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A THEORY OF COMPLEXITY
OF MONADIC RECURSION SCHEMES (*)

by A. Ja. DIKOVSKII (*)

Communicated by J.-F. PERROT

Abstract. — Complexity of a monadic recursion scheme is defined through numerical characteristics
of trees representing its computations. A class of such complexity characteristics of trees essentially
unlike the computation time: so called mimeoinvariant complexity measures, is introduced which induce
several dense hiérarchies of complexity classes of monadic recursion schemes of unbounded complexity
and infinité hiérarchies of bounded complexity classes. Simple conditions are found under which a
function is a nonreducible upper bound of complexity of a monadic recursion scheme.

Résumé. — On définit la complexité d'un schéma récursif monadique à Vaide de propriétés
numériques des arbres qui représentent ses calculs. On introduit une classe de telles propriétés de
complexité des arbres, appelées les mesures de complexité miméoinvariantes, qui sont essentiellement
différentes du temps de calcul, et qui induisent plusieurs hiérarchies denses de classes de complexité pour
les schémas récursif s monadiques de complexité non bornée et des hiérarchies infinies de classes de
complexité bornée. On donne des conditions simples qui assurent qu'une fonction est une borne
supérieure irréductible pour la complexité d'un schéma récursif monadique.

1. INTRODUCTION

There were several recent attempts to fmd a reasonable computer-free concept
of computational complexity for program schemes. In particular, three different
définitions may be mentioned: by R. Constable [1], by K. Weihrauch [2], and by
Y. Igarashi [3]. All the three définitions have an essential common feature: they
model computation time. We propose a concept of complexity of absolutely
different nature. Our complexity measures characterize combinatorial
complexity of objects representing computations of schemes. Moreover, the
computation time is an illégal measure in our model. The mentioned papers
differ also by the classes of schemes under study. Constable and Weihrauch treat
standard (itérative) program schemes, while in Igarashi's and our papers

(*) Received January 1980.
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68 A. JA. DTKOVSKÎI

monadic recursion- schemes are considered. Ho wever, we are dealing with
classical monadic recursion schemes, whereas Igarashi exhibits his time
hierarchy in a class of gêneralized monadic recursion schemes substantially
broader then that of the classical schemes; furthermore, this hierarchy
dégénérâtes for classical monadic recursion schemes.

As it is well known [4, 5] there is a tight relation between monadic recursion
schemes and c/-grammars: with each scheme E a c/-grammar G (E) is associated
in a natural way, every computation of £ under an interprétation / is represented
by a rightmost dérivation of G(E) "controlled" by /. We make next step and
consider the trees of these dérivations as représentations of the corresponding
computations. After this it is rather natural to introducé complexity measures as
integer-valued functions on trees.

This relation is the base for replantation of already existing complexity theory
of c/-grammars aŝ  outlined in our earlier papers [6-9] to monadic recursion
schemes. In particular, we apply (with minory changes) to monadic recursion
schemes a central concept of this theory: the notion of a mimeoinvâriant
complexity measufe (section 5). The characteristic feature of these measures is
their invariance under a class of transformations of trees preserving on the whole
their "topology". A complexity measure m has been chosen, we associate with
each monadic recursion scheme E its m-complexity function mE and thus to any
nondecreasing total function ƒ relate the class ê™^ of all schemes whose
complexity functions do not exeed ƒ. Mimeoinvariance of m implies that ail
quasirational monadic recursion schemes fall into bounded complexity class
(fcoast.- As it turns out all mimeoinvâriant complexity measures have high
classiûcational capacities. In section 6 we find simple conditions under which a
function ƒ or a constant c become nonreducible upper bounds of m-complexity
of a monadic recursion scheme (thms. 6.1, 6.2). The main resuit of section 7
(thm. 7.1) gives a condition under which for a mimeoinvâriant complexity
measure m there is an infmitely decreasing séquence of functions
fi^fz^fs^ • • where each ji is a nonreducible upper bound of m-complexity
of à monadic recursion scheme. The theorem 8.1, a simplified version of this
hierarchy theoremA shows that for any rriirneoinvn riant complexity measure m
there is an mfmitely decreasing séquence oi'iunctions j \ >j2>f3> • • • such that
<f™ —(f™+i^0 for ail i. Hence ail mimeoinvâriant measures provide
nondegenerate classifications of monadic recursion schemes. Finally, in the
nineth section we formulate a définition of a monadic recursion scheme of
maximal complexity and show that under reasonable conditions ail
unambiguous monadic recursion schemes are either of maximal complexity or of
bounded density.
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COMPLEXITY OF MONADIC RECURSION SCHEMES 69

2. PRELIMINARIES

We choose for the sequel two countable disjoint alphabets E and W (of
terminal and nonterminal symbols respectively).

DÉFINITIONS AND NOTATION 2 .1 : Let z b e a string. A prefix {suffix) of z is any
string v such that z = vu (respectively z = uv) for a string u. Let N and Z + dénote
the set of all numbers and all nonnegative integers respectively. A (finite labelled
rooted) tree is a pair T=(A, /), where: (1) A is a finite nonempty subset of (Z + )*;
(2) A is prefix closed, i. e. with every string z it containes all its préfixes; (3) / is a
function (called a labelling) from A to E u W\j { A} (A is the empty string) (2).

Strings in A are called nodes of T. For a node i; of Tl(v) is called a label of f.

Let f, v' be two nodes of T such that t; = v' a for some a in Z +. Then v is called
an immédiate successor of i/ (in T). The set of all immédiate successors of a node v
is denoted by i(v), The cardinality of i (v) is called a width oïv. The maximal width
ofnodes of r i s called a z îrfi/i of T. A séquence ]? = (!?!, v2, . . ., u ^ n ^ l , of nodes
of T is called a pat/i from vt to urt (n being its length) if u i + 1 is in i (^) for all
1 ^i<n. A path (ul5 v2) is called an amnü from vx to i>2. A node v' is called a
successor of a node u if v^v' and there is a path from v to vf.

The node A is called a root of 7". A node v is bot torn if there is no arrow from v to
a node of 7, and nonbottom otherwise. A node v is pre terminal if Z(u) is in
W u {A} and either u is bottom or all immédiate successors of v are bottom and
are labelled by symbols in E.

We consider the following natural ( partial) order (denoted by <\ ) on the set of
nodes of T.vx<\ v2 holds iff there are nodes v, v[9 v'2 in A such that v[, v'2 are in
i(ü), v'x — va9 v'2 = vb for some a, b in Z+ such that a < b , and vl9 v\ (v2, v2) either
coincide, or vt (v2) is a successor of u, ( Ï ^ ) . This natural order is complete on the
set of bottom nodes of 7". If i>j < u2 <l . . . <l vs is the séquence of all bottom
nodes of Tin their natural order then the string l{vx) l(v2). . . /(z;s) [denoted by
t{T)] is the yield of T. The length s of this string is denoted by | T\.

DÉFINITION 2.2: Two trees T 1=(A 1 , / 1 ) and T2=(A2, l2) are isomorphic
(notation 7\ = T2) if there is a one-to-one correspondence h between Ax and A2

such that for any two nodes vl9 v2 of Tx: (1) v2 is a successor of v± iffh(v2) is a
successor of h^)in T2,(2) vx < u2 iff h ^ J ^ /i(i;2)in 72,(3) /i(üi) = /2(fc(üi))-

(2) In our définitions and theorems we admit empty labels, empty right sides of productions,
empty équations, and so on. However in the proofs of theorems we dont consider such cases for the
reasons of space and because of triviality or routine character of the corresponding arguments.
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70 A. JA. DIKOVSKII

DÉFINITION 2.3: Let T=(A, /) be a tree and v be a node of T. A tree T = (A', /'),
where (3) A'<=t>\A and /'(z) = /(i?z) for ail z in A' is called a (v-)subtree of T.
B (T') = vàf is a base set of T". The t;-subtree (denoted by T(v)) whose base set
B(T(v)) is the least subset of A containing v and ail its successors is called a fiill
(v-)subtree of T. The A-subtree of T [denoted by CT{v)] with the base set
(A — B(T(V)))\J {v} is called a complementary v-subtree of T.

