E. FACHINI

A.MAGGIOLO-SCHETTINI
A hierarchy of primitive recursive sequence functions

RAIRO. Informatique théorique, tome 13, n°1 (1979), p. 49-67
<http://www.numdam.org/item?id=ITA_1979__ 13_1_49 0>

© AFCET, 1979, tous droits réservés.

L’acces aux archives de la revue « RAIRO. Informatique théorique » im-
plique I’accord avec les conditions générales d’utilisation (http:/www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NumbaM
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1979__13_1_49_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.LR.O. Informatique théorique/Theoretical Informatics
(vol. 13, n° 1, 1979, p. 49 4 67)

A HIERARCHY OF
'PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS (%)

by E. Facuini and A. MAGGIOLO-SCHETTINI (*)

Communicated by G. AUSIELLO

Abstract. — In this paper we give a characterization of primitive recursive functions
f: N> N*(r=0, s>0) and define a Hierarchy of classes #,,.,(a, b=0) of these functions by a
syntactic measure of complexity. The behavior of the classes I ., +, with respect to different operators is
also analyzed. The classes £ ., 1, coincide with the ones of Cleave’s hierarchy for a=2,b=0 and give a
refinement of the Meyer-Ritchie hierarchy.

INTRODUCTION

Partial recursive sequence functions, i. . partial functions of type f : N” — N?%,
have been studied by Eilenberg and Elgot and by Germano and Maggiolo-
Schettini (see [6, 7, 8, 9, 10]). In this paper we consider a characterization of
primitive recursive functions N” — N*(r=0, s>0), which reduce obviously to
primitive recursive functions when s = 1. Such functions are obtained by starting
with a finite set of basic functions and taking the closure with respect to
composition, cylindrification and repetition operators.

We consider a hierarchy of length @? of primitive recursive sequence functions
in a very simple manner: every class .#,, ., contains the functions obtained from
the basic one by a nested repetitions and b successive compositions. (The idea of
constructing an ®> hierarchy was suggested by Cleave in [4] where an @®
hierarchy of functions N* — N computed by a register machine is presented and
the equivalence with a characterization of the chain of classes in-terms of the
substitutions and recursions occurring in the functions of each class is shown.)

(*) Received June 1978, revised October 1978.
(*) Gruppo Nazionale di Informatica Matematica c/o Istituto di Scienze dell’Informazione
dell’Universita Salerno, Italy.

R.ALR.O. Informatique théorique/Theoretical Informatics, 0399-0540/1979/49/$ 1.00
© Bordas-Dunod.

50 E. FACHINI, A MAGGIOLO-SCHETTINI

We introduce LOOP programs (see Meyer and Ritchie [13]) with r input
variables and s output variables. We consider the class of functions computed by
these programs and prove that it coincides with the class of primitive recursive
sequence functions. We define the class M, ,, of LOOP programs as the classes
of programs with b successive subprograms containing at most a+ 1 nested loop
instructions. It is easily seen that the corresponding classes of functions coincide
with the classes ., , and then a hierarchy of LOOP programs follows. It can be
also shown that these classes are computation time closed. (Note that in [3] Beck
introduces a ®? hierarchy of Meyer and Ritchie LOOP programs inspired by
Cleave’s idea. The classes of programs are defined here similarly as in Beck’s
paper but the proof and the point of view are different.)

If we consider the subclasses #y, 4, S Fauq+p Of functions N'— N we can
compare our hierarchy with the known hierarchies of primitive recursive
functions defined by Axt, Cleave, Grzegorczyk, Meyer-Ritchie (see [2, 4, 11, 13]
respectively).

In section 1 primitive recursive sequence functions are defined and the
relationship with primitive recursive functions is shown. In section 2 the classes
of primitive recursive sequence functions are defined in terms of composition and
repetition. In section 3 the proper containment of each class in the following one
is shown. In section 4 we introduce LOOP programs and the hierarchy defined in
terms of nesting and concatenation of loops and we prove that the corresponding
hierarchy of functions coincides with the one of sections 2-3. In section 5 we
recall the definition of Axt, Cleave, Grzegorczyk and Meyer-Ritchie hierarchies
and compare these hierarchies with our hierarchy (restricted obviously to
functions N” — N). In section 6 we extend some known decidability results to

- the classes £, ,.

A rather complete synthesis of works on complexity classes of functions is in

the book by Ausiello (see [1]).

We are grateful to Egon Borger for encouragement at the beginning of our
work, to Giorgio Ausiello for many discussions and to Jean-Frangois Perrot for
discussions and for bringing the papers by Beck and by Huwig and Clausto our
attention.

1. PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS

In this section we introduce a characterization of primitive recursive functions
from sequences of natural numbers to sequences of natural numbers, briefly
primitive recursive sequence functions.

R.A.LR.O. Informatique théorique/Theoretical Informatics

A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 51

In the following we will use the letters x, y, possibly with indices, for natural
numbers and the letters u, v for tuples of natural numbers without specifying the
arity of the tuple when it is clear from the context.

Consider the set of functions
T={S=Ax.(x+1), K=Ax, y.(x), 0=(0)}.

