RAIRO. INFORMATIQUE THÉORIQUE

A. Ja. DikovskiI

A theory of complexity of monadic recursion schemes

RAIRO. Informatique théorique, tome $15, \mathrm{n}^{\mathrm{o}} 1$ (1981), p. 67-94
http://www.numdam.org/item?id=ITA_1981__15_1_67_0
© AFCET, 1981, tous droits réservés.
L'accès aux archives de la revue «RAIRO. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A THEORY OF COMPLEXITY OF MONADIC RECURSION SCHEMES (*)

by A. Ja. Dikovskif (${ }^{1}$)

Communicated by J.-F. Perrot

Abstract

Complexity of a monadic recursion scheme is defined through numerical characteristics of trees representing its computations. A class of such complexity characteristics of trees essentially unlike the computation time: so called mimeoinvariant complexity measures, is introduced which induce several dense hierarchies of complexity classes of monadic recursion schemes of unbounded complexity and infinite hierarchies of bounded complexity classes. Simple conditions are found under which a function is a nonreducible upper bound of complexity of a monadic recursion scheme.

Résumé. - On définit la complexité d'un schéma récursif monadique à l'aide de propriétés numériques des arbres qui représentent ses calculs. On introduit une classe de telles propriétés de complexité des arbres, appelées les mesures de complexité miméoinvariantes, qui sont essentiellement différentes du temps de calcul, et qui induisent plusieurs hiérarchies denses de classes de complexité pour les schémas récursifs monadiques de complexité non bornée et des hiérarchies infinies de classes de complexité bornée. On donne des conditions simples qui assurent qu'une fonction est une borne supérieure irréductible pour la complexité d'un schéma récursif monadique.

1. INTRODUCTION

There were several recent attempts to find a reasonable computer-free concept of computational complexity for program schemes. In particular, three different definitions may be mentioned: by R. Constable [1], by K. Weihrauch [2], and by Y. Igarashi [3]. All the three definitions have an essential common feature: they model computation time. We propose a concept of complexity of absolutely different nature. Our complexity measures characterize combinatorial complexity of objects representing computations of schemes. Moreover, the computation time is an illegal measure in our model. The mentioned papers differ also by the classes of schemes under study. Constable and Weihrauch treat standard (iterative) program schemes, while in Igarashi's and our papers

[^0]monadic recursion schemes are considered. However, we are dealing with classical monadic recursion schemes, whereas Igarashi exhibits his time hierarchy in a class of generalized monadic recursion schemes substantially broader then that of the classical schemes; furthermore, this hierarchy degenerates for classical monadic recursion schemes.

As it is well known [4,5] there is a tight relation between monadic recursion schemes and $c f$-grammars: with each scheme E a $c f$-grammar $G(E)$ is associated in a natural way, every computation of E under an interpretation I is represented by a rightmost derivation of $G(E)$ "controlled" by I. We make next step and consider the trees of these derivations as representations of the corresponding computations. After this it is rather natural to introduce complexity measures as integer-valued functions on trees.

This relation is the base for replantation of already existing complexity theory of $c f$-grammars as outlined in our earlier papers [6-9] to monadic recursion schemes. In particular, we apply (with minory changes) to monadic recursion schemes a central concept of this theory: the notion of a mimeoinvariant complexity measure (section 5). The characteristic feature of these measures is their invariance under a class of transformations of trees preserving on the whole their "topology". A complexity measure m has been chosen, we associate with each monadic recursion scheme E its m-complexity function m_{E} and thus to any nondecreasing total function f relate the class \mathscr{E}_{f}^{m} of all schemes whose complexity functions do not exeed f. Mimeoinvariance of m implies that all quasirational monadic recursion schemes fall into bounded complexity class $\mathscr{E}_{\text {Const. }}^{m}$. As it turns out all mimeoinvariant complexity measures have high classificational capacities. In section 6 we find simple conditions under which a function f or a constant c become nonreducible upper bounds of m-complexity of a monadic recursion scheme (thms. 6.1, 6.2). The main result of section 7 (thm. 7.1) gives a condition under which for a mimeoinvariant complexity measure m there is an infinitely decreasing sequence of functions $f_{1} \succ f_{2} \succ f_{3} \succ \ldots$ where each f_{i} is a nonreducible upper bound of m-complexity of a monadic recursion scheme. The theorem 8.1, a simplified version of this hierarchy theorem, shows that for any mimeoinvariant complexity measure m there is an infinitely decreasing sequence of functions $f_{1} \succ f_{2} \succ f_{3} \succ \ldots$ such that $\mathscr{E}_{f_{i}}^{m}-\mathscr{E}_{f_{i+1}}^{m} \neq \emptyset$ for all i. Hence all mimeoinvariant measures provide nondegenerate classifications of monadic recursion schemes. Finally, in the nineth section we formulate a definition of a monadic recursion scheme of maximal complexity and show that under reasonable conditions all unambiguous monadic recursion schemes are either of maximal complexity or of bounded density.