DÉFINITION 2.4: Let TV (A, Z), 7\ and T2 be some trees and v be a node of T.
We say that Tis a composition of T\ and T2 at u [notation T=com(Tl9 v, T2)] if

DÉFINITION 2.5: Let r=(A, /) be a tree. A covering of T is a System of its
subtrees C = {TU . . . , Tr} such that (1) B(r i)nB(r j-) = Ç) for ail f̂ ;, l ^ i ,

; ^ r , a n d ( 2 ) A - U B(7().

DÉFINITION 2.6: Let Z ' g £ and W'^W be two alphabets. T=(A, i) is a
(syntactic) structure tree (abbreviated s-tree) over Z', PF if: (1) ail nonbottom
nodes of T are labelled by symbols in W', (2) ail bottom nodes of T are labelled
by symbols in E' v W'^u{A}, (3) each nonbottom node possessing an
immédiate successor labelled by A is of width 1. A s-tree is complete (cs-tree for
short) if every its bottom node is labelled by an element of E u { A }. A s-tree Tis
linear if every its nonbottom node has no more than one immédiate successor
labelled by a nonterminal, T is trivial if the width of T is ^ 1.

We introducé several binary relations on the set of s-trees which in a sensé
preserve their "topology".

DÉFINITION 2.7: Let TT
1=(Alî/1) and T2 = (A2il2) be two s-trees. T2 is

mimeomorphic (strictly mimeomorphic) to T\ (notation T\ % T2 and respectively
T^ST2) if there is a covering C = { T2U .. . ,T2 r} of T2 and a one-to-one
correspondence {mimeomorphism) (p between At and C with the following
properties. Let v1, v2 be two nodes of T\, q> (ÜJ ) be a w^subtree and (p (u2) be a u2-
subtree of T2 for some uliu2. Then: (1) if v2 is in i(üi) in Tl9 there is a node
(respectively a preterminal node) w of the tree cp (vi ) such that u2 is in i (uj u) in T2>

(2) if v1<] z;2in Tx then for any nodes wx of cp(u1)andu;2 of cp(i;2)w1 wl^] u2w2

holdsin T2,{3) I1(i?1)isinSu {Ajiffcp^isaone-nodeUi-subtreeand I2{ux)
is in S u { A}. If every tree in C is linear (trivial) we say that the mimeomorphism
is linear (trivial) (notation T1^

lT2 and respectively Tx%
tT2)\ if the

mimeomorphism is both strict and linear (trivial) we say that it is strictly linear
{trivial) (notation Tx ^

s l T2 and respectively T\^s t T2).

C) For a language L and a string z, z\L dénotes the quotient language { w|zw is in L}.

R.A.LR.O. Informatique théorique/Theoretical Informaties



COMPI FXITY OF MONADIC RECURSION SCHEMES 71

REMARK: If T1 g
s t T2 and all subtrees in C are either one-node or their bottom

nodes are labelled by nonterminals then T2 is homeomorphic to T1 in the graph-
theoretic sensé (cf [10]) (notation T1S

hT2).

NOTATION: Let E' £ E and W' E W. The set of all s-trees (cs-trees) of width g k
over Z', W is denoted by Sf (Z', W', k) [respectively by 5^C(E', FT, fc)]. Let

', W)= Ü

c(£', FT) = U 5^(2/, W', k)s

DÉFINITION 2.8: A set S such that S^&C(LU Wu fc) for some k and finite
E ! c E, Ŵ! c FT is called a s truc ture se t (abbreviated s-se t ) if no two trees in S are
isomorphic. L(S) = { t(T)\ T is in S} is the language characterized by 5. 5 is
unambiguous if for each z in L(S) theré is at most one cs-tree T in S such that
z = t(T); otherwise S is ambiguous. A s-set S is /ree if for any two s-trees
Ti =(Al5 i j and T2 = (A2, /2) i

n S and any nodes ÜJ of 7\ and i?2 of T2 such that
/I(Ü1) = /2(Ü2) S contains a s-tree com(CTY^), Ü1S T2{V2)).

NOTATION: Let ï ' ç Z and P T g ^ be two alphabets. The class of all
c/-grammars G=(Z l f P^ls ^, P) such that Itl c £ ' and ^ £ W, is denoted by
^(S' , W). For a c/-grammar G in^(Lf, W') we dénote its structure set, i. e. the
set of all its complete phrase-structure trees, by S(G).

PROPOSITION 2.1:

{S(G)\G is in »(£' , ^ ) } = {Sc5w(Z', »F)|S'îs a ^ree s-set}

for all Z 'c Zand ^ 'gPF.
This well known proposition will provide a grammar-free form to our notion

of complexity and to related concepts, convenient for applications to monadic
recursion schemes as well as to c/-grammars.

3. COMPLEXITY MEASURES AND STRUCTURE SETS

The concepts presented in this section are introduced in [6, 7], They form the
framework within which we study there complexity of syntactic structures and
dérivation trees in c/-grammars. In section 5 below these concepts will be appiied
to monadic recursion schemes.
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72 A. JA. DIKOVSKII

DÉFINITION 3* 1: A complexity measure is a computable total function m from
£f onto an infinité subset of Z + such that m(jT1) = m(r2) whenever Tt = T2.

We cite a few examples of complexity measures (4).

Examples 1; Density of a s-tree [11, 12]. We define this measure by induction
on full sub trees of a tree. Let Tbc a s-tree and v be a node of T, (1) If v is a bottom
node of T then |j,(r(ü)) = O. (2) Let v be a nonbottom node and:

liv = msix{ii(T(vf))\v' is in i » } .

Then:

uv2mi(v)) [v1^v2 &

then \iv+1 dse nP. n(r) = n(r(A)) is the the density of T.
2. Branching of a s-tree [6, 7] is the number b(T) of preterminal nodes of T.
3. Capacity of a s-tree T is the number c(T) of all nodes of T.

DÉFINITION 3.2: Let m be a complexity measure and S be a s-set. By
(m-) complexity of S we mean the function Xn.ms(n) where:

), ms(T)\Tin S, \T\^n},

and:

ms{T) = mm{m(T)\r in S, t(T)=t(T)} for all TinS.

Besides this for z = t(T), T in S, we.set ms(z) = ms(T).

DÉFINITION 3.3: Let m be a complexity measure, ƒ be a total nondecreasing
function, and S be a s-set. We say that ƒ is m-limiting S if:

(a) (3c) (V T in S) [m(T)Scf(\T\)] and
(fe) there is a séquence of cs-trees Tl9 T2, . . . in S (a fondamental séquence)

such that the set {1 T{\ \ i>0] is infinité and (3d) (Vî) [rfm(r£)^ƒ(| rc |)].
This concept is very close to the notion of constructable function in automata

theory and plays a similar part in our exploration.

Remark As we observed in [6] the functions Xn.n and logn (5) are respectively
fe-limiting and ji-limiting the least free s-set containing:

A A

.1
A A and b

(4) Some other examples of measures of importance for e/-grammar theory such as index, Yngve
measures, dispersion, selfembedding index, and so on, may be found in [6, 7].

(s) Functions that we use for measuring complexity are total nondecreasing functions from Z +
into Z+. For example, log M dénotes the function A,w.[log2(n+1)].
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COMPLEXITY OF MONADIC RECURSION SCHEMES 73

DÉFINITION 3.4: Let ƒ be a total nondecreasing unbounded function and m be a
complexity measure. We say that ƒ is limiting m if:

(a) (Vfc) (3c) (V Tin y (Z, W, k)) [m {T)^cf{\ T\ )] and
(b) there are k0 and a séquence of s-tress ( r l 5 . . . , Tn9 . . . ) in ̂ C ( S , IV, k0) (a

fundamental séquence off) and d>0 such that dm{Ti)^J{\ Tt\ ) for all i.