DeriniTioN 1.1: The set & of primitive recursive sequence functions
f: N"— N°, with r 20, s>0is defined as the least set of functions containing
and closed with respect to the following operators :

1° the composition operator A f, g.(f.g) such that if f: N"— N* and
g:N°— N'then f.g : N > N*and (f.g9) () =g (f(w);

2° the left cylindrification operator A f.¢f such that if f: N"— N° then
fi N1 N*1and °f (x, w)=x, f (u);

3° the right cylindrification operator A f.f° such that if f: N"— N° then
feioN"tL S Nstland f(u, x)= f(w), x,

4° the repetition operator A f.f®such thatif f : N — N"then f*: N"*! - N*

and f*(x, wy=*W=(f.fHW).

Consider the following functions:
1° the functions ®" : N" —» N" (r> 1) such that

O (xy, ..., x)=(x2, ..., X, X1);
2° the functions A" : N* - N?"(r>0) such that
Auy=u, u;
3° the functions @ : N" —» N"(i<r, r>1) such that
OF (X1, « v oy Xie1s Xiy Xit1e = - o X)) =Xi, X1y o oy Xim1s Xit1s -« o» Xpy
4° the functions I} : N" —> N (1 £i=r) such that
Ii(xy, - x)=x3

5° the functions I" : N” — N"(r>0) such that

I'(uy=u;
6° the functions T} ; : N" > N"(i#j, 1§i_,j§r, r>1) such that

T (0, oo Xy oo X1, Xy Xjgs - - s X)
=X1, e Xy ooy Xjm 1y Xiy Xja1s - o o0 X

vol. 13, n° 1, 1979

52 E. FACHINI, A MAGGIOLO-SCHETTINI

7° the functions C}, : N* — N (m, r=20) such that
Cr(uy=m.

For brevity set @ =03=07% A=A', I=1}.

Consider the following operators:

1° the cartesian product Af, g.(f xg) such that if f:N"— N? and
g : N?— N°then fxg: N — NP*Sand (f xg)(u, v)=f (), g(u);

2° the juxtaposition operator A f, g.(f g) such that il f: N" - N? and
g: N - Nsthen f g : N"— N?**and (f"g)(w)= f (v), g (u).

Lemma 1.1: The class & contains @", A", @}, I", I, T} ;, C},.

Proof: 1t is immediate from the definitions. []

LemMA 1.2: The class & is closed with respect to cartesian product and
Jjuxtaposition. '

Proof: 1l f: N"— N? and g : N?— N° then it holds that f xg=f<.“g If
f:N"— N”and g : N"— N°® then it holds that f"g=A".f°.“g. [0

NotaTioN: Let &7 denote the set of primitive recursive sequence functions
f: N'— N/ for a certain i=0 and j>0, so that &=] /.

i20
J>0

Let the set £ of primitive recursive functions be defined as the smallest set
containing O, the zero of zero arguments, S, the successor, I} (for 1 £i<r), the
projectors, and closed with respect to substitution and recursion. We will
denote 2, the set of primitive recursive functions of i arguments, so that

'@=U'@i.

iz0
TaeOREM 1.1: ={f=f"..." f|fie?, r=0,s>0}.
Proof: (a) ¥ <{f=/fi"... f|fie?,. r20,5s>0}.
It is true for the basic functions because 2. < {0, S, I }
Assume it is true for f: N” — N°. It holds that
EtY(w) for i=1.

CHi=Cf 1 Hw= {If_l(f(l’z“(u), L EHtw) for 1<isSs+1.

As by induction hypothesis fi=f.I;e#?, and £ is closed with respect to
substitution it follows

S=CN" . Cf)s
with (°f); € 2, ... Analogously for f°.

R.A.LR.O. Informatique théorique/Theoretical Informatics

A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 53
Assume the thesis true for f: N° - N? and g : N9 —> N". It holds that
(S 9w=(f-9) - INW=(f(g-INW=g:(f1 W), ..., fW).

As by induction hypothesis f;e 2, and g;e 2, and 2 is closed with respect to
substitution it follows

fg=f.9n”..."(f-9)
with (f.g), € ?,.
Assume the thesis true for f: N — N”. It holds that

(f5 0, wy=1I; (w),
(SRS W= I)(f M Ce, v - -, () (x, w).

As by induction hypothesisf. I} € 2, and 2 is closed with respect to simultaneous
recursion it follows

o=
with (f%),€ 2, 4.

®) F={f=f"... f|fie2?.r20,5s>0}.

As & is closed with respect to juxtaposition it suffices to show that Z,e & !
for every r=0.

The set of the basic functions of £ is contained in % by definition and
lemma 1.2.

Given s+ 1 functionsf, g;, ..., g;€? with f: N> Nandg;, : N> N.let h
be the function such that h(u)=f (g, (), .- .. gs (). It holds that he & because
h=(g:" . .."gy).f.