2. PRELIMINARIES

We choose for the sequel two countable disjoint alphabets Σ and W (of terminal and nonterminal symbols respectively).
Defintions and notation 2.1: Let z be a string. A prefix (suffix) of z is any string v such that $z=v u$ (respectively $z=u v$) for a string u. Let N and Z_{+}denote the set of all numbers and all nonnegative integers respectively. A (finite labelled rooted) tree is a pair $T=(\Delta, l)$, where: (1) Δ is a finite nonempty subset of $\left(Z_{+}\right)^{*}$; (2) Δ is prefix closed, i. e. with every string z it containes all its prefixes; (3) l is a function (called a labelling) from Δ to $\Sigma \cup W \cup\{\Lambda\}\left(\Lambda\right.$ is the empty string) $\left({ }^{2}\right)$.

Strings in Δ are called nodes of T. For a node v of $T l(v)$ is called a label of v.
Let v, v^{\prime} be two nodes of T such that $v=v^{\prime} a$ for some a in Z_{+}. Then v is called an immediate successor of v^{\prime} (in T). The set of all immediate successors of a node v is denoted by $i(v)$. The cardinality of $i(v)$ is called a width of v. The maximal width of nodes of T is called a width of T. A sequence $p=\left(v_{1}, v_{2}, \ldots, v_{n}\right), n \geqq 1$, of nodes of T is called a path from v_{1} to v_{n} (n being its length) if v_{i+1} is in $i\left(v_{i}\right)$ for all $1 \leqq i<n$. A path $\left(v_{1}, v_{2}\right)$ is called an arrow from v_{1} to v_{2}. A node v^{\prime} is called a successor of a node v if $v \neq v^{\prime}$ and there is a path from v to v^{\prime}.

The node Λ is called a root of T. A node v is bottom if there is no arrow from v to a node of T, and nonbottom otherwise. A node v is preterminal if $l(v)$ is in $W \cup\{\Lambda\}$ and either v is bottom or all immediate successors of v are bottom and are labelled by symbols in Σ.

We consider the following natural (partial) order (denoted by \triangleleft) on the set of nodes of $T . v_{1} \triangleleft v_{2}$ holds iff there are nodes $v, v_{1}^{\prime}, v_{2}^{\prime}$ in Δ such that $v_{1}^{\prime}, v_{2}^{\prime}$ are in $i(v), v_{1}^{\prime}=v a, v_{2}^{\prime}=v b$ for some a, b in Z_{+}such that $a<b$, and $v_{1}, v_{1}^{\prime}\left(v_{2}, v_{2}^{\prime}\right)$ either coincide, or $v_{1}\left(v_{2}\right)$ is a successor of $v_{1}^{\prime}\left(v_{2}^{\prime}\right)$. This natural order is complete on the set of bottom nodes of T. If $v_{1} \triangleleft v_{2} \triangleleft \ldots \triangleleft v_{s}$ is the sequence of all bottom nodes of T in their natural order then the string $l\left(v_{1}\right) l\left(v_{2}\right) \ldots l\left(v_{s}\right)$ [denoted by $t(T)]$ is the yield of T. The length s of this string is denoted by $|T|$.

