \j-closed in case that for every X ^ D' we
have u Xe D' and is said to be n-closed in case that n Xe D' for every
X ^ D'. Finally if D' is a sublattice of D such that whenever X ç D' and X
is directed then u Xe D' we say that D'is a sublattice oîfinite character in D.

In a lattice Z) the element u D is denoted by T and the element n D is
denoted by ±.

1.3. Functional domains

Let D and D' be lattices. Then D —» D' dénotes the set of all functions which
are defined for every x e D and the value is always in D'. If/and g are éléments
of D —» D' we define ƒ ç g to hold exactly when ƒ (x) ^ g (x) for every xe D.
This is easily seen to be a partial order. Furthermore D —• D'is a lattice where
the lattice opérations are defined as follows. If F ç D —• D' then

nF(x) = n{f(x):feF}.

1.3.1. A function ƒ e D —> Z>' is monotonie in case that whenever x ç j> then

ƒ (x) ^ ƒ (y). The set of ail monotonie functions is denoted by D —• D' and it
is both u-closed and n-closed sublattice of D —> ZX.

1.3.2. If/ e D-+D'andX ^ Dwz put ƒ (X ) = { ƒ (x) : x e X }. The function ƒ
is continuons in case that ƒ (u ƒ (X) = vf(X) whenever X ç Z) is directed.

The set of ail continuous functions is denoted D —> Z>7 ; it is a u-closed sublat-

tice of Z> -^ D'.

1.3.3. In case ƒ (u X) = u / ( J ) holds for arbitrary X c Z> the function ƒ

is called additive. The set of ail additive functions is denoted D-+D' and it is

a u-closed sublattice of Z> —• Z>\

1.3.4. Finally i f / (n X) = nf(X) for arbitrary X <= D then ƒ is a coadditive

function. The set of ail coadditive functions is denoted D —» Z>'. It is a n-closed

sublattice of D -^ Z>'.

1.3.5. We note the following property of functions ƒ G Z> —• D'. If Z^ c D
is u-closed (n-closed) sublattice of D and/is additive (coadditive) then ƒ (Z^)
is u-closed (n-closed) sublattice of D'. Now let us put R ( ƒ ) = ƒ (D). Then
R ( ƒ) is u-closed (n-closed) sublattice of D' whenever ƒ is an additive (coad-
ditive) function.
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1.3.6. There are other classes of functions we may want to consider but in
gênerai they do not form sublattices of D—*D'. Iff satisfies the condition
that x Ç y if and only if/ (x) ç f (y) then ƒ is said to be strictly monotonie. Iff
is strictly monotonie then it is 1-1. Furthermore if R (f) is u-closed (n-closed)
(of finite character) in D' then ƒ is additive (coadditive) (continuous).

Iffe D —• D' is strictly monotonie and onto then ƒ is called an isomorphism
of D onto D'. Such ƒ is both additive and coadditive. The inverse of an isomor-
phism is also an isomorphism. Finally note the following property. If ƒ is
1-1 and additive or coadditive then ƒ is strictly monotonie.

1.3.7. The identity function on a lattice D will be denoted by ID or simply by /
when there is no risk of confusion.

1.3.8. Composition of functions is defined in the usual way. If ƒ e D —• D' and
geD' —> D" then g ° /e £>—>/)". All the lattices introduced in 1.3.1, 1.3.2,
1.3.3, 1.3.4, and 1.3.6 are closed under composition.

2. RETRACTION, CLOSURES AND PROJECTIONS

In this section we study sublattices of a lattice D induced by monotonie
functions satisfying some conditions. First we prove some results that hold
for arbitrary monotonie functions. Iff e D—>D we put Fix (ƒ)= { x: f (x) — x }.

2.1.1. LEMMA: Let feD^D and put Dx = { x :f(x) £ x }. Then Dt is
n-closed sublattice of D. If is continuous then Dt is of finite character in D.

Take X ^ Dx to show n X e Dx. For every x e l w e have n X ç= x hence
f(n X) g / W g x. It follows that / ( n X) g n X, so n l e ^ . Assume
now that X ^ Dx is directed. Then / ( u i ) = u / ( I ) g u X Hence

2.1.2. LEMMA: Let feD^D and put D2 = {x :x g ƒ (x) }. 7%éw Z>2 w
u -closed sublattice of D.

This is the dual of the corresponding part in 2.1.1. •

2.1.3. COROLLARY : Let feD^D and D1 and D2 be defined as in 2.1.1 and
2.1.2. Then Fix (ƒ) = Dx n D2 is \j~closedsublattice of D1 and also n-closed
sublattice of D2. Iff is continuous then Fix ( ƒ) is of finite character in D.