Given two functions g, he 2 withg : N' - Nand h: N"*2 > N, let f be the
function such that

f(u, 0)=g),
f, Sx)=h(u, x, f(u, x)).
It holds that fe & because

r¥1

=0t AT g 7o (AT Th.CSHR TS

Note that, if r=0, @711 and “A” must be replaced by I and A respectively. []

2. CLASSES OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS

In this section we define classes .#; of primitive recursive sequence functions
and we study the behaviour of these classes with respect to the operators
introduced in the previous section.

vol. 13, n° 1, 1979

54 E. FACHINI, A MAGGIOLO-SCHETTINI

LetZ=% U {®, A} and, forasubset X of &, let € (X)be the closure of X with
respect to composition and left and right cylindrification and £ (X) the set of
functions obtained from X by repetition.

DEFINITION 2 .1:
Jo=%(2),

Foatbt1= {f:f1 ,f2|f1 €I watvr J2 egz(jma)} for every a, b20,

fma=Uju)(a—l)+i for agl

<o
Note that X is the least set of functions such that I e 4.

LemMA 2. 1: The following properties hold:

1° F,&F iy for iz0;

2° € (R (F))=F 6@+ for az0;

3° G (S wa)=F wa for a=0;

4° iffeF arp thenf=fo . fi. ... fywithfo€Fpo fi, - - s LER(F o)

5° if feFparp thenfeF iy and f €L gurp.

Proof: It is immediate from definition 2.1. [

The property 2.1 .4 affirms that the functions of the class .#, ,, are obtained
by composition of a function in #,, with b functions in £(.4,,) which, by
property 2.1.2, means b functions obtained from .#, by a nested repetitions.

The following lemmas characterize the behavior of the above classes of
functions with respect to the operators and lead eventually to the proof (see
lemma 2. 6) that the procedure of generating such classes ends with the class

I0=\) Foasy and SFa=.

a<w®
b<w

Lemma 2.2 '%(jma) = jma+1'
Proof: It is immediate by definition 2. 1.

LEMMA 2.3: If f€ £ asb» E Fgarc then f.g€F garp+c for a, b, c < o.
Proof: It is by induction on b and c.
For b=c¢=0 the thesis is true by property 2.1.3.

Assume the thesis is true for b=0, ¢ < n. Let fe #,, and ge F ;1 ,+1, then
f.9€F watn+1 by definition of £,y 1y

Assume the thesis is true for b < m and for every ¢. Consider the case ¢ =0. Let
feFparmand ge S, Then f.g=1f, .f,.9 where fi €L yo4m-1 and f,€ (I o)

R.A.LLR.O. Informatique fhéorique/Theoretical Informatics

A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 55

As by induction hypothesis and lemma 2.1 f,.ge.#,,+; then, again by
induction hypothesis, it follows that f; .f, .g € £ s+ m. Assume the thesis is true
for b=m and ¢ < n. Let fe £ 4, and geF,+,. Then f.g=f.g; .9, where
91€F warn—1 and g, e Z(F,,). As by induction hypothesis f.g; € L ootntm—1
then, by definition of £ 4 minf-9EFwatmtn-

LEMMA 2.4: If f€ £ oasp, 9€E Fwarc then fge L pasp+e, for a, b, c < o.

Proof: 1t follows from lemma 2.3 reminding that for f: N"—- N? and
g:N" > NS frg=A.f".“gand A" e .¥,.

LemmMa 2.5: Iffefmﬂ;, gEF pasc then f x ge o .ivic, for a, b, ¢ < .

Proof: Tt follows from lemma 2.3 reminding that for f: N"— N? and
g: NI NS fxg=f“.“g.

Let jﬁ’zz U jma-%b'

a<m
b<w

LemMma 2.6: (a) €(F 2)=F
b) #(F)=F
(C) fmz=y.

Proof: (a) Let f € 4 (S) then f = f, . f, where f1, f,€ .7, by definition of .,
there exist a, b, ¢, such that fie.#,,., and f,€.#,,+.. But by lemma 2.2 it
follows that f; . fo€ 5 orp+c S F,: then G(F) S I s

(b) analogously;

{¢) by (a) and (b) and definition of & and £ .. [

3. A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS

In this section we show the strict containment of the class .#; in the class .#; , ¢
(for i < @?).

The proof for i < ® is based on the fact that a function f defined by patching
together from several cases must be computed with at least a new repetition not
reducible to the ones needed for the definition of the functions expressing the
different cases of f.

The proof for the classes £, ., witha = 1,b < o isinspired by [4] and exploits
properties of growth of the functions in .#; with respect to a proper ordering of
the sequences.

We prove first some lemmas. In lemma 3 . 1 the strict containment of the class
S;inthe class #;,, (i < ®)isshown. Inlemma 3.2 the strict containment of the

vol. 13, n° 1, 1979

56 E. FACHINI, A MAGGIOLO-SCHETTINI

class £, ;in the class £ ;. (i < ®)is shown under the normality hypothesis.
In lemma 3.4 the normality property is stated for .#,. From lemmas 3.1-3.4
theorem 3.1 follows which affirms the strict containment of the class .#; in the
class .4, , for every i <w?. _

Let < denote the usual lexicographic order on sequences of natural numbers.

DEFINITION 3 . 1: A subset X of & containing U { + } and closed with respect
to composition and left and right cylindrification is said to be normal if it contains
a strictly increasing function h : N —» N with the property that for every
g : N" = N°®e X there exists me N such that, for every u=xg,. . ., x,,

gu) < Fo(m, max x;) if r>0, ~ gu<Fqo(m, 0) if r=0.
with Fo(x, y)=(h.¢(h.S).h") (x, y).
LemmMma 3. 1: For every i < @ there exists a function fe £, —5;.