Definition 2.2: Two trees $T_{1}=\left(\Delta_{1}, l_{1}\right)$ and $T_{2}=\left(\Delta_{2}, l_{2}\right)$ are isomorphic (notation $T_{1} \equiv T_{2}$) if there is a one-to-one correspondence h between Δ_{1} and Δ_{2} such that for any two nodes v_{1}, v_{2} of T_{1} : (1) v_{2} is a successor of v_{1} iff $h\left(v_{2}\right)$ is a successor of $h\left(v_{1}\right)$ in T_{2}, (2) $v_{1} \triangleleft v_{2}$ iff $h\left(v_{1}\right) \triangleleft h\left(v_{2}\right)$ in T_{2}, (3) $l_{1}\left(v_{1}\right)=l_{2}\left(h\left(v_{1}\right)\right)$.

[^1]Definition 2.3: Let $T=(\Delta, l)$ be a tree and v be a node of T. A tree $T^{\prime}=\left(\Delta^{\prime}, l^{\prime}\right)$, where $\left(^{3}\right) \Delta^{\prime} \subseteq v \backslash \Delta$ and $l^{\prime}(z)=l(v z)$ for all z in Δ^{\prime} is called a $(v$ - $)$ subtree of T. $B\left(T^{\prime}\right)=v \Delta^{\prime}$ is a base set of T^{\prime}. The v-subtree (denoted by $T(v)$) whose base set $B(T(v))$ is the least subset of Δ containing v and all its successors is called a full (v-) subtree of T. The Λ-subtree of T [denoted by $C T(v)$] with the base set $(\Delta-B(T(v))) \cup\{v\}$ is called a complementary v-subtree of T.

Definition 2.4: Let $T=(\Delta, l), T_{1}$ and T_{2} be some trees and v be a node of T. We say that T is a composition of T_{1} and T_{2} at $v\left[\right.$ notation $\left.T=\operatorname{com}\left(T_{1}, v, T_{2}\right)\right]$ if $T_{1} \equiv C T(v)$ and $T_{2} \equiv T(v)$.

Definition 2.5: Let $T=(\Delta, l)$ be a tree. A covering of T is a system of its subtrees $C=\left\{T_{1}, \ldots, T_{\mathrm{r}}\right\}$ such that (1) $B\left(T_{i}\right) \cap B\left(T_{j}\right)=\varnothing$ for all $i \neq j, 1 \leqq i$, $j \leqq r$, and (2) $\Delta=\bigcup_{i=1} B\left(T_{i}\right)$.

Definition 2.6: Let $\Sigma^{\prime} \subseteq \Sigma$ and $W^{\prime} \subseteq W$ be two alphabets. $T=(\Delta, l)$ is a (syntactic) structure tree (abbreviated s-tree) over $\Sigma^{\prime}, W^{\prime}$ if: (1) all nonbottom nodes of T are labelled by symbols in W^{\prime}, (2) all bottom nodes of T are labelled by symbols in $\Sigma^{\prime} \cup W^{\prime} \cup\{\Lambda\}$, (3) each nonbottom node possessing an immediate successor labelled by Λ is of width 1 . A s-tree is complete (cs-tree for short) if every its bottom node is labelled by an element of $\Sigma \cup\{\Lambda\}$. A s-tree T is linear if every its nonbottom node has no more than one immediate successor labelled by a nonterminal, T is trivial if the width of T is $\leqq 1$.

We introduce several binary relations on the set of s-trees which in a sense preserve their "topology".

Definition 2.7: Let $T_{1}=\left(\Delta_{1}, l_{1}\right)$ and $T_{2}=\left(\Delta_{2}, l_{2}\right)$ be two s-trees. T_{2} is mimeomorphic (strictly mimeomorphic) to T_{1} (notation $T_{1} \leqq T_{2}$ and respectively $T_{1} \leqq{ }^{s} T_{2}$) if there is a covering $C=\left\{T_{21}, \ldots, T_{2 r}\right\}$ of T_{2} and a one-to-one correspondence (mimeomorphism) φ between Δ_{1} and C with the following properties. Let v_{1}, v_{2} be two nodes of $T_{1}, \varphi\left(v_{1}\right)$ be a u_{1}-subtree and $\varphi\left(v_{2}\right)$ be a u_{2} subtree of T_{2} for some u_{1}, u_{2}. Then: (1) if v_{2} is in $i\left(v_{1}\right)$ in T_{1}, there is a node (respectively a preterminal node) u of the tree $\varphi\left(v_{1}\right)$ such that u_{2} is in $i\left(u_{1} u\right)$ in T_{2}, (2) if $v_{1} \triangleleft v_{2}$ in T_{1} then for any nodes w_{1} of $\varphi\left(v_{1}\right)$ and w_{2} of $\varphi\left(v_{2}\right) u_{1} w_{1} \triangleleft u_{2} w_{2}$ holds in T_{2}, (3) $l_{1}\left(v_{1}\right)$ is in $\Sigma \cup\{\Lambda\}$ iff $\varphi\left(v_{1}\right)$ is a one-node u_{1}-subtree and $l_{2}\left(u_{1}\right)$ is in $\Sigma \cup\{\Lambda\}$. If every tree in C is linear (trivial) we say that the mimeomorphism is linear (trivial) (notation $T_{1} \leqq{ }^{l} T_{2}$ and respectively $T_{1} \leqq^{t} T_{2}$); if the mimeomorphism is both strict and linear (trivial) we say that it is strictly linear (trivial) (notation $T_{1} \leqq{ }^{s l} T_{2}$ and respectively $T_{1} \leqq{ }^{s t} T_{2}$).