For example, log n is limiting \i [6, 9] and Xn.n is limiting fe and c.

4. MONADÏC RECURSION SCHEMES

There is an unsubstantial différence between the notion of a monadic
recursion scheme under study and that of [4] and [5], Nevertheless we outline
here both their syntax and semantics.

I. SYNTAX: Treating monadic recursion schemes we give to symbols of S and
W new names: basic and defined function symbols respectively.

Let < ^ )anN be a system of countable pairwise disjoint alphabets (of switch
function symbols) ^ = {p)\j in N} suth that ^ , n ( l u f f ) = 0 for all i,

^— U &h an<^ x be a symbol not i n ^ u l u W(a, variable symbol). Let I ' i S ,
/ in N

W'<^ W. A string z in (27 u PT')* x is a {monadic) term (over S', W"). A term z
over E', W is basic if it doesn't contain occurences of defined function symbols.

DÉFINITION 4 . 1 : A monadic recursion scheme (MK-scheme) (over S, W) is a
system £ = (E l s W^, F x , {e^ . . . , ek}) meeting the conditions:

(1) Sx c S and ^ = {F l 5 . . . , Fk} <= Ĥ  are finite alphabets;
(2) et (1 ̂ f^fe) is a formai équation of the form:

where p^(
(^ is a switch function symbol, u a x,..., uin {i) x are monadic terms over

Ei, W î, 1 ̂  i ̂  k. We say that £ t̂e/mes ƒ*!. The set {p£(
(V)> • • • ? Pmw) is denoted

by @>(E) and the class of all MR -schemes by ê.

With the M.R-scheme E in the définition 4.1 we associate a cf-grammar
in the following regular way:

where « = U
t = i

and

vol. 15, n°l , 1981



7 4 A. JA. DTKOVSKH

The associated cf-grammar will serve as a base for a semantic notion of a
computation of a MR-scheme. Besides this it is a convenient means of syntactic
classification of MJR-schemes. For example, we call a MjR-scheme E linear if its
associated grammar G (E) is linear.

IL SEMANTICS: Let E = (LU Wu Fu {eu . . . , ek}) be a Mi^-scheme. An
interprétation of E is a system I^iJ, D), where D is a set called a domain of I and
J is a functional on Z, v&(E) u {x} such that:

(1) J (f) is a total function from D into D for each/in 5^;
(2) J (x) is an element of D, and (3) for each n and each p" in 0>n n^(E)

J ( p?) is a total function from D into {1, . . . , n }, ƒ is naturally extendable to the
set of basic terms;

= J(f)(I{vx)l

for all ƒ in S1? v in E*.
An interprétation /=(J , D) of E is /ree (or Herbrand) if Z) = Xf, /(*) = A, and

j ( / ) (£)=/t for all ƒ in 5^ and r in D.
A computation of a MR-scheme £ may be considered as a rightmost

dérivation of the grammar G (E) controlled by an interprétation / in the
following sense.

DÉFINITION 4.2: Let / = (/, D) be an interprétation of the Mi?-scheme above.
Let X = yx Fty2 and Y be two strings in (£x u Wt)* and y2 be in Lf. Then:

X =>£/ F if J(pn
m%)(I(y2x))=j

for some j^rï(i), ^=yi wliy2
 a n ( i ^ e équation e- in E is of the form:

A séquence c (E, I) = (Xo? XtJ X2, *.. ) is called an J-computation séquence oîE if
(a) X0 = F l 5 and (b)Xi=>EIXi + l fox all i^O. If the J-computation séquence
c(£, i)isfinite,i.e. c(E, J)==(X0, ^ l 5 . . . , Xr) for some r, and its last string Xr

is in Sf then it is called an (I — ) computation of E.

It is evident that for all interprétations / such that c (E$ I) is a computation it is
at the same time a rightmost complete dérivation of the c/-grammar G (E), The
tree of this dérivation [denoted T(E, ƒ)] is called a tree of the I-computation
c(£, ƒ). The set of all trees of computations of E, i. e. the set { T{E, I) \ I is an

R.A.I.R.O. Informatique théorique/Theoretical Informaties



COMPLEXITY OF MONADIC RECURSION SCHEMES 75

interprétation of E} is denoted by S (£). E is unambiguous {ambiguous) if S (E) is
unambiguous (ambiguous). We will çonsider two partial value functions:

TERMVAL(£, I) = \t(T(E< I]) * c ( £ ' ' } is a c o m P u t a t i o n o f £ '
1 undefined otherwise

VAL(£, I) = /(TERMVAL(£, I)x).

The set:

TL{E) = { TERMVAL(£, I) \ I is an interprétation of E }

is called a term language of E.

DÉFINITION 4.3: We say that MK-schemes El9 E2 are termally (strongly)
equivalent (notation Ex = tE2 and E1 = SE2 respectively) if TL{E1)=TL(E2)
[respectively XI.VAL(EU I) = XI.YAL(E2, /)].

DÉFINITION 4.4: An équivalence ==r on S is called reasonable if E1 = rE2

implies £ : = ( £2
 for ail £ l 9 £2

 i n ^*

Remark: Strong équivalence of MR-schemes is of course a reasonable one.
This follows directly from the fact that if E1 = SE2 then
VAL(£l5 J) = VAL(£2,1) for each free interprétation L

DÉFINITION 4.5: Let S>
1, ê2 be two classes of M.R-schemes and =P be a

reasonable équivalence on S. We say that êr is termally {strongly, r-)
translatable into ê2 (notation êx ~> t ê2, êx ^> s S2, and Sl^>rS2 respectively) if
for each Miî-scheme Ex in êx there is a termally (strongly, r-) equivalent to Ex

MK-scheme E2 in ê2.

5. COMPLEXITY CLASSES AND MÏMEOINVARIANT MEASURES

Application of complexity measures to structure sets leads in a
straightforward manner to a natural notion of computation complexity of MR-
schemes. In fact, we measure the complexity of trees in S (E) bearing in mind that
these are tree représentations of the corresponding computations of E. So, we
arrive at the foliowing définition.

DÉFINITION 5,1: Let m be a complexity measure and £ be a MR-scheme. By
m-complexity of £ we mean the function mE — Xn.mSiE){n).

So that to stratify the class ê of all MK-schemes into complexity classes we
çonsider the folio wing relations on the set of total functions o n Z + .

vol 15, n°l , 1981



76 A. JA. DIKOVSKII

NOTATION: Let g and/be total fonctions. $-</means lim g(n)/f(n) = 0J
n-> oo

means lim g(n)/f(n)^c for some c in Z + î Le. (3c) (V°°n) [g(n)Sçf (n)], gxf
n-+ oo

means #:< ƒ & ƒ:<#, and g ;=• ƒ means that gK ƒ but not g< ƒ.

DÉFINITION 5.2: Let ƒ be a total nondecreasing function. The set <ƒ ™ = { £ | E is
a MR-scheme, mE<_ƒ} is a (m-) complexity class. Let c ̂  0 be an integer. The set
<ff = { £ | E is a MR-scheme, (Vu) [m£(n)^c]} is a c-bounded (m-) complexity

oo

c/ass. <fcônst.= U <̂ f is called a bounded (m-) complexity class.
i = 0

Of course, ê^ — ê for any function ƒ limiting a complexity measure m.

REMARK: All these notions can be (and they were) applied to c/-grammars. For
example, the complexity function of a c/-grammar G is defined as
mG = Xn.mS{G)(n) for ail complexity measures m.