Proof: Let re,, (x) the residue of the division of x by a constant m. Consider the
following functions:

SHix)=mx,
_yx+my if re, (x)=0,
f2(9= { Ch (x) otherwise,
fi(x) if re,(x)=0 .
: = i fori=2,
fear) { C,. (x) otherwise ort=
with m > 1 and re,, (m;)#0 for every i+j.

It is easy to see that if we want to define a function by patching together from
several cases we cannot dispense with introducing repetitions (see also how in the
recursive function theory a function defined by cases is reduced to the
composition of functions obtained by recursion).

In our case, assuming that f;e #; but not f;e #;_;, we obtain f;,, from f; by
composition with a repetition on C,f,m and therefore f;, ¢ £,

Now

fl =CO. (Sm)R.
As it is easy to check that the functions in £, are of the type
f&x o x)=0c,+my, ..., X +my)
with x, € {x;, ..., x,} U{0}, m;20, s>0, then f, €., cannot be expressed

in #,. Furthermore
fa=Aref, 8™ (C) R
where re, =°C3.<°C3.“7'CO _, . "CY. (@™ . I}, As te,, €5, —.F, and

R.AIR.O. Informatique théorique/Theoretical Informatics

A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 57

because we cannot spare the repetition, it follows that f, € #, — #,. Finally

firr=A.re, 8™ (IL.CL.CEL L L CETR.
dirt.CL . C¥F. .. CETR L (CLR
where
fe m=C3.CY. CO_.TCY. ...
R (o I o SUNIC A o NI A o1
(@ TS T R
is the function such that re,, . (x)=(re, (x)....,re, (x)). As fi,, can be

obtained by compositions of functions in £, withre,, . (which can be always
computed by a single repetition) and i functions obtained by repetition of
functions in £, it follows f;,,€.#;,, and f;, 1 ¢ #..

LemMA 3.2: Suppose that £, is normal. Consider the functions F; : N> - N,
G;: N> N, H;: N — N defined as follows:

F=hc.c(h.s).hk; Fi+1:Fi.A.hR;
Gi=(Cp) .F; H;=A.F;

Then it holds that:

1°Fiefyrivt, Gi€Igysi, HiEI 1415

2° for every i < o, for every g : N' > N*e.# . ; there exists me N such that
g (u) < F;(m, max x;);

3° for every i < @, for every g : N » Ne.#,,; there exists me N such that
g(x)<H, (x) for x>m. ‘

Proof: 1° it follows immediately from the definition;

2° the thesis is true for i=0 by hypothesis.

Suppose the thesis is true for i < j. Consider a function g : N" —» N°e 4, ;. By

definition g=g, .93, g€ #,+;-, and g, €.#,. By induction hypothesis there
exist m,, m; such that

(gl .If+1) (Xl,. ey x,) < Fj—l (m,’, max Xi)
< F;_; (m, max x;) for m; =max m;
and g, (yy,. . ., ys) < Fo (my, max yy).

For every y > 0 it results

G5, V1o -0 ¥) <(CLY . Fo)* (v, max y,)

vol. 13, n° 1, 1979

58 E. FACHINI, A MAGGIOLO-SCHETTINI

and then for every (x,,..., x,)e N":
glxy,. .., %)< ((CS.,)C-FO)R(FJ‘—1 (my, max x;), F;_ (m,, max x;))
=(CO) - Fj—y . A .(C% . Fo)") (max x)

Let f, ,..=(Co).F;—;.A .((Cp) .Fo) It holds that

Jongmy)=HD(S(. . (B (S(Fj- 1 (my, x)). . .))
< (R (B (my, x)

=h((CR)° - Fj=1.°0 (S ")) (x), Fj_y (my, X))

Now (CJ).F;_; .0 .($"™*"*e S, ;_, and then by induction hypothesis
there exists m > m;, m, such that (CO). F;_; .0 .($"*)*) (x) < F;_ (m, x)
for every x. So finally we obtain f,, . (x) < WR(F;-y(m, x), F;_; (m, x)) and then

g(xy,...,x) < Fj(m, max x;);

3° by 2 for every f: N » Ne £, there exists me N such that for every x,
f(x) < Fi(m, x). As F;(m, x) < H; (x) for every x > m then f(x) < H;(x) for
x> m.

LeMMA 3.3: If £, is normal with the function h then #,, is normal with the
function h*=H,.

Proof: Consider F¥ : N> > N, G§ : N —» N defined as follows

F§=h*< c(h*.S). h*k and ¥=(COY.F¥%.

By definition h*e€ f 1 & Fro, FE€F 2441, GE€F 5. Suppose g : N' - N°and
geF,, In order to prove that there exists me N such that, for every
U=Xxy,..., X, g < F§(m, max x;) we must show, by lemma 3.2 .2, that, for
every n,i€ N, there exists m e N such that, for every x, F;(n, x) < F§ (m, x). By the
definitions of F; and F}¥ it results

Fi(n, x)=((A.hN (i, Fo(n, x))
and
Fg(m, x)=(A.h¢.h .S KR (Fo(m, m), Fo(x, x)+1).