[^2]Remark: If $T_{1} \leqq{ }^{s t} T_{2}$ and all subtrees in C are either one-node or their bottom nodes are labelled by nonterminals then T_{2} is homeomorphic to T_{1} in the graphtheoretic sense (cf. [10]) (notation $T_{1} \leqq{ }^{h} T_{2}$).

Notation: Let $\Sigma^{\prime} \subseteq \Sigma$ and $W^{\prime} \cong W$. The set of all s-trees ($c s$-trees) of width $\leqq k$ over $\Sigma^{\prime}, W^{\prime}$ is denoted by $\mathscr{S}\left(\Sigma^{\prime}, W^{\prime}, k\right)$ [respectively by $\mathscr{S}^{c}\left(\Sigma^{\prime}, W^{\prime}, k\right)$]. Let

$$
\begin{gathered}
\mathscr{S}\left(\Sigma^{\prime}, W^{\prime}\right)=\bigcup_{k=0}^{\infty} \mathscr{S}\left(\Sigma^{\prime}, W^{\prime}, k\right), \\
\mathscr{S}^{c}\left(\Sigma^{\prime}, W^{\prime}\right)=\bigcup_{k=0}^{\infty} \mathscr{S}^{c}\left(\Sigma^{\prime}, W^{\prime}, k\right), \\
\mathscr{S}(\Sigma, W)=\mathscr{S}, \quad \mathscr{S}^{c}(\Sigma, W)=\mathscr{S}^{c} .
\end{gathered}
$$

Definition 2.8: A set S such that $S \subseteq \mathscr{S}^{c}\left(\Sigma_{1}, W_{1}, k\right)$ for some k and finite $\Sigma_{1} \subset \Sigma, W_{1} \subset W$ is called a structure set (abbreviated s-set) if no two trees in S are isomorphic. $L(S)=\{t(T) \mid T$ is in $S\}$ is the language characterized by $S . S$ is unambiguous if for each z in $L(S)$ there is at most one $c s$-tree T in S such that $z=t(T)$; otherwise S is ambiguous. A s-set S is free if for any two s-trees $T_{1}=\left(\Delta_{1}, l_{1}\right)$ and $T_{2}=\left(\Delta_{2}, l_{2}\right)$ in S and any nodes v_{1} of T_{1} and v_{2} of T_{2} such that $l_{1}\left(v_{1}\right)=l_{2}\left(v_{2}\right) S$ contains a s-tree $\operatorname{com}\left(C T_{1}\left(v_{1}\right), v_{1}, T_{2}\left(v_{2}\right)\right)$.

Notation: Let $\Sigma^{\prime} \subseteq \Sigma$ and $W^{\prime} \subseteq W$ be two alphabets. The class of all $c f$-grammars $G=\left(\Sigma_{1}, W_{1}, A, P\right)$ such that $\Sigma_{1} \subseteq \Sigma^{\prime}$ and $W_{1} \subseteq W^{\prime}$, is denoted by $\mathscr{G}\left(\Sigma^{\prime}, W^{\prime}\right)$. For a $c f$-grammar G in $\mathscr{G}\left(\Sigma^{\prime}, W^{\prime}\right)$ we denote its structure set, i. e. the set of all its complete phrase-structure trees, by $S(G)$.