DÉFINITION 5.3: A complexity measure m is nondegenerate if there is an
unambiguous MH-scheme E whose m-complexity function mE is unbounded.

Meanwhile, the définition 5.1 is too gênerai to be workable. We are looking
for a reasonable class of measures which (1) make the complexity stratifications
{ êƒ } and { S™ } nontrivial, and (2) have close values on "topologically" similar
trees. We attain both objectives imposing simple conditions on complexity
measures. These conditions formalize a vague formulation of our second
objective in terms of mimeomorphisms. In fact we assume that a s-tree r(strictly )
linear mimeomorphic to another s-tree T is only negligibly different from it from
the complexity point of view. The complexity measures meeting this condition
are called mimeoinvariant.

DÉFINITION 5,4 (main définition): A nondegenerate complexity measure m is
mimeoinvariant if it satisfies the axioms:

(3 cA) (vr l f r2 in y)

B

and it is asymptotically mimeoinvariant if it meets the conditions:

Aa

(V7\, T2 in

R.A.LR.O. Informatique théorique/Theoretical Informaties



COMPLEXITY OF MONADIC RECURSION SCHEMES 77

The measures ja. and b are obviously mimeoinvariant and asymptotically
mimeomvariant, while c is not (it must be noted that c doesn't depend on form of
s-trees). Note also that if m is (asymptotically) mimeoinvariant then all linear
MK-schemes fall into

6. RIGHT-NORMAL FORM c/-GRAMMARS AND COMPLEXITY OF INDIVIDUAL
MR-SCHEMES

Let m be a complexity measure and ƒ be an unbounded nondecreasing
function. Let us say that a c/-grammar G is of nonreducible m-complexity f ïï: (1)
mG<f a n d (2) for no c/-grammar G' such that mG,<fL(G) = L(Gf).

A similar notion may be introduced for MK-schemes. This notion however
relates upon a choice of équivalence relation among JVTR-schemes. We will
consider only reasonable équivalences. So let = r be some reasonable
équivalence relation on i and ^ , be the corresponding translatability relation.

DÉFINITION 6.1 : A MK-scheme E is of r-nonreducible m-complexity fif : (1 ) E is
in Sm

f and (2) for no MK-scheme Ef such that mE,<fEf = rE.

REMARK: ïf there is a MR-scheme of r-nonreducible m-complexity/then the
class <f™ is unempty and is r-translatable neither into any class ê™ such that
g<f, nor into <f£onst..

In this section we give the conditions sufficient for a function and a constant to
be nonreducible MK-scheme complexity bounds.

We start with a few simple observations.

DÉFINITION 6.2: A c/-grammar is in a right-normalform if ail its productions
are of the form A -• cp u, u in Z +.

PROPOSITION 6.1: For each cf-grammar G in right-normalform there is a MR-
scheme E such that S(E) = S(G) and thus mE = mG.

[Of course, this is a scheme such that G(E) = G]
The next proposition follows directly from the proof of the theorem 2.5 in [4].

PROPOSITION 6.2: For ever y MR-scheme E there are a MR-scheme Ê
(unambiguous ifE is unambiguous) with G(E) in right-normalform and a bijection
q: J' -> J on the set ƒ of ail interprétations, such that T1 = T(E, I) exists iff
T2 = T{Ê, q(I)) exists, and in the case they exist t{T1)=t(T2) and T2^

tT1.

From these propositions we have:

COROLLARY 6 .1 : For every mimeoinvariant complexity measure m and for every
MR-scheme E there is a cf-grammar GE in right-normalform such that mG£^<mE

and L{GE)=TL(E).
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COROLLARY 6.2: For any mimeoinvariant complexity measure m, any reasonable
équivalence relation == r, and any cf-grammar G in right-normal farm of
nonreducible m-complexity ƒ there is a MR-scheme E of r-nonreducible
m-complexity f

In our papers [6,8] we have developed a technics of constructing çf-grammars
of nonreducible m-eomplexities. The rfbovestated propositions permit
reconstruction of these c/-grammars into MK-sehemes of nonreducible
m-complexity in the case they are in right-normal form.

DÉFINITION 6.3: A function ƒ is semihomogeneous if

REMARK: A semihomogeneous function cannot of course be superexponential.

THEOREM 6 .1 : Let = r be a reasonable équivalence relation on ê, m be a
mimeoinvariant complexity measure, and f be a nondecreasing unbounded
semihomogeneous function m-limiting the s-set S(E)for a MR-scheme E. Then
there is a MR-scheme Ef of r-nonreducible m-complexity f

Proof: Let m, r5 ƒ and E be as above. First of ail we associate with E the MR-
scheme JE as in the proposition 6.2 and consider the cf-grammar G (Ê). Then we
carry out the foliowing construction originating from [6, 8], Let
G(Ê) = (LU Wl9 A, P). We choose four new symbols a, b, c, à in E - E r and
choose a symbol Fn in W~~ W1 for each production n in P. After this we set:

W[={Fn\n in P}uWl and P'= U Pf,
n in P

where for each TC = F -> cp in P:

As a resuit, we obtain the cf-grammar:

r [G(£ ) ]= (E 1 u {a, b, c, d], Wu Ay F).

Since m is mimeoinvariant we infère from the proposition 6.2 that the function ƒ
is m-limiting the s-set S (Ê) = S(G (Ê)). This being clear, we use the following fact
proven in [6] (thm. 9.4) and in [8] (thm. 1).

PROPOSITION 6.3: Let m be a mimeoinvariant complexity measure, f be a
nondecreasing semihomogeneous function m-limitimt the set S (G) ofa cf-grammar
G, Then the cf-grammar F [G] associated with G as above is of nonreducible
m-complexity f
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Thus we see that T[G(Ê)] is a cf-grammar in right-normal form and of
nonreducible m-complexity ƒ. Hence by the corollary 6.2 we associate with
T[G(Ê)] the needed MK-scheme Ef of r-nonreducible m-complexity ƒ.

Q.E.D.

REMARK: Consider the MK-scheme:

£0: Fx=(px\FFfx,gx).

It is evident that the function log n is n-limiting the s-set S (Eo) and the function
X n. n is b-limiting this s-set. Since both these measures are mimeoinvariant, both
functions are semihomogeneous, and G(E0) is in right-normal form the
construction of the theorem 6.1 delivers a MK-scheme Ex of r-nonreducible
|i-complexity log n and of r-nonreducible 5-complexity X n. n for each reasonable
équivalence relation = r . Though the proof of the theorem 6.1 defines this
MJR-scheme entirely we cite it out here:

Fx = ( pj x | cFx dx9 cF2 dx)9

>x9 FFfx)9

7x9 gx).

The same réduction leads to an infinité hierarchy of MK-schemes of bounded
complexity.

THEOREM 6.2: Let m be an asymptotically mimeoinvariant complexity measure,
= r be some reasonable équivalence relation on S. Then there isc^O such that for
any cs-tree Tofm-complexity k there exists a MR-scheme Ek in ë™+c which is not
= r-equivalent to any MR-scheme in any class £™ with l<k.