Letg=A.h¢.°h.°S.h® It is easy to prove by induction on n that, for every x,
Fo(n, x) < g®(n, Fo(x, x)+1) £ F§(m, x) where m is the least integer such that
n £ Fo(m,m). If wesuppose that F;_; (n,x) < g*(n+i—1, Fo(x, x)+ 1), for every
nand x, we obtain that F;(n, x)<g®(n+i, Fo(x, x)+1). Then for every i, ne N
it results F;(n, x)<F¥(m, x), where m is the least integer such that
Fo(m, myzn+i.

Lemma 3.4: £, is normal with h=A . S*.

R.A.IR.O. Informatique théorique/Theoretical Informatics

A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 59

Proof: By induction on .#,. We have shown that if fe .#, then

f&a, L x)=(x, +my,. ., X+ mg)
withx, €{x;,. .., x,} U {0}, m;e N. Let m=max x;. It is immediate to see that
flxq,. .., x,) £ S®(m, max x;) < 2?™ (2 max x;+1)=F, (m, max x;).

Suppose now r=s and consider f*. It holds that
FR(x, x1,. . ., %) S (A°.<S®R . I2) (x, m, max x;) <F,(m, max (x, x;)).

Suppose the thesis is true for j < i. Consider fe .#;. If fe .#; then f=f; .f5 with
fieFi_1, f€F,. Then there exist m;}, m, such that

(fi - 17" 1) (x4,. . ., x,) < Fo (mj, max x;) £ F, (m,, max x;)
where m; =max mj and f5(y, y1,. . ., y) < Fo(m,, max (y, y;)) and finally
flxy,. .., x}) < Fo(my, Fo (m, max x;)) < Fo 2 my+m;+1, max x;). [

The strict containment of the class .#,,,;-; in £, +; for every i can be proved
by defining a new sequence of functions F} starting with F§ as it has been done in
lemma 3.2 starting with F,. Now #3, can be proved to be normal with h**
where h**=H¥=A.F§. By repeating the same reasoning up to £, the
following theorem can be stated.

THEOREM 3.1: S, S S, for i <.

4. COMPLEXITY CLASSES OF LOOP PROGRAMS

In [10] partial recursive sequence functions have been proposed to give a
semantics of a simple recursive language (i. €. the language SL introduced by the
authors). Analogously primitive recursive sequence functions can be used to give
a meaning to Meyer-Ritchie LOOP programs (see [13])in a version which allows
more than one output variable. In this manner we obtain a relationship between
the structural complexity of LOOP programs and the computational complexity
of primitive recursive sequence functions.

DerniTION 4. 1: A LOOP program has the following form:
INs; Iy;.. .5 1,; OUT ¢ (k=0

where s is a list (possibly empty) of names for variables (without repetitions) and
I; is an instruction of one of the following types:

(@) X; « 0 where X; is an input variable or a variable introduced before or a
new variable;

vol. 13, n° 1, 1979

60 E. FACHINI, A MAGGIOLO-SCHETTINI

(b) X; < X;where X; and X (i) are input variables or variables introduced
before;

(c) X; < X;+1 where X; is an input variable or a variable introduced before;

(d) LOOP X;; Iy;. . .; I;; END where X; is a input variable or a variable
introduced before and I} are instructions of types a, b, c, d;
and where ¢t is a (non empty) list of names either contained in the input list or
introduced in I;(1 £i < k).

DerINITION 4 . 2: A function f: N — N*e & is computed by a LOOP program
P with input list s and output list ¢ if before the execution of P the input list
contains x,,..., x,€ N" (and the other registers are empty) and after the
execution of P the output list contains the sequence f(x,,. . ., x,)e N*. The
meaning of a LOOP program P is the function computed by P.

Let & be the set of functions computed by the LOOP programs.
THEOREM 4.1: ¥ =%
Proof: (a) & = &.

Let s=(X;, ..., X,) and t=(X,, ..., X,), where i;e{l, ...,r}u
{ r+1, ..., r+p}, and X,.,, ..., X, are the new variables introduced by
the instructions of the programs.

Case 1: The program P : IN's; OUT ¢ computes the function I], " . . . "I} (in this
case is always g < r, p=0).

Case 2: The program P : IN s; X; « 0; OUT ¢ computes the function

e .., if 1gisr,
and the function

COIFLLrY,
otherwise.

The program P .: IN s5; X; « X;; OUT t computes the function

T, ... 0T).
The program P : IN s; X; < X;+1; OUT t computes the function
N Ay [}

Case 3: Consider the program P : IN s; I;. . .; I,; OUT ¢ where I; are
instructions of the types a, b, ¢, d. Take the programs P; : IN s;; I;; OUT ¢,
(1 i k) with s, =s, s;=(s, s{-4), for 1 <i £k, where s/_, is the list of new
variables introduced by I,,. . ., I;_;,and t; =(s, s1), t;=s;,,for 1 <i<k,and
t, = t. Assume that the functions f; computed by the programs P; belong to .
Then the function fcomputed by the program P can be written as composition of
functions in & and therefore fe &.