The first part follows from 2.1.2. If ƒ is continuous and X ^ Fix ( ƒ ) is
directed then / ( u X) = u / ( I ) = u X. •

2.2.1. A function ƒ e 2) —• Z) such that f°f = f is called a retraction in Z).
Note that in case ƒ is a retraction then Fix (ƒ) = R (ƒ). If ƒ is a retraction
such that / <= ƒ then ƒ is called a closure in JD. And in case that ƒ ^ / then ƒ
is called a projection in £>. If ƒ is a retraction (closure) (projection) in D and/
is continuous then ƒ is a continuous retraction (closure) (projection) in D.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
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2.2.2. THEOREM: If fis a retraction (closure) (projection) in D then R (ƒ) is a
sublattice (n-closed sublattice) (u-closed sublattice) of D. If f is continuous
then R (f) is offinite character in D.

These are easy conséquences of 2.1.1, 2.1.2 and 2.1.3.

2.2.3. THEOREM: Letfbe a closure in D such that R (ƒ) is offinite character
in D. Then ƒ is continuous.

Take I ç D directed, to show ƒ (u X) ç u / ( I ) . Note that ƒ (X) is also
directed and since f (X) ç= R(f) we have f (u f (X)) = u / ( J ) . Now if
xeX then x Ç= ƒ (x) <= u ƒ (Z), hence u X ç= u ƒ (X) so ƒ (u X) <= u ƒ (X). Q

2.3. If Z)' is a sublattice of a lattice D such that there is a retraction (closure)
(projection) ƒ and D' = R (ƒ) then Z>' is called a retraction (closure) (projec-
tion) in D. In case ƒ is continuous then it is called a continuous retraction
(closure) (projection) in D.

2.3 A. THEOREM: If D' is a sublattice of D then D' is a retraction in D. If D'
is n-closed (u-closed) then D' is a closure (projection) in D.

There are many retractions ƒ such that D' = R ( ƒ ). The maximal one (in
the ordering of D —• D) is the function

which is easily seen to be a retraction such that D' = R (ft). If D'is n-closed
then ft is a closure. The minimal retraction is the following:

and in case D' is u-closed f2 is a projection. •

2.3.2. As mentioned above in gênerai there are many retractions ƒ such that
D' = R ( ƒ ). But in case D' is n-closed (u-closed) the closure (projection) ƒ
such that D' = R ( ƒ ) is unique.

Note also that from 2.2.3 it follows that D' is a continuous closure in D if
and only if D' is n-closed and of finite character in D.

2.4. We consider now some examples. If D is a lattice and v e D then

[v) = { x : v <= x } and (v~\ = { x : x ç v } . We dénote by Z) A Z>, Z> -^ D,

D -^ Z>, Dc-^-> D, D -^ D and D—*D the set of all retractions, continuous
retractions, closures, continuous closures, projections and continuous pro-
jections in Z>, respectively.

2.4.1. The sets \y) and (i;] are both of finite character in D. The set [v) is
n-closed hence it is a continuous closure in D. The set (v~\ is u-closed so it
is a projection in D.

2.4.2. Let q(f)=f°f be a function on functions feD-^D. Clearly

qE(D^D)^(D^D) hence the set Dl = {fe D^D : q (ƒ) ç / } is
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rvclosed in D^D. It follows that D-+D = Dx n [/) is also rvclosed in

Z) —> D hence it is a closure in this set.

2.4.3. A similar argument shows that D—>D is a projection in D—*D.

2 AA. We may restrict the opération q (ƒ) to continuous ƒ. In this case we

have qe(D-^ D)-^(D-^ D). Now the set Dx = {feD-^D : q ( ƒ ) ç ƒ}

is not only n-closed but also of finite character. Hence D—>D = Dx n [ƒ) is

a continuous closure in D —» D.

2.4.5. The dual argument shows only that D—>D is a projection in D-+D.

2.4.6. The argument given in [7], Theorem 5.5 shows that the unique

continuous closure F in Z>—• D such that R (V) = C —> D is given by the
following expression:

where Y is the fixed point operator.