Proposition 2.1:

$$
\left\{S(G) \mid G \text { is in } \mathscr{G}\left(\Sigma^{\prime}, W^{\prime}\right)\right\}=\left\{S \subset \mathscr{S}^{c}\left(\Sigma^{\prime}, W^{\prime}\right) \mid S^{\prime} \text { is a free } s \text {-set }\right\}
$$

for all $\Sigma^{\prime} \subseteq \Sigma$ and $W^{\prime} \subseteq W$.
This well known proposition will provide a grammar-free form to our notion of complexity and to related concepts, convenient for applications to monadic recursion schemes as well as to $c f$-grammars.

3. COMPLEXITY MEASURES AND STRUCTURE SETS

The concepts presented in this section are introduced in $[6,7]$. They form the framework within which we study there complexity of syntactic structures and derivation trees in $c f$-grammars. In section 5 below these concepts will be applied to monadic recursion schemes.

Definition 3.1: A complexity measure is a computable total function m from \mathscr{S} onto an infinite subset of Z_{+}such that $m\left(T_{1}\right)=m\left(T_{2}\right)$ whenever $T_{1} \equiv T_{2}$.

We cite a few examples of complexity measures $\left(^{4}\right)$.
Examples 1: Density of a s-tree [11, 12]. We define this measure by induction on full subtrees of a tree. Let T be a s-tree and v be a node of T. (1) If v is a bottom node of T then $\mu(T(v))=0$. (2) Let v be a nonbottom node and:

$$
\mu_{v}=\max \left\{\mu\left(T\left(v^{\prime}\right)\right) \mid v^{\prime} \text { is in } i(v)\right\}
$$

Then:

$$
\mu(T(v))=i f\left(\exists v_{1}, v_{2} \text { in } i(v)\right)\left[v_{1} \neq v_{2} \& \mu\left(T\left(v_{1}\right)\right)=\mu\left(T\left(v_{2}\right)\right)=\mu_{v}\right]
$$

then $\mu_{v}+1$ else $\mu_{v} \cdot \mu(T)=\mu(T(\Lambda))$ is the the density of T.
2. Branching of a s-tree $[6,7]$ is the number $b(T)$ of preterminal nodes of T.
3. Capacity of a s-tree T is the number $c(T)$ of all nodes of T.

Definition 3.2: Let m be a complexity measure and S be a s-set. By (m-) complexity of S we mean the function $\lambda n . m_{S}(n)$ where:

$$
m_{S}(n)=\max \left\{0, m_{S}(T) \mid T \text { in } S,|T| \leqq n\right\}
$$

and:

$$
m_{S}(T)=\min \left\{m\left(T^{\prime}\right) \mid T^{\prime} \text { in } S, t\left(T^{\prime}\right)=t(T)\right\} \quad \text { for all } T \text { in } S
$$

Besides this for $z=t(T), T$ in S, we set $m_{S}(z)=m_{S}(T)$.
Definition 3.3: Let m be a complexity measure, f be a total nondecreasing function, and S be a s-set. We say that f is m-limiting S if:
$(a)(\exists c)(\forall T$ in $S)[m(T) \leqq c f(|T|)]$ and
(b) there is a sequence of $c s$-trees T_{1}, T_{2}, \ldots in S (a fundamental sequence) such that the set $\left\{\left|T_{i}\right| \mid i>0\right\}$ is infinite and $(\exists d)(\forall i)\left[d m\left(T_{i}\right) \geqq f\left(\left|T_{i}\right|\right)\right]$.

This concept is very close to the notion of constructable function in automata theory and plays a similar part in our exploration.

Remark As we observed in [6] the functions $\lambda n . n$ and $\log n\left(^{5}\right)$ are respectively b-limiting and μ-limiting the least free s-set containing:

and

[^3]DEFInItion 3.4: Let f be a total nondecreasing unbounded function and m be a complexity measure. We say that f is limiting m if:
(a) $(\forall k)(\exists c)(\forall T$ in $\mathscr{S}(\Sigma, W, k))[m(T) \leqq c f(|T|)]$ and
(b) there are k_{0} and a sequence of s-tress $\left(T_{1}, \ldots, T_{n}, \ldots\right)$ in $\mathscr{S}^{c}\left(\Sigma, W, k_{0}\right)$ (a fundamental sequence of f) and $d>0$ such that $d m\left(T_{i}\right) \geqq f\left(\left|T_{i}\right|\right)$ for all i.