R.AIR.O. Informatique théorique/Theoretical Informatics

A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 61

Case 4: Consider the program P : INs; LOOP X;;1;; . . .; I;; END; OUT ¢
where the instructions I; are of the types a, b, ¢, d. The function f computed by
the program P is

0. ... O TN @ R (I L LI,
where f’ is the function computed by P’ : IN(s, s); I,; . . .;I; OUT (s, 57), s
being the list of the variables introduced by the statements I;. Assume that
f'e &, then fe &.

b Fo2.

Programs computing the functions of X are constructed easily. Iff;, f, € & and
P,, P, are the programs computing f;, f, respectively, then the program
computing the function f; .f, is obtained from P, and P, by the insertion of
instructions which take the contents of the output registers of P, into the input
registers of P,. If fe & and P is the program computing f, then the program
computing f®is obtained by including the instructions of P in a couple LOOP-
END. 0O

DerIniTION 4. 3: Let M, be the class of LOOP programs obtained by using
only instructions of the types a, b, ¢c. Let M,,., be the class of LOOP
programs P such thatin P there are b successive instructions of the form LOOP
X;; I, END where the instruction I contains at most a nested instructions of the
type d. Let M=) My u—1y+1 for a2 1.

i<o

We consider the following classes of primitive recursive sequence functions:

Mi={ f|fe & and there exists Pe M, such that fcomputable by P } for i <w.

By the proof of theorem 4.1 (part b) and definition 4.3 we obtain that if
fiely,, and fred,, then f=f . frel,,,. and if fe# , then
fRe M sy 1)+, for every a=0.

THEOREM 4.2: M yoip=-F wa+p fOT every a, b<o.

Proof: Tt can be given easily by induction on a and b.

Infactiff: N" > N°eSF i n,then f=f, .fowith fie L in—1, fEF 0+ and
by induction hypothesis there exist P, e M. ,_; and P, € M., ; computing f;
and f, respectively. Then the program P computing f is a program in M, .
Therefore £+ v S M e+ n-

Conversely if f € # ., and P is the program computing f one can always
consider P as obtained from the composition of two programs P; e M 4,1
and P,eM,,,. The functions f;, f, computed by these programs are, by
induction hypothesis, in £,..,_, and in #,,, respectively and then

f=1.feF, Therefore 4, ,,SFpcrn. O

vol. 13, n° 1, 1979

62 E. FACHINI, A MAGGIOLO-SCHETTINI

DerFiniTION 4 . 4: Let P a program INs; I; OUT s” with I =1,; .. .; I, (n=0).
Let s’ be the list of new variables introduced by I and r, g be the lengths of the
variables lists s and (s, s') respectively. Then tp, the computing time function
of P, is

0.0,f0.t.13%}

where t is the stepcounter function of P defined as follows:

(a) =111 if n=0;

(b) t=C""'8"".“§ if I:X,«<X,+1;
t="(CH7.eS if I:X,<0;
t=T1% ;.S if I:X;«X;

(0) t=t,.t, if 1:1;;1,

(d) t=""A"".0%" (t, .“(S.S)*.“(S.8) if I:LOOP X;;I'; END.

LemMma 4.1: If Pe M, ., then tpe £,y for a, b20.

Proof: The program P’ computing ¢, is obtained by P as follows: the input list
is the same of P; the first instructionis of the type T« 0, where T'is a register not
used in P;the successive instructions are the ones of P followed by an instruction
of the type T« T+ 1, for each instruction of the type a, b of ¢ of P and followed
by two instructions of the type T « T'+ 1 for each loop instruction. Moreover for
each loop instruction there are two instructions of the type T« T+ 1 between
the couple LOOP-END:; finally 7 is the only output register. []

Now for the classes M, ,, we can prove a result analogous to that proved by
Meyer and Ritchie for the classes L; (see [18]).

Let F¥™ be the functions such that for every g e £, .+, there exists pe N such
that, for every u=x;, ..., x,, g(W) <F}¥"(p, max x,) (see lemmas 3.2-3.4).

LeEmMmA 4.2: Let Pe M, . Suppose that tp(u) < F¥™ (p, max x;) for pe N and
1=m<a, b>0. Then there exists a program P'€ M, ,, such that P and P’
compute the same function, with n'=n if m>1, n'=n+1 otherwise.

Proof: 1t is analogous to the proof given by Meyer and Ritchie. The
program P’can be obtained from the program that compute F}™ (p, max x;) and
from a program in M, that simulates the instruction sequence of P. [

By lemmas 4.1 and 4.2 the following theorem can be stated.

THEOREM 4.3: Given a function fe & and a program P which computes f,
fE€F ury f tp(W)<F¥*(p, max x,) for a proper p, withb’'=b+1 fora=1,b>0
and with b'=b for a>1, b=0.

R.A.LR.O. Informatique théorique/Theoretical Informatics

A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 63

5. COMPARISON WITH OTHER HIERARCHIES OF PRIMITIVE RECURSIVE FUNC-
TIONS

As primitive recursive functions coincide with primitive recursive sequence
functions when the output sequence is of length one (see theorem 1.1), it is
intetesting to compare the above hierarchy in this particular case with known
hierarchies of primitive recursive functions.