3. CONNECTIONS AND REPRESENTATIONS

In the preceding section we have introduced several relations between
lattices assuming in gênerai that one lattice is a sublattice of the other. In
applications we have lattices which are not so related and the obvious approach
is to extend the notions via isomorphisms. What we shall do is rather to
generalize the relations and show that they can be reduced to the originals up
to isomorphism. The generalizations take the form of connections and repré-
sentations between lattices, and provide an extremely useful tooi to study the
relations. It is essentially a factorization technique in which different factors
represent different aspects of the total relation.

3.1. Let D and D' be lattices. A connection between D and D' is a pair of

functions ( ƒ, g) such that ƒ G D —> D', g e D' —• £>, ƒ o g o f = ƒ and g of o g = g
Note that the two last conditions are satisfied in case ƒ o g = lor g of = I. Note
also that in case (ƒ, g) is a connection between D and D' then (g, ƒ ) is a
connection between D' and D.

If follows immediately from the définition that whenever ( f g) is a connection
between D and D' then g o ƒ is a retraction in D and ƒ o g is a retraction in D'.

3.1.1. THEOREM: Let ( ƒ, g) be a connection between D and D''. Then f restricted
to R (g) is an isomorphism of R (g) onto R ( ƒ ), and g restricted to R ( ƒ ) is the
inverse isomorphism of R(f) onto R(g).

Since R ( ƒ ) = R ( ƒ ° g) it follows that ƒ restricted to R (g) is onto R ( ƒ ).
By assumption ƒ is monotonie; so we need to prove only that whenever
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yl e R (g), y2eR (g) and ƒ(yx) s ƒ (y2) then yx^y2. Let £ (JCJ = j ^ and
S(*2) = >>2. Then

^i = g(*i) = g(/(g(*i))) <= g(/(g(x2))) = g(x2) = j ; 2 . D

3.1.2. THEOREM: Let D and D' be lattices; let Dxbe a sublattice of D and D'x
be a sublattice of D'; let h be an isomorphism of Dx onto D'. Then there is a
connection (ƒ, g) between D and D' such that R{f) = D'v R(g) = Dl9 for
x e Dtf(x) = h (x) and for y e D\ g (y) = h'1 (y).

We shall dénote by ux and nx the join and meet opération in Dt and D\
respectively. We define then ƒ and g as foliows :

g(y) = v1{xeD1 : h(x)cy}.

It is clear that R ( ƒ ) s D\ and R (g) ç D j . It is easy to verify that for
xeD1 g(h(x)) = x znd for yeD\ f (h-\y)) = y,hencef (x)= f (h-\h(x))) = h(x)
and g{y) = g{h{h~l (y))) = h~x (y). We have also

D
3.1.3. THEOREM: Let (ƒ, g) be a connection between D and D'. The following
conditions are equivalent:

(ii) ƒ is onto D' ( ƒ is 1-1);
(iii) g is 1-1 (g is onto).
That (i) implies (ii) and (iii) is clear. From ƒ o g o ƒ _ ƒ it follows that (ii)

implies (i), and from g °f° g = g that (iii) implies (i). D

3.2. A connection (ƒ, g) between D and D' is continuous in case both ƒ and
g are continuous functions. In case ƒ o g = I the connection (ƒ, g) is called a
retraction of D' into D and it is called a continuous retraction in case both ƒ
and g are continuous functions. If there is a (continuous) retraction of D'
into D we shall say that D' is a (continuous) retraction of D.

This notation is consistent with that of 2.2.1. For suppose that ƒ e /)—•/)

so we may consider ƒ G D^± R ( ƒ ). Define g (y) = y for y e R ( ƒ ), hence

g e R ( ƒ ) A D. It follow that ƒ is a (continuous) retraction in D if and only
if ( ƒ, g) is a (continuous) retraction of R ( ƒ ) into Z>. The argument is straight-

forward but note that g e R ( ƒ ) A D if and only if R ( ƒ ) is of finite character

in D. Note also that in case R ( ƒ ) is of finite character in D and ƒ e D —• R ( ƒ )

then ƒ e D A D.
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3.3. A représentation between lattices D and D' is a pair of function (ƒ, g)

such that ƒ'e D —» D'', g e D' —• Z>, / ç g o ƒ and ƒ o g ç ƒ. A représentation
is a connection because from I^gof it foliows that f^fogof and
g Ç g°f° g, and from/o g c / it follows that ƒ o g o ƒ c ƒ and g °f<> g c g.