Proof: Consider a cs-tree *T=(A, 1) such that A > 1 and m (T) = k. Let Z7 be the
set of ail terminal labels of nodes in A. We add four new terminal symbols a, b, c, d
i n l —XrtoZrandsetL! = S r u {a, fc, c, d}. With each nonbottom node v of T
we associate two nonterminals Av, Bv in W in such a way that
{Av, B0}n{AU9 Bu}=0 for v=£u and set W1 = {AV9 B0\v in A}. T o each

nonbot tom node Ü o f r s u c h that Ï(Ü) = { Ü 1 ? .. ,9vn} a n d ^ j O v2<l . . . <l vn we

relate the System of productions P(v):

B0-*aBvb,
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where:

if l(vt) is in W9•y

1 \i{Vi) if l(vt) is in

Thus we obtain the c/-grammar GT=(LU Wu A^ P), where P = U P{v). In
u in A

the first place we note that for each cs-tree T in S (GT) T^sl T holds. Since m is
asymptotically mimeoinvariant there is c^0 such that m (7") ̂  m (!T) + c = fc -h c
for ail T'in 5 (GT) and hence mGj ^ k + c. Secondly we observe that G ris in right-
normal form. Thus by proposition 6.1 there is a MK-scheme ET such that
S(ET) = S(GT) and hence ET is in $™+c. In the paper [8] (corollary 3 from
theorem 1) we prove that if a e/-grammar G is equivalent to GT then there is no
such / < k that mG < l Assume that there is a MR-scheme £ such that E = rET and
£ is in S f for some l<k. By proposition 6.2 and the axiom Ba in the définition
5.4 there is a c/-grammar GE such that mG £^mE and L(GE)-TL(E). Hence we
conclude that mG ^ / < / c . But L(GT) = TL(ET)—TL(E) = L(GE), a
contradiction.

Q.E.D.

COROLLARY 6.3: Let m be an asymptotically mimeoinvariant complexity
measure and =rbea reasonable équivalence relation on S, Then there is an infinité
séquence of nonnegative integers nt<n2< . . . <ftfc< • • • ond MR-schemes £ l s

£ 2 , . . . , £k , . . . such that for allk>l Ek is in <f™ and for no /^n k _ x and no E in

7. INFINITE HIERARCHIES OF MK-SCHEMES OF NONREDUCIBLE COMPLEXITIES

Our main objective is to exibit conditions under which for a mimeoinvariant
complexity measure m and for a reasonable équivalence relation = r there is an
infinité hierarchy of MR-schemes {Eft} of r-nonreducible m-complexities
fi >• f2 >-ƒ* > - . . . • This will give hierarchy of complexity classes
* £ 4 ^ /7 i < ^ 4 • • • such that for no ij, i <j9 êj^> r êf. A similar hierarchy { Gfi}
of c/-grammars of nonreducible complexities is described in [6] (theorem 9.5 and
its corollaries) and in [8] (theorem 2 and its corollaries). Simple réductions of the
preceeding section are unfit ho wever for reconstruction of { Gf_} into { Efi}. The
reason is that the grammars Gf are not in right-normal form and even worse: the
traditional réductions of Gf, to right-normal form increases their complexity to
the maximal. Thus we must strengthen the results of [6, 8] and expose an infinité
hierarchy of c/-grammars in right-normal form of nonreducible complexity. To
this end we need some notions and notation related to Turing machines.
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NOTATION: Let ZT er S be an infinité alphabet. We consider the class M (XT) of
all one-tape one-head deterministic Turing machines such that for each M in
M (ET) the set KM of states of M and the set VM of tape symbols of M are both
subsets of ET. We use the standard encoding of situations and computations of
Turing machines. A situation of M is a string Q in V^ KM Vfa. If q0 is a start and
qf is a final state of M then situations Qx =qoz1 and Q2 = qf z2, zx z2 in F£, are
starting and final respectively. The symbol Q with or without indices we reserve
for the sequel as a variable over the set of Turing machine situations or their
substrings. For situations Ql9 Q2 of MQ^¥LQ2 means that Q2 immediately

M

foliows Qi in a computation of M. nM(Q) dénotes the length of the situation Q'
such that Q h Q'. A substring of a situation Q is active if it containes an occurence

M

of a state and passive if it doesn't. Let § be a symbol in £ — £T. A x-computation
record of M is the string PM (x)= §g i §82 §• * *Ô«-i §Ö„, where Qx =qox is the
starting situation with input string x, Qn is a final situation and Q£ h ô i + j for ail

M

1 ̂  f < n. In the class Jl (LT) we select the subclass JT (ET) of all Turing machines
such that:

(1) the record function Xx.PM(x) is total;

(2) the function Xx.\PM(x)\is nondecreasing with respect to the lengths of
strings x9 i. e. | xx \ ̂  | x2 \ implies | PM (xt) | ^ | PM (x2) |.

With each Turing nlachine M we associate the following integervalued
function pM which is in a sensé inverse to the record-length function
Xx.\PM(x)\:

pM(n) = if{3x)[2\PM(x)\Sn-\x\]

thenmax{r\(3x)[\x\=r&2\PM(x)\£n-r]}

else 1.

Remark: It is easily seen that for each machine M in JV' (£y ) the function pM(n)
is recursive and pM(n)f^n for ail n.

THEOREM 7 .1: Let m be a mimeoinvariant complexity measure and f be a
semihomogeneous unbounded nondecreasing function m-limiting the s-set S (G) ofa
cf-grammar G = (Zj, ^ , ƒ j , P t ). Then for each Turing machine M in Jf (LT) there
is a right-normal form cf-grammar GM of non-reducible m-complexity
\n.f{pM(n)).

Proof: To expose the needed c/-grammar it is convenient to describe first the
language it générâtes. To this end we introducé se ver al opérations and
predicates. Let m, ƒ, G, and M be fixed.
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NOTATION: 1. Consider Lc=E* and:

U 222) 'm U 2] ,

uu u? = u
k = Q

2. Let Qu Q2 be two strings in V^ u V%KM V%, Then ERRM{QU Q2) means
that either: (a) 6i is active, | Q2 \ =nM(Ql ), but Q2 does not coïncide with the
M-situation Q such that Q1 h- Q, or (6)ôi is passive, | Qx | = | Q2 |, but 6i 6

MM

Now we proeeed to the description of the grammar GM and the language
LM = L{GM).

1. First of ail we apply ]to the grammar G = (Sl9 PF^ I l5 P t) the construction
outlined above in the proof of the theorem 6.1, relating to it the grammar
T[G] = ÇLOi Wo, /o, -Po) w i t h ^0 = ^! u {a, b, c, d}. The language L(T[G]) we
dénote by Lo.

2. Then we introducé the following System of languages and pair languages
( isa symbol in I - ( I r u {§])):

L2 = {QR § x | g is a situation of M, x in EJ, | x | ^ | g I} (6)<

Ui - {(ÔR §» § ô ) I ô is a final situation of M }.

^2 = {(2*§> §2)16 is a situation of M}.

U3 = {(A, §g)| Q is a situation of M}.

§> §03)101.02.03
a r e s i t u a t i o n s o f M , | Ç , Ö 2 I < I Ö 3 I }

^ §03)101,02,03

are situations of M, \Q2\ +ih,(Qi)<2\Qz\ j .

§Ôi§ , §031632)101,021622*631032"

are situations of M, |Q3 1 | ^ [ I 6 I 621 1/3]-1,

2Q?1§> §631632)1611612,62,631632

are situations of M, \Q32\Z [162 6121 /3] - 2 ,

N = ! (QR §^§ 6 ) 16 is a starting situation of M }.

(6) zR dénotes the reversai of a string 2 : [A]R==A, [wa]R = a [w]R.
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6
Now the language LM is defined as LM= \J LMh where:

u3

4. So that to specify the needed c/-grammar GM let us notice that:
(a) L2 = U9 • { § } , where U9 = {(QR, x)\Q is a situation of M, x in Zo

+,

}
{b) L^iU^mV^MR, where Ul0={(c,d)}, U11= {(a, b)},

{}
(c) for each pair language UJt 0 ^ / ^ 1 1 , and each pair (z, w) in it w#A, so,

there is a linear function gj for each 0^ /^11 such that for all (v, u) in

(d) for each regular language there is a right-linear c/-grammar generating it.