We recall briefly the definitions of Axt, Cleave, Grzegorczyk, Meyer-Ritchie
hierarchies.

Let B={S=Ax.(x+1), 0=(0), I'=Axy, ..., X,.(x) }.

The initial class R, of the Axt hierarchy is defined as the closure of B with
respect to substitution; the class R;, for i<, is defined as the smallest set of
functions containing R;_; and the functions obtained from those in R;_; by
primitive recursion (see [2]).

The initial class E, of Cleave hierarchy can be defined as the closure
of the set T={fi=ax,y.(x+y), fa=Ax,y.(xy), d=Ax, y, (if x#y
then O else 1)} with respect to substitution; the class E,,.,, for
a, b<o, can be defined as the set of functions f:N"— N such that
f W)=Ro(, Ri(u, ..., Ry(u, 1)...)), where R; is obtained by a nested
simultaneous recursions (see [4]).

The class &;, for i< w, is defined as the smallest set of functions containing B
and the function f;, where f, (x, y)=x+1; fi(x, y)y=x+y; fo(x, y)=xy;
Jax, 0)=1and f,(x, y+1)= f,— 1 (x, £ (x, y)), for n=3, and closed with respect
to substitution and limited recursion (see [11, 15]).

The class .&; of the Meyer-Ritchie hierarchy is defined as the class of functions
computed by LOOP programs (with only one output register) in L;, i.e. by
programs with at most i nested LOOP-END instructions (see [13]).

Let .}, for i<m?, be the subclass .#; containing only functions with output
sequence of length one, i.e., = {f.I3|f: N> N°e 4, r20,s>0}.

By the theorem 4.2 the following lemma holds.

Lemma 5.1: &=, for i<w.
The following lemmas express the relationship between the classes .#; and the
classes &; and E,.

LEMMA 5.2: £, =84, for i>1.

Proof: From [13] we have ;=& for i>1. From lemma 5.1 the thesis
follows immediately. []

LeEmmMma 5.3: f",,Hj:Em(,-_l)Hfor l>l,]§0

vol. 13, n° 1, 1979

64 E. FACHINI, A MAGGIOLO-SCHETTINI

Proof: From {4] we have E,;=¢&,,, for i>0. From lemma 5.2 the thesis
follows immediately. [J

Using lemmas 5.1, 5.2, 5.3 and known results (see [2, 13, 14, 16, 17]) we can
draw the following diagram to show the relationships among the hierarchies we
have considered. In the diagram A —B means that the class A is strictly
enclosed in the class B; A --- B means that the two classes are not comparable.

Fo=Zo=Ro

, !

—~, . &
flz=é‘;3=$2=R2=Em
|

!
I 4=6401=ZL;=R=Eq-10

Note that the classes E; (0 <i<w) are not comparable with &; (i <3). The class
Fo=%o=RoEE,y, but &, R, are not comparable with E; (i <), because the
predecessor function is in .#; n R; and not in E,, and the product function is in
E but not in &%, or in R;. The classes .#; are contained in the classes E;, for
0<i<w?

The class of functions computed by Beck class L} of LOOP programs (see [3]),
defined as the class of programs with j successive different subprograms

containing at most i+ 1 nested LOOP-END instructions, is seen easily to
coincide with the class of functions £, ;, for i, j=0.

If we énlarge the base of the hierarchy with the functions sum, product and “if
x+#y then 0 else 17, i.e. we take Cleave’s base, we obtain Cleave’s hierarchy
again.

Let Z'=X UT. Let us take }o=‘€(2’) and define new classes .#; with a

construction analogous to the one used for .#;. The following lemma can be
proved easily by induction.

R.A.LLR.O. Informatique théorique/Theoretical Informatics

A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 65

LEMMA 5.4: E;= .9} for i<w?.

In [4] Cleave considers primitive recursive functions f: N* — N*® defined as
tuple of functions f; : N* — N. The juxtaposition operator is used implicitely and
the following assertion is proved: “if f; : N> N€E ,+p, thenf=(f1, ..., f):
N"—> N°eEys., for a,b<w”. Now in lemma 2.4 we proved that if
fE€F sy then (1. .. f)eF s Dut we can prove also the following
lemma.

LeMMA 5.5: If fie F s, for a=2, b=0, 1ZiZs, then fy,” . . . fi€F garp

Proof: Consider the LOOP programs P;e M,, ., computing the functions
fi€ Fua+p It is easy to construct a program P computing f=f," . .. f; and
consisting of a part in charge of making s copies of the input followed by the s
subprograms P; (possibly with some names of variables changed). As each P;
consists of the b succesive loops each containing a nested loops, the program P
will consist of sb successive loops each containing a nested loops, i.e.
PeM,, s For a=2 and b=0 one can construct a program P’ equivalent to P
in which s loops are substituted by one only loop which runs on the maximum of
the values on which the single loops were running. [J

Then from lemmas 5.3 and 5.5 we obtain the following lemma.

LeEmMA 5.6:
1° fm(a+1)+b=UE=<r,§as+b for az1,b20.
2° }(,,,,H,:U vevy for a, b=0.

r,s

The above results show that the classification of primitive recursive sequence
functions is not a trivial extension of classification of primitive recursive
functions.