The study of représentations is facilitated by introducing the following two
operators <p (g) and \|/ ( ƒ )

m m m

D ) ( D D')
fn m m

which are defined as follows:

It is easy to check that g £ \|/ (q> (g)) and q> (\|J ( ƒ )) e ƒ but (q>, \|/) is not a
représentation since neither <p nor \|/ is monotonie.

3.3.1. THEOREM: Let f e D^D' and ge Df -^ D. The following conditions are
equivalent:

0) ( ƒ» S) û a représentation between D and D';
(ii) for arbitrary x e D and y e D' :f(x) S y if and only ifx^g (y);

(iii) y(g) = ƒ am/ \|/ ( ƒ ) = g.
(iv) feD-^ D' and \|/ ( ƒ ) = g.
(v) ƒ s (p (g) fl«rf i|/ ( ƒ ) c g.

(vi) geD ^ D and <p(g) = ƒ.
The implications from (i) to (ii) and from (ii) to (iii) are easy. Assume that (iii)

holds to prove ƒ is additive. Let X ç D; then for xe Xv/e have ƒ (JC) £ vf(X).
Since \|/ (ƒ) = g this means x Ç g ( u / ( I ) ) . This holds for every
xeXsov X ^ g ( u / ( J ) ) . But now since q> (g) = /we have ƒ (u JT)S u ƒ (JT)-
So ƒ is additive.

Assume now (iv) holds to prove ƒ (x) Ç (p (g) (x) for arbitrary x e D. From
\|# ( ƒ ) = g and the additivity of/we get ƒ (g (>>)) £ J for arbitrary y e D'. Now
if x c g (ƒ) then ƒ (JC) S ƒ. It follows that ƒ (x) s <p (g) (x).

Assume (v) to prove (vi). Consider 7 ç D'. lï y e Y then n g ( 7 ) ç g Q>).
Then from ƒ ç q> (g) it follows that / ( n g ( F ) e >>. Hence we have
f(ng(Y)) s n F and from \|/ ( ƒ ) e g we get that ng(Y) ^ g (n Y\sog
is coadditive. In order to prove that q> (g) s ƒ note that for arbitrary x e Z>
and the définition of \|/ we have x Ç \|/ ( ƒ ) (ƒ(*)); hence from \|# ( ƒ ) Çgwe
have x s g ( ƒ (x)). But this implies that <p (g) s ƒ.
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If we assume (vi) then from <p (g) = ƒ we get immediately that ƒ<>££ƒ.
Using also the coadditivity of g we get

hence I ç g o ƒ •

3.3.2. Some conséquences of the définition and Theorem 3.3.1 are the
following. If ( ƒ, g) is a représentation between D and D'then g o ƒ is a closure
in D and ƒ o g is a projection in D'. Hence R(g) = R (g ° ƒ ) is n-closed in D
and R ( ƒ ) = R ( ƒ o g) is u-closed in Z)'. By 3.1.1 ƒ restricted to R (g) is an
isomorphism onto R ( ƒ ). Furthermore the function ƒ is additive and the
function g is coadditive and one of them détermines uniquely the other.

3.3.3. THEOREM: Let D and D' be lattices. Let Dl be a n-closed sublattice of D
and D\ be a Kj-closed sublattice of D'. Let h be an isomorphism of D1 onto D'v
Then there is a unique représentation (f g) between D and D' such that
R{f) = D'l9R(g) = D.JorxeDJix) = h(x) andfor y e D\g{y) = h~l (y).