From (a)-(d) it follows directly that there are unambiguous right-normal form
linear e/-grammars GM0, GM2, GM3, GM4, GM5, GM6 generating respectively the
languages:

M̂0 = (^0^ t / i# Ü2# U8)M{IQj, ^M2> ^M3> ^ M 4 > ^ M 5 > ^ M Ó *

Let Ĥ - and Pj be respectively nonterminal alphabets and production sets of the
grammars GMj for j in {0, 2, 3, 4, 5, 6 } . We may assume without loss of
generality that:

(1) all grammars GM0, GM2, GM3, GM4, GM5, GM6 have a common axiom ƒ;

_(2) the alphabets Wo, W0-{I}9 W2-{l}9 T F 3 - { / } ? W 4 - { / } ,

W5 — {I}, Ŵ 6 — { ƒ} are pairwise disjoint.

Let us dénote by Zj1 the alphabet KM u KM u { §, * } u Zo and by GM1 the

c/-grammar (Zf, W t, ƒ, P,) , where P^Ï = ^ o u Wo and P ! = Po u P o .
6 6

Finally let us set GM=(Zf, H^7, ƒ, PM), where Ŵ f = U Wj and P M = U Pj .

It is easily seen that L (GM1) = Lm and L (GM) = LM. By the construction all the
c/-grammars we have described, including GM) are in right-normal form. It
remains to prove that GM is a c/-grammar of nonreducible m-complexity
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UPPER BOUND: mGM<Lf(pM). To establish this bound we will show that there is
a c > 0 such that mG (z)^cf(pM (\z\ )) for ail z in LM. Since the complexity
measure m is mimeoinvariant there evidently is an integer cm>0 such that for
each linear s-tree Tm{T)<cm. This implies that for each cs-tree Tin S(GMj)J in

6
{0, 2, 3, 4, 5, 6 } , m(T)<cm, thus mGM(z)<cm for all z in U LMJ. It suffice to

establish the upper bound for all z in Lm.

Now, let us take a string z in Lm. z may be represented in form:

for some /c^O,n> 1, starting situation Qx of M, final situation Qn of M, 1 <y<n,
and x in Lo. Three alternatives arise.

1. The string §QX §g2- • • §G« is-not a computation record of M. In such a
case there is a i, l ^z<n , such that G Î ^ Ô Î + I - Let i0 be the least such i. The

computation error G Ï O / 6 Î O + I may.be. of the following four kinds.

belongs to (173# U ? ) » ^ , ([§e,0 §Ô io+if, §Ô.0+i) belongs to U5 because:

is in [ /*• ^*, and x is in L : because L0^L1. Thus z belongs to LM3, there is a

linear cs-tree T in S(GM) with the yield z and therefore mGM(z)<cm.

(b) \Qjtt+\ | <«M(6in)- ^n t n^ s situation we see that:

belongs to U*MLl9 ([ §Ô,0 §6 i o +if, §Slo)is in t/4 because:

(A, §G i + 1 ) is in t/3, ( [ § Ö i o + 2 . . . § 6 „ f ï §6* 0 + 2 . - -§6n **) belongs to
"̂o • ^2 s a n d x belongs to Lx. Thus z is in LM2 and therefore mG (z)<cm.

The bounds established in (a) and (b) show that in the rest we may assume
without loss of generality that \Qio+i\~nM{Qio). We need some additional
notions and notation for the analysis to foliow.

NOTATION: Let Q = z1 apy z2 be the représentation of a situation of M such that
\zi \ — \Z2 U PI ^ 1, and a, y are in F M u KM. A central partition of^ is the unique
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partition Q = lM(Q)rM(Q) such that:

(a) if zj ap is active then /M(ô) = z i aPï a nd rM(ô)=z2;
(b) if y z2 is active theniM(Ô) = Zi and rM(<2) = apyz2 .

2. Let Qu Q2 be two situations of M such that \Q2 \ =nM(Ql). We call a
partition Ô2

 = Ô2Ô2 of 62 Qi-derivative if either /M(ôi) is active and
IQ2 \ = n\ilhi(Qi)), or rM{Qx) is active and | Q'{\ = n. *,(>•„((?,)).

Let us return to the proof.

Let QiQ = Ql0Q^ be the central partition of Qio and ô/0 + i = Ô U i ô ^ i b e t h e

ôIo-derivative partition of (?,•„+1. There are four additional cases.

(c) 0;0 is active and Ö ^ G U i - F i r s t o f a11 w e h a v e IÔU1I = M Q Ü

and I e;;+11 = I Q;;|, From this follows:

löi'e^ii^iöi'i + iGj+i ^ia;'i+(2iQ;/i+3)+i=3iQ4'+1i+4.

Thus:

Besides this we have ERRM(Qf
ia, QL+i)- That is why in this case:

and:

([§Q/n+2--.§GJ*, §G/,,+2.-.§G„**) is in U'mUl

Therefore z is in LM5.

{d) Q'io is passive and Ö ^ G U i - s i i ; l c e 8/0
 i s passive we have | Q'io+l \ < | g;o'+11,

IQfo'l S 161'+il + 1 an<i therefore I6io+iö/o'l =3|6?0'+i I- Hence

Of course, ERRM{Q'ioy Q'io+l) is true, so, as in the preceeding case

([§Qioôin'§6io+i]*> §G?o+i6/n+i) is in ^7 a n ( l z fa^s i n t o LMS again.

(e) Q/o' is active and Q/0'f/Q£+1. In this case 16^1 = 16^1+3 and

I6/+11 ==\Qi \> hence:

M i ^ i e ; „ i + 3 and
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As ERRM(Q^, Q4'+i)is t r u e w e i n f e r e t h a t :

belongs to U6. Therefore:

ÔS + I §ÖÊ- • • §oî §* §öi §• • • §e,0 is in (U6m U*)MLU

and z is in Lm,
(ƒ) The last alternative is: Q£ is passive and OM-I^Ô?,»'- ^ere we have

|Q;O'| < |ÔU and |Q;,i+I I S i e ; j + 1. Hence:

and

As ie^ l=ie^ + i l and e;0We;0'> ERRM(Qi:, (%+l) is true and
([§Qio§QUiQC+i]R> §Q4Q0 belongs to U6. Therefore just as in the
preceeding case z falls into LM4.

Thus in all the cases (c) to ( ƒ ) mÙM (z) < cm. This shows that mGM (z) < cmfor ail z
in LMl oftheform z = PRxP^k, where Pis nota commutation record ofM. Novo let
us take the second alternative.

2- § ôi § Qz - • • § Qn is a compilation record of M but | x \ ̂  | Qx \. Then we
find that 8i §^ belongs to L2, Qi §^ §6i belongs to C/3 BL2 î and z falls into
LM6. So in this case as in all the preceeding mGM(z)<cm.

The last alternative is:

3. z = Ô ^ § e ^ 1 § v . . Q ^ § x § 0 1 . . . § Ô n - i § Ô « ^ x i n £ O s | x | < | e i | J a n d
§ôi • • • §ön is a y-computation record of M for some y. Such a string z is

6
evidently in LMl — (J LMi, Hence there is the only one dérivation tree Tin S (GMl)

i = 2

such that t(T) = z and therefore mGM(z) = rn(T). By the définition of Gm this tree
T can be represented in the form T=com(T0j i>, Tt), where To is the linear
dérivation tree in S (GM0) such that t (ro) = Ö« . . -Ôi § /0 § 6i- • -§ôn*fc^isthe
bottom node of To such that l(v) = I0, and 7̂  is the dérivation tree in S (F [G])
such that '

Now let us notice that since | x | ^ | y | we have \PM{x)\£\PM(y)\. This
implies that | PM (x) x PM (x) | ̂  | z | — k which in turn implies

Since 7\ is a tree in S (r [G]) there is a tree T2 in S (G) such that t (T2) = u, M in
L(G), and T2S

si T±, First of all this implies that | n | g | x | and hence
I w | ̂  pM ( | z | ). Secondly, ƒ is m-limiting the s-set S (G). From this it follows that
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m(T2)^cf f (| u | ) for a constant cf >0 independent of T2. Third, because m is
mimeoinvariant m{T1)igcAm(T2) is true for cA>0 independent of Tu T2.
Finally we remark that r=com(r 0 ) v9 7\) implies T^^T and therefore
m(r)^c /4rn(r1). Grouping together all these inequalities and bearing in mind
that ƒ is nondecreasing we infère:

m(T2) ^cfc
2
A f(\u\)£cfc

2
Af(pM(\z\))9

which gives the needed upper bound.