Cleave’s method for the uniform generation of classes by simplified s
multaneous recursion and substitution needs a hierarchy base containing sum
and product. The sequence functions formalism allows the uniform generation of
the hierarchy by repetition and composition starting from a very simple base. It
results that the sum is in .#, and the product isin .#, ., which seems to be more
reasonable than having both operations in the same class, see e.g. [3].

6. REMARKS ON SOME DECIDABILITY RESULTS

Some decidability results proved for the classes L; and L} (see [3, 13, 17]) are
generalized immediately to the classes .#;.

vol. 13, n° 1, 1979

66 E. FACHINI, A MAGGIOLO-SCHETTINI

The following assertions hold:

the equivalence problem is recursively unsolvable in £, .,, for a=1, b=2;

the equivalence problem for functions of is recursively solvable £ in £, ;

the problem of determining the least a, b such that f belongs to £, 1S
recursively unsolvable for a=2, b=1;

there is_an algorithm which for a given function fe.;(i<w) determines
whether the expression defining f contains a repetition on a constant, so that in
such a case fe.#,_;.

The method for generating a hierarchy of primitive recursive sequence
functions expounded above can be used to generate other hierarchies of
primitive recursive sequence functions starting from different bases. In particular
we can define classes #f, #% having as base TU{P} and Tu{t}, with
P=Ax.(x=1)and t=Ax, y, z.(f z=0 then x else y), respectively.

The results on decidability of the equivalence problem proved by Beck (see [3])

and by Huwig and Claus (see [12]) can be extended easily to the classes .#%
and 4.

REFERENCES

—_

. G. AusieLLo, Complessita di calcolo delle funzioni, Boringhieri, Torino, 1975.
2. P. Axr, Iteration of Primitive Recursion, Zeisch. f. math. Logik und Grundl. d. Math.,
Vol. 9, 1965, pp. 253-255.

3.. H. Beck, Zur Entscheidbarkeit der funktionalen Aquivalenz, Automata Theory and
Formal Languages 2nd GI Conference, Lecture Notes in Computer Science, Vol. 33,
1975, pp. 127-133.

4. 1. P. CLeAVE, A Hierarchy of Primitive Recursive Functions, Zeitsch. f. math. Logik
und Grundl. d. Math., Vol. 9, 1963, pp. 331-345.

5. A. CoBHaM, The Intrinsic Computational Difficulty of Functions, Proc. Congress on
Logic, Methodology and Philosophy of Science, Haifa, Israel, 1964, North-Holland,
Amsterdam, 1964, pp. 24-30.

6. S. EiLenserG and C. C. Evcor, Iteration and Recursion, Proc. Nat. Acad. Sci. U.S.A.,
Vol. 61, 1968, pp. 378-379.

7. S. Ewenserc and C. C. Ercor, Recursiveness, Academic Press, New York, 1970.
8. G. Germano and A. MacacioLo-ScrETTINI, Quelques caractérisations des fonctions
récursives partielles, C.R. Acad. Sc. Paris, t. 276, série A, 1973, pp. 1325-1327.

9. G. GermaNo and A. MaGGIOLO-SCHETTINI, Sequence-to-Sequence Recursiveness, In-
formation Processing Lett., Vol. 4, 1975, pp. 1-6.

10. G. GermaNo and A. MacGIioLo-ScHETTINI, Proving a Compiler Correct: a Simple
Approach, J. Comput. System Sc,. Vol. 10, 1975, pp. 370-383.

11. A. Grzecorczyk, Some Classes of Recursive Functions, Rozprawy Mathematyczne,
Vol. 4, 1953, pp. 1-45.

R.A.I.R.O. Informatique théorique/Theoretical Informatics

12

13.

14.

15.

16.

17.

18.

A HIERARCHY OF PRIMITIVE RECURSIVE SEQUENCE FUNCTIONS 67

H. Huwic and V. Craus, Das Aquivalenzproblem fiir spezielle Klassen von LOOP-
Programmen, Theoretical Computer Science 3rd GI Conference, Lecture Notes in
Computer Science, Vol. 48, 1977, p. 73-82.

A. R. Mever and D. M. Rircuig, The Complexity of LOOPPrograms, Proc. 22nd
A.C.M. Nat: Conference, Washington, D.C., 1968, pp. 465-469.

H. MiiLLer, Characterization of the Elementary Functions in Terms of Nesting of
Primitive Recursions, Recursive Function Theory Newsletters, Vol. 5, 1973.

R. W. RircHig, Classes of Recursive Functions Based on Ackermann’s Function, Pacific
J. Math., Vol. 15, 1965, pp. 1027-1044.

H. ScuwICHTENBERG, Rekursionszahlen und die Grzegorczyk Hierarchie, Arch. Math.
Logik Grundlagenforsch., Vol. 12, 1969, pp. 85-97.

D. Tsicurirzis, A note on Comparison of Subrecursive Hierarchies, Information
Processing Lett., Vol. 1, 1971, pp. 42-44.

D. Tsicurirzis, The Equivalence Problem of Simple Programs, J. Ass. Comput. Mach,
Vol. 17, 1970, pp. 729-738.

vol. 13, n° 1, 1979