We define ƒ and g exactly as in Theorem 3.1.2 and we need only to show
that / £ go f and ƒ ° g ç /. Since D\ is u-closed in D' it follows that

heDi—^D'; in the same way since Dx is n-closed in D we have

h'1 eD\ -^ D. Hence

/(g 00) = h(g(y)) = u{h(x) : xeD.Ahix) s y}

so clearly ƒ (g (y)) ç y. Also

g (ƒ(*)) = fe"1 (ƒ(*)) = n{h~l(y) : yeD\ A x g / T

so clearly x ^ g (f(x)).
To prove the uniqueness note that if (fl9 gt) is another représentation such

that / O ) = / i O ) for xeDl and g(y) = gl(y) for j e i ) ; , then from
x s g (ƒ(*)) we get A (*) c ƒ, (g (ƒ(*)) = ƒ (g (ƒ(*))) = ƒ (*) and similarly
for the function g using ƒ (g (y)) £ ƒ . D

3.4. A représentation ( ƒ, g) between D and D'is continuous in case g e Z)' —* D.
If g is 1-1 the représentation is called a closure of /)' into D and D'is a closure
of ZX If g is continuous and 1-1 then ( ƒ, g) is a continuous closure of Z)' into Z)
and Z)' is a continuous closure of Z). If ƒ is 1-1 then the représentation is called
a projection of Z) into Z)' and D is a. projection of Z)'. In case ƒ is 1-1 and g is
continuous then ( ƒ, g) is a continuous projection of Z) into Z)' and Z) is a
continuous projection oi D'. Note that Theorem 3.1.3 applies to représentations.

3.4.1. This notation is consistent with the notation of 2.2.1. For let ƒ e D —• Z)

o we may consider feD^R(f). Define g (y) ^ y for yeR(f) so
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ge R ( ƒ ) -^ D. Then we have: (i) ƒ is a (continuous) closure in D if and only
if (ƒ> #) is a (continuous) closure of R (ƒ) into Z); (ii) ƒ is a (continuous)
projection in D if and only {g, ƒ ) is a (continuous) projection of R ( ƒ ) into D.

3.4.2. The lattices that are closure (projections) of a given lattice are charac-
terized by 3.1.1 and 3.3.3 as exactly those lattices which are isomorphic to
a n-closed (u-closed) sublattice of D. We can characterize thé continuous
closures of D as follows.

3.4.3. THEOREM: A lattice D' is a continuous closure of a lattice D if and only
if D' is isomorphic to some n-closed sublattice of D offinite character in D.

This is essentially a conséquence of Theorem 2.2.3. •

3.5. Let (f g) be a représentation between D and D'. We can define two

operators a {h) and x (j ) where he D ^> D and j e D' -̂ > D'

Then it can be easily checked that (<F, T) is a représentation between /)—•£> and
m

D' —• D'. We call (er, x) the représentation induced by ( f g).
Assume now that ( ƒ, g) is a continuous représentation between D and D'.

Then whenever h and j are continuous <r (ZJ) and x ( j ) are also continuous.
Furthermore it is possible to check that x is also continuous when restricted to
continuous functions. This means that (<r, x) is a continuous représentation

between D-+D and D'^D'. It is called the continuous représentation
induced by ( f g).

3.5.1. THEOREM: Let ( f g) be a {continuous) représentation between D and D'
and let (<r, x) be the {continuous) représentation induced by (ƒ, g). If j is a
{continuous) closure in D' then x{j) is a {continuous) closure in D and the
function g maps R {j ) onto R (x {j )).

From ƒ s y it follows easily that / Ç T ( / ) Ç T ( J ) , Furthermore

* (J) °x 0') = ë °J °f° s °j °f^ë °J °j °f=g°j ° ƒ•

To prove that g maps R{j) onto R{x {j )) take y e R{j)9 so j {y) = y. Then
x U ) {g 60) = g U (f(g 00») ^ g Ü (y)) = g (y), hence g{y)eR (x {j )).
Conversely let x e R (x (j)) theny' ( ƒ {x)) e R {j) and g {j ( ƒ (x))) = x (J) {x) = x. •

3.5.2. THEOREM: Let (ƒ, g) be a {continuous) représentation between D and D'
and let (a, x) be the {continuous) représentation induced by {f g). If h is a
{continuous) projection in D then G {h) is a {continuous) projection in D' and the
function f maps R {h) onto R (<r {h)).
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This is the dual of Theorem 3.5.1 and the proof is similar. •
Note that in the situation of Theorem 3.5.1 in case ( ƒ, g) is a closure and j

is a closure in D' then g is an isomorphism of R (j) onto R (x (j)). Similar
remark for Theorem 3.5.2.

3.6. We shall consider now some examples of these notions. If D is a set
then P (D) is the power set of D considered as a lattice under the inclusion
relation.