LOWER BOUND: TO establish this bound it is enough to specify for each
c/-grammar G such that L(G) = LM an infinité séquence (zt \ i in AT) in LM such
that for an integer c > 0 and for all i in N cmc(z^f{pM(\'Zi\)).

Let G be a c/-grammar such that L (G) = LM. The following lemma which is the
main technical means of our proof of the lower bound assigns to each cf-
grammar G a parameter n(G).

LEMMA7.1: For each cf-grammar G with infinité language L(G) there is an
integer n(G)>0 such that for any x in L(G) and any its complete dérivation
D = (I = Xi, . . . , Xm = x)ifx = xlzx2 and\z\ >n{G) then thesubstring zcanbe
decomposed into three parts z = z1uz2 so that | w | # 0 and the dérivation D is
representable either in farm:

I ^>* x±zxAy =>* xiz1uAuly =>* x^

or in farm:

I =>* yAz2x2 =>* yuxAuz2x2 =>* yu1vuz2x2=x.

[This result is due to A. V. Gladkii (see for example [13]). Some later it was
reproven in a stronger form by W. Ogden [14].]

To specify the séquence (zi \ i in JV) we need some notions and notation.

NOTATION: With each tree TinS(G) we will associate an infinité sub-language
of LM whose éléments we willcail T-terms. A T-term will be defined by induction
on full subtrees T{v) of T:

(1) let v be a bottom node of T with l(v)~X. Then X is an element ar y
T(v)-term;

(2) let i; be a node of 7" such that i(v)— [vu . . . , vk},v1<l v2 < . . . <]i;fcand
the r(uf)-terms 0f have been defined so far for all l^i^k. Then for a l l j^O the
string G<j>(r, v) = casQ1.. .Qkb

jd is a r(i>)-term,; is a degree of this term, and
0 l s . . . , 0^ are its subterms;

(3) each term 0 is a subterm of itself and each subterm of a subterm of 0 is a
subterm of 0;
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(4) if v0 is the root of T then e<j>(7, t?0) is a T-term for each 7^0.
Now we can specify the séquence (zs\j in N). Let Tl9 T2, T3, . . . be a

fundamental séquence of ƒ in 5 (G). Let us associate with each Tj the 7yterm 0y

such that the degrees of all its nonelementary subterms are equal to
nl ~n(G)+1. Let e be the first symbol in FM. Then we set:

where r is the width (7) of G and r,- = (r+1 )| 9,|.

Let us note that the set {r( \ i in N} and hence the set {zt | un N } are infinité.
Besides this pM ( |. z£ | ) = rf for each i. Therefore it is ènough to show that there is an
integer c> 0 such that for ail i, cmG(zi)^f{ri). The proof of this last statement is
rather tedious and lengthy. lts essence is the foliowing proposition.

PROPOSITION 7. \\Let TinS(G) be a cs-tree such that t(T) = zJor some i. Then
T can be represented inform T=com(T0, v, T(v)) so that Ti^T(v).

The proof of this proposition is omitted here. However it may be found in [6]
(a part of the proof of theorem 9.5) and in [8] (a part of the proof of
theorem 2).

So let 2" be the simplest tree in S{G) such that t{T) = zi. Then mG{zi) = m(T).
Since m is mimeoinvariant and by proposition 7.1 dBm(r)^m(r i) for a t/B>0
independent of Tand Tt, As (Tt \ i in AT) is a fundamental séquence of ƒ in S(G)
there is a e f > 0 independent of i such that efm(Ti)>f(\Ti\). It is easy to see that
| 6 i | <2 ( i ;+ l ) (2n 1 +3) | r i | , which implies that r fg2(ï;+l)2(2n1 +3)| 7t-|,
Since ƒ is a semihomogeneous function there is a o 0 independent of i such that
cf(\ Tx | ) ^ ƒ (r(). Finally we have

for all /.
Q.E.D.

COROLLARY 7.1: Let m be a mimeoinvariant complexity measure and f be a
nondecreasing unbounded semihomogeneous recursivefunction m-limiting the s-set
S(G) of à cffree grammar G. Then for each unbounded and nondecreasing with
respect to both arguments recursive function Xm, n.h(m, n) there are an
unbounded nondecreasing recursivefunction cp and a cf-grammar G in right-normal
farm of nonreducible m-complexity cp such that for all but finitely many n,
<p(n)^/i(n, ƒ(*)).

(7) The width of a c/-free grammar G is the least integer v such that S(G)<i^ c(I , W, u).
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COROLLARY 7.2: Let m be a mimeoinvariant complexity measure, ^r be a
reasonable équivalence relation on ê, and f be a nondecreasing unbounded
semihomogeneous recursive function m-limiting the s-set S(E) of a MR-scheme E.
Then for each unbounded and nondecreasing with respect to both arguments
recursive function Xm, n. h (m, n) there are an unbounded nondecreasing recursive
function <p and a MR-scheme E^ofr-nonreducible m-complexity q> such thatfor all
butfinitely many n, cp(n)^/i(rc, ƒ (n)).

COROLLARY 7.3: Let mbe a mimeoinvariant complexity measure and =rbe a
reasonable équivalence relation on ê. lf there exist a MR-scheme E and an
unbounded nondecreasing semihomogeneous function f m-limiting S (E) then there
is an infinité séquence of unbounded nondecreasing functions f{>fi>f^>^ • •
such that ƒ = A and for no f <ƒ, S™ ̂ > r^/ .m .

COROLLARY 7.4: Let mbe a mimeoinvariant complexity measure and =rbe a
reasonable équivalence relation on S. If there exist a MR-scheme E and an
unbounded nondecreasing semihomogeneous recursive function ƒ m-limiting S(E)
then for no nondecreasing unbounded recursive function g, ê™ ^ r^const.-

The proof of the corollary 7.1 may be found in [6] (corollary 1 from the
théorem 9.3) and in [7] (corollary 1 from the theorem 3). Corollaries 7.2-7.4
follow from it directly.

8. ALL MIMEOINVARIANT COMPLEXITY MEASURES PRO VIDE INFINITE CLASSIFI-
CATIONS OF MK-SCHEMES

In sections 6, 7 we considered some simple conditions sufficient for the
existence of individual MK-schemes or infinité hiérarchies of Mi^-schemes of
nonreducible complexities. It is a pity but we cannot guarantee that these
conditions hold for ail mimeoinvariant complexity measures. So in this section
classes of MK-schemes are compaired in terms of set theoretical inclusion, and
not in terms of translatability. In this much weaker sensé we will show that ail
mimeoinvariant complexity measures provide nondegenerate classifications of
MK-schemes. To this end we will simplify the construction of the theorem 7.1 so
as to infère that for each mimeoinvariant complexity measure m there is an
mtimte rnerarchy of c/-grammars in right-normal form of different
m-complexities (these grammars however not always being of nonreducible
m-complexities).

THEOREM 8.1: For each mimeoinvariant complexity measure m there is an
unbounded nondecreasing recursive function f such thatfor each Turing machine
M in Jf (Z l ) there is a right-normal form cf-grammar GMm such that
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Proof: Our mimeoinvariant complexity measure m is nondegenerate by
définition. So there is an unambiguous MK-scheme E with unbounded
complexity fonction. We apply to E the proposition 6.2 so that to obtain the
MH-scheme Ê with the following properties:

1. G(Ê) is a right-normal form c/-grammar;

2. Ê is unambiguous (because E is unambiguous);

3. mÊ is recursive (because every nonbottom node of every tree Tin S (E) has a
width no less than 2, and therefore there are only finitely many trees in S (Ê) with
n bottom nodes for ail n);

4. mÊ is unbounded (because m is mimeoinvariant and hence mE XwÉ ) .