3.6.1. Let D be some lattice and Dx ç D be some subset of D. We can define
a représentation (ƒ, g) between P (DJ and D as follows: for X ^ Dl define
ƒ (X) = v X and for j e Z> define g O) = { x e Dx : x ^ y}. This repré-
sentation is a closure if and only Dx is a set of generators for Z>, namely in
the case for every y e D there is some X ç Dx such that j = u X. Also ( ƒ, g) is
continuous if and only if every element x e Dx satisfies the following condition:
if Y Ç D is directed and x ^ u Y then there is some y e Y such that x ^ y.
An element like this will be called compact in the next section.

3.6.2. If Dl ç D note that P (DJ = {Dx~\ in P (D) (see 2.4) so it is u-closed
in P (D). The corresponding projection is f(X) = X n Z^ for X ç Z> and it
is a continuous function so P (D^ is a continuous projection in P (D). Since
P (D^ is not n-closed it is not a closure in P (D) ; but it is actually a continuous
closure of P (D) given by the closure ( ƒ, g) where ƒ is defined above and
g (Y) = YuiD-DJ for Fç Z .̂

3.6.3. Let D be a lattice and consider the function Ke D —> (D—*D) defined
K(y) = Xx.y. This function is both additive and coadditive, and 1-1. Hence

(K, \|/ (K)) is a projection of D into D-^ D. Since \|f (#) (y) = y (1) it follows
that the projection is continuous. On the other hand ((p (K), K)isa continuous

closure of D into D A D. It is easy to check that (p (AT) (J) = j (T).

3.6.4. Let KfeD-^{D-^D) be defined as follows: K' (y) (x) = 1 in
case x = J_; K' (y)(x) = y in case x ^ 1 . This function again is both
additive, coadditive and 1-1. Hence (K', \|/ (Kf)) is a (continuous?) projection

of D into D^+D and (q> (A r), A") is a continuous closure of D into Z> —• Z).

3.6.5. Consider the lattice PC©) where œ is the set of non-negative integers.

The function graph e {P (to) A P (©)) —• P (o) defined in [7] is 1-1 and both
additive and coadditive. It follows that (<p (graph), graph) is a continuous

closure of P (to) A P (œ) into P (<*)), and (graph, \|/ (graph)) is a projection

of P (co) A P (co) into P (©). We shall show later that it is impossible to improve
the latter relation to a continuous projection.
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3.6.6. As a final example we define the following continuous closure in P (CÖ).
f(X) = {x :x + leX} a n d g(Y) = { 0 } u { x + 1 :xe Y } . T h i s t r a n s -
formation is used in the définition of |~| in [7], page 551.

4. INJECTIVE AND COMPACTLY GENERATED LATTICES

In this section we consider retraction, closures and projections involving
lattices satistying special conditions. These conditions amount to requiring
that every element in the lattice is the join of éléments that are compact; in
some cases we require the compactness property to be absolute, in others
only relative to the element generated.

4.1.1. Let D be a lattice and let u and y be éléments of D. The element u is
compact relative to y in case that whenever X ç= D is directed and y Ç= u X
then there is some x e X such that u ç x. We use the notation u -< y to dénote
that u is compact relative to y. An element x e D such that x -< x holds is
called compact.

We define the following sets. If y e D then BD (y) = { u : u •< y } and
CD (j) = { x : x is compact and x ^ y}. The set CD = CD (T) is the set of
all compact éléments in D.

AA.2. We note several properties of these notions that follow easily from the
définitions, (i) the relation -< is transitive; (ii) if u -< y then u ç= y; (iii) if

u < y, v c H and y s x then t; -< x; (iv) CD (>>) Ç £D (>0; (v) CD e D A P (/));

(vi) BDsD^P(D).
Note that the relation -< is equivalent to the similar notated relation defined

in [6] only for the lattices called continuous in that référence.

4.1.3. A lattice D such that for every y e D y = u BD(y) is called injective.
In case y = u CD (y) for every y e D the lattice is called compactly generated.
Clearly a compactly generated lattice is injective. The lattice D is ^-well
founded in case that there is in D no infinité séquence xl9 x2, . . . , xn, ... such
that xn+1 < xn and xn ï= xn+l.

4.1.4. THEOREM: If a lattice 1) is injective and -K-well founded then it is
compactly generated.

Assume D is not compactly generated and let D1 = { y : y ^ y u CD (y) }.
Let y be a minimal element in D± relative to •*<. Since y = u BD (y) there is
at least one xeBD(y) such that xeDv Since x ^ y this contracdits the
minimality of y. •

4.1.5. We give some examples of these notions. Let R be the set of all real
numbers with the usual order and two extra éléments _L and T. Hère x •< y
means x = J_ or x < y. Since the only compact element is _L this lattice is
not compactly generated but it is injective.
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Let D be some set. Then P (D) is compactly generated and <-well founded.
In this lattice X < Y means X is finite and X ç Y.

Let D be an infinité set and D' be the sublattice of P (D) consisting of all
finite subsets of D plus the set D itself. Hère X < Y holds if and only if
X = 1 = 0, so it is not an injective lattice. Note that D'is (trivially) a -<-well
founded lattice.

Finally let D be the nonegative integers where the order is defined n ç m i f
and only n 7> m, plus one extra element ±. In this lattice every element is
compact so it is compactly generated, but it is not <-well founded.

4.2. We want to investigate to what extent injective and compactly generated
lattices are related to continuous représentations. In one direction this is
clarified by the next two theorems.

4.2.1. THEOREM: Let ( ƒ, g) be a représentation between lattices D and D' where

D is injective and for every x e Df(BD (x)) ç BD, (ƒ(*)). Then ge D' A D.
Let Y c D' be directed and assume v e BD (g (u Y)). It follows that

ƒ 00 "< / ( # ( u Y)) ^ Kj Y hence f(v) ç j> for some >> e Y. This implies
i? £ g (y) hence g (u Y) ç u g ( F ) . •

4.2.2. THEOREM: Le? (ƒ, g) ^ « représentation between lattices D and D
where D is compactly generated and for every x e Df(CD (x)) c CD. (ƒ (x)).

Then g e D' A D.
The proof is similar. •

4.3. We consider now the problem in the other direction, namely assuming
a connection or représentation is continuous in which way are related the
compact éléments of the lattices. The key resuit is given by the following lemma.

4.3.1. LEMMA: Let (ƒ, g) be a continuous connection satisfying the conditions
fog^L Then f(BD (g (y))) s BD, (y) for arbitrary y e D'.

Take x < g (y) to show f(x) < y. Let Y ç D' be firected and y Ç u Y.
Then g (y) c g (u F) = u g (Y). Hence there is v e Y such that x ç g (i?);
it follows /(x) g/(g(j?)) Ç ü. D

4.3.2. COROLLARY: If D is an injective lattice and D' is a continuous retraction
of D then D' is injective.

Let (ƒ, g) be the continuous retraction of D' into D. Since f° g = I the
preceding theorem applies. If y e D' then g (y) = u BD (g (y)) hence
>> = ƒ fe (y)) =^f(BD (g 00) s u *D. (y). D

4.3.3. THEOREM: A lattice D is injective if and only ifit is a continuous retraction
ofP(D).

The lattice P (D) is injective so in case D is a continuous retraction of P (D)
4.3.2 applies. Conversely assume D is injective and we define f{X) = u X
for X ç D then ( ƒ, i?D) is a continuous retraction of D into P (D). Clearly
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ƒ (BD (y)) = y and ƒ is additive, so we need only to show BD is continuous.
For this it is sufficient to prove that BD (u Y) ^ u { BD (y) : y e Y } whenever
Y ç: Z) is directed. But u F = u { v : There is j e F and v e BD (y) } which
is also directed set, hence if u < u Y then w ç t; such that v < y for some
j> e 7. It follows that u e BD (y). •

4.3.4. THEOREM: L<?/ (ƒ, g) be a continuous représentation between D and D'.
Then f(BD (x)) c £D, (ƒ(*)) andf(CD (x)) £ CD, (ƒ (x)) for every xeD.

Assume u < x; then u^g(f(x)) hence by 4.3.1 f(u)^f(x). Similar
argument if u < u ^ x. •

4.3.5. COROLLARY: Lê  (f, g) be a continuous closure of D' into D. If D is
compactly generated then D' is also compactly generated. Furthermore
f(CD(g(y))) = CD,(y)foryeD'.

Let y e D' and ƒ (x) = y. Then

f(x) = / ( u CD(x)) = u/(CD(x)) s u C^(/(x)) = u CD.(y).