Next we show that the complexity function mÊ is m-limiting S (Ê). First of all
we infère from unambiguity of S(Ê) that:

•'«s,/h(«) = max{0, m(T)\T in S (Ê), \T\<>n} for ail n.

This means that for every tree Tin S (Ê), m (T) g mS{Ê) (\T\), Secondly we choose
for each n a tree Tn in S(E) (if any) such that:

| YB| ^n and m(7n) = max{ m(T)\ T in S(É), | T | g w } .
Since ms(£) is unbounded and because of the abovementioned width property of
S (Ê) the set {| Tn \ \ n > 0 } is infinité. Finally we note that m(Tn) = ms(Ê)( | Tn \ ) for
ail (but finitely many) n.

This argument shows that there are a c/-grammar G0 = (L0, Wo, Io, Po) in
right-normal form and an unbounded nondecreasing recursive function ƒ
m-limiting the s-set S(G0). We apply to Go the following construction.

Let M be a Turing machine in J^ÇL7). We associate with M and Go the pair
languages Ul — UB from the proof of the theorem 7.1 and the languages:

L 3 = { QR x | Q is a situation of M, x is in SJ, 1+ | x | > | g |} ,

L 4 = { Ö Ï x Q i l ö ^ Q2 are situations of M,

7 x i s i n Z

and set L M w = U i M « i . w h e r e :

=(t/?« u,m u6

2
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There are linear c/-grammars in right-normal form GMffl0, GMm2, GMm3) GMm4,
GMm5 v GMlll6, GMm7 generating respectively the languages

^MmO = ( ^ l ^ ^ 2 ^ ^ s ) ^ {^OJ > ^Mm2 > ^Mm3» ^ Mm4 > ^ M m 5 ' ^Mm6> ^ MmT

assume that these grammars share the axiom ƒ and that for any two of them I is
their single common nonterminal. Besides this we dénote by X f̂ the alphabet
X M u K M u E o u { § } and by GMml the c/-grammar (S^, W ^ , J , P[>), where
WQ=WOKJWO, P'O = POKJPO9 WO is the nonterminal alphabet and Po is the

production set of GMm0.
Finally we set GMm = (££f, Wu I, P), where ^ is the union of nonterminal

alphabets and P is the union of production sets of the grammars GMmj, 1 ̂  j ^ 7.
Of course, L (GMm) = LMm and L (GMml) = LM m l .

UPPERBOUND: mG ^f(pM). The proof of this inequality is very close to the
proof of the corresponding inequality in the theorem 7.1 and is left to the reader.

LOWER BOUND: mG'Mm^f(pM). The proof of this statement is straight-
forward. Indeed, since ƒ is m-limiting S(G0) we find there a fundamental
séquence (T{ \ i>0). Let us dénote by xt the string t(T{) and set
^ ^ [ ^ M ^ ' ^ ' B ^ X J P M ^ 1 * ' 1 ) for each i, where e is the first symbol of VM.
The string [PM(e | X i lf /0PM(e | X l 1) is the yield of a single tree r f in
S(GMm0) for each i. We dénote by Tt the tree com(rf , vi9 T{)9 where ut- is the
single bottom node of Tf labelled by / 0 . It is obvious that Tt is in S(GMml),
t(Ti) = zi9 and Tt is the single tree in S(GMm) with the yield zt. This means that
for each i9 mGMm (z^m (Tt). Since T{^Tt and m is mimeoinvariant there is an
integer dB>0 (not dependent on i) such that rn(T{)<LdBm(Ti). Further,
(Tf | i>0) is a fundamental séquence for ƒ in S(Go), so there is an integer cf >0
one for all i such that cfm(T{)^f(\Xi\). Finally, for all i, \xt\ = p M ( | z I | ) .
Summarizing these inequalities we obtain for all i:

Q.E.D.

COROLLARY 8.1: For any mimeoinvariant complexity measure m there is an
infinité séquence of unbounded nondecreasing recursivefunctions f!
such that for allj>0, ^™-<^™

COROLLARY 8.2: Ifm is a mimeoinvariant complexity measure then for any
nondecreasing unbounded recursive function 9, ê™ — ̂ con
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9. COMPLEXÏTY OF UNAMBïGUOUS MR-SCHEMES

In this little section we show that under most reasonable conditions
complexity of unambiguous MR-schemes is of extremal nature. We discuss first a
formalization of an informai concept of extremal complexity.

DÉFINITION 9.1: Let m be a complexity measure and ƒ be a function limiting it.
Then we say that a MR-scheme E is of maximal m-complexity if for no g< ƒ, E is
in<f*.

The following proposition shows that this définition is sensible at least for
mimeoinvariant complexity measures.

PROPOSITION 9.1: Let mbea complexity measure and f be a function limiting m.
Then:

(a) if E is a MR-scheme of maximal m-complexity then it is not in < ?̂onst ;
(b) ij m is mimeoinvariant and ƒ is semihomogeneom then there exist

MR-schemes of maximal m-complexity.

Proof: (a) Since the range of m is infinité ƒ is unbounded; hence mE is
unbounded too.

(b) Let Tl9 T2> T^, ... be a fondamental séquence of ƒ. Since m is
mimeoinvariant we may assume without loss of generality that in every tree Tt in
this séquence each nonbottom node is of width no less than 2 (we will refer to this
condition as width condition).

Let k0 be a number such that {Tl9 T2, T%i . . . } g ^ c ( S , W, k0). Consider
the MR-scheme:

Eko : Fx = (px\cx, aFbx, . ..,aF**foc);

where p is in &*ko+l, and a, b, c are basic function symbols. Eko is unambiguous
and has the following property : for each i > 0 there is a tree T f in S (Eko) such that
TtS

slTf while \Tf\<3\Tt\ (this upper bound follows directly from the width
condition). Since Eko is unambiguous we have mE {\Tf\ )^m£fc (Tf) — m{Tf),
by the axiom B in the définition 5.4 there is a d°B>0 (one for ail i) such that
dBm{Tf)'^m{Ti). As Tt is a member of the fondamental séquence
cm(T t)^ ƒ (| Tt\) (c is independent of i), Finally the linear inequality
| Tf | <31 Ti\ and semihomogenity of ƒ imply that there is a b>0 such that
bf(\ Tt\ )èƒ(I Tf | ) for ail L Hence bcdBm%(Tf)^f(\ Tf \ ) for ail i.

Q.E.D.

Remark: For density and branching we have \iEi ^ log n? bEi ^ n, Since ji
and b are both mimeoinvariant and the fonctions logn and Xn.n are both
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semihomogeneous E2 is a MJR-scheme of maximal density and maximal
branching.

THEOREM 9 . 1 : Let mbe a mimeoinvariant complexity measure m-limited by a
semihomogeneous function, Then every unambiguous MR-scheme is either of
maximal m-complexity or ofbounded density (i.e.falls into ^const.)*

Proof: The proposition 6.2 guarantees that for each M.R-scheme E there is a
MK-scheme Ê, unambiguous if E is unambiguous, such that mExm£ and
S(E) = S(G(Ë)). This reduces our theorem to the following theorem proven
in [6, 9]:

If a mimeoinvariant complexity measure m is m-limited by a semihomogeneous
function then every unambiguous cf-grammar is either of maximal m-complexity or
ofbounded density.

Q.E.D.

Remark: From results of [11, 12] it follows that <f £onst coincides with the class
of all quasirational (8) MR-schemes.
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