Now to prove ƒ (CD (g ( ƒ (x))) = Cö. ( ƒ (x)) we need to consider only the
inclusion from right to left. Let v eCV(/(x)); then g(v)^g(f(x)) and
v = f(g(v)) = vf(CD(g(v))). Since v is compact this means v =f(u) for
some ueCD(g (v)\ but then ueCD(g ( ƒ (x)). D

4.3.6. THEOREM: 4̂ lattice D is compactly generated if and only if it is a
continuous closure of P (D).

Since P (D) is compactly generated in one direction the équivalence follows
from 4.3.5. In the other direction if we define f(X) = u l f o r l ç CD then
(ƒ, CD) is a continuous closure of D into P (CD) (see 3.6.1). But P (CD) is a
continuous closure of P (D) as explained in 3.6.2. •

4.4. We have obtained characterizations of injective and compactly generated
lattices in terms of eontinuous retractions and continuous closures. We present
now a partial resuit that relates -<-well founded lattices and continuous
projections.

4.4.1. THEOREM: Let D be a continuous projection of D'. ifD' is ^-well founded
then D is also -<-well founded.

Let (ƒ, g) be a continuous projection of D into D'. Then Theorem 4.3.4
applies and ƒ is 1-1. It follows that any infinité descending séquence in D will
induce a corresponding infinité descending séquence in D'. Hence D is -<-well
founded. •

AA.2. COROLLARY: If D is a continuous projection of P (D) then D is compactly
generated and -K-well founded.

4.5. We collect in this last section some results on the lattice of continuous
functions. This matter has been considered in [6] so here we give only an
outline of the arguments.
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4.5.1. First note that since D and D' are both injective lattices then D-^+D'
is also an injective lattice to show this define fonctions ƒ„„ where u e D and
ve D'. If XE D then fuv (x) = v in case u < x and fu>v(x) = 1 otherwise.

It follows that fu veD-^D'. Furthermore iffeD-^D' and v <f(u) then
fu v <f. Now it is easy to prove using the fact that D and D' are injective that

{

4.5.2. A similar argument shows that whenever D and D' are compactly

generated then D—>D' is also compactly generated. To prove this define
functions gUtV where ue D and v e D'. We put gUtV (x) = v in case u ç x and

Su,v (x) = -L otherwise. It follows that in case f e D A D' and v c ƒ(«) then
gM>t? c ƒ Furthermore if w is compact in D and v is compact in D' then guv is

compact in D —> D'. Now it is easy to show (using the fact that both D and D'

are compactly generated) that whenever ƒ e D-^> D'then

ƒ = u {gu,y : v e / ( i i ) A i/eC~DA ueCD >}.

4.5.3. Since D-^ D is a continuous closure of D-^D (see 2.4.4) it follows

that in case D is injective (compactly generated) lattice then D —• D is also
injective (compactly generated) lattice.

4.5.4. For D —> Z> we have a weaker resuit. Suppose D is compactly generated

and whenever ueCD and u' ç w then w' e CD. Then Z> -^ £> is compactly
generated. To prove this define functions hu for u e D such that hu (x) = u in
case w ç x and /*u (x) = _L otherwise. Such functions are always projections.

But if u is compact in D then hue D-^ D and also it is compact in this lattice.
Note that D —» D is u-closed in D —* Z) (see 2.4.5). It is sufficient to prove now
that whçnever feD^D then ƒ = u { A B : « e C D M A a ç / } . For this
purpose we show that for arbitrary x e D and v e CD (ƒ (x)) there is we CD and
hu c ƒ such that v ^ hu (x). Since ƒ (x) = u ƒ (CD (x)) there is w e CD (x) such
that t; ç /(w) ç w so w' =f(u) is also compact in /). Obviously we have
z; ^ /ÎU, (x) so we need only to show hu. ç ƒ. Now if for some j ; G Z) we have
w' c ^ and hu' (y) = u then u = f(u') ^f(y).

4.5.5. Finally we consider a lattice D in which there is an infinité séquence of
éléments uu .. ., ui9 . . . where each ut is compact, ui c «.+ 1 and w£ ̂  ui+l.
Let f some fixed compact element in D, v ^ -L and put gf = gMift; ( J ^ 4.5.2).

These functions are ail compact in D—*D, gi+1 ç g» and gi+l ^ gt hence

£) _!> £) is not -<-well founded. In particular P (o>) —• P (©) is not a continuous
projection of P(co).
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