For example, $\log n$ is limiting $\mu[6,9]$ and $\lambda n . n$ is limiting b and c.

4. MONADIC RECURSION SCHEMES

There is an unsubstantial difference between the notion of a monadic recursion scheme under study and that of [4] and [5]. Nevertheless we outline here both their syntax and semantics.
I. Syntax: Treating monadic recursion schemes we give to symbols of Σ and W new names: basic and defined function symbols respectively.

Let $\left\langle\mathscr{P}_{i}\right\rangle_{i \text { in } N}$ be a system of countable pairwise disjoint alphabets (of switch function symbols) $\mathscr{P}_{i}=\left\{p_{j}^{i} \mid j\right.$ in $\left.N\right\}$ such that $\mathscr{P}_{i} \cap(\Sigma \cup W)=\varnothing$ for all i, $\mathscr{P}=\bigcup_{i \text { in } N} \mathscr{P}_{i}$, and x be a symbol not in $\mathscr{P} \cup \Sigma \cup W$ (a variable symbol). Let $\Sigma^{\prime} \cong \Sigma$, $W^{\prime} \cong W$. A string z in $\left(\Sigma^{\prime} \cup W^{\prime}\right)^{*} x$ is a (monadic) term (over $\Sigma^{\prime}, W^{\prime}$). A term z over $\Sigma^{\prime}, W^{\prime}$ is basic if it doesn't contain occurences of defined function symbols.

Definition 4.1: A monadic recursion scheme ($M R$-scheme) (over Σ, W) is a system $E=\left(\Sigma_{1}, W_{1}, F_{1},\left\{e_{1}, \ldots, e_{k}\right\}\right)$ meeting the conditions:
(1) $\Sigma_{1} \subset \Sigma$ and $W_{1}=\left\{F_{1}, \ldots, F_{k}\right\} \subset W$ are finite alphabets;
(2) $e_{i}(1 \leqq i \leqq k)$ is a formal equation of the form:

$$
e_{i}: \quad F_{i} x=\left(p_{m(i)}^{n(i)} x \mid u_{i 1} x, \ldots, u_{i n(i)} x\right)
$$

where $p_{m(i)}^{n(i)}$ is a switch function symbol, $u_{i 1} x, \ldots, u_{i n(i)} x$ are monadic terms over $\Sigma_{1}, W_{1}, 1 \leqq i \leqq k$. We say that E defines F_{1}. The set $\left\{p_{m(1)}^{n(1)}, \cdots, p_{m(k)}^{n(k)}\right\}$ is denoted by $\mathscr{P}(E)$ and the class of all $M R$-schemes by \mathscr{E}.

With the $M R$-scheme E in the definition 4.1 we associate a cf-grammar $G(E)$ in the following regular way:

$$
G(E)=\left(\Sigma_{1}, W_{1}, F_{1}, R\right), \quad \text { where } \quad R=\bigcup_{i=1}^{k} R\left(e_{i}\right)
$$

and

$$
R\left(e_{i}\right)=\left\{F_{i} \rightarrow u_{i 1}, \ldots, F_{i} \rightarrow u_{i n(i)}\right\}, \quad 1 \leqq i \leqq k .
$$

The associated cf-grammar will serve as a base for a semantic notion of a computation of a $M R$-scheme. Besides this it is a convenient means of syntactic classification of $M R$-schemes. For example, we call a $M R$-scheme E linear if its associated grammar $G(E)$ is linear.
II. Semantics: Let $E=\left(\Sigma_{1}, W_{1}, F_{1},\left\{e_{1}, \ldots, e_{k}\right\}\right)$ be a $M R$-scheme. An interpretation of E is a system $I=(J, D)$, where D is a set called a domain of I and J is a functional on $\Sigma_{1} \cup \mathscr{P}(E) \cup\{x\}$ such that:
(1) $J(f)$ is a total function from D into D for each f in Σ_{1};
(2) $J(x)$ is an element of D, and (3) for each n and each p_{i}^{n} in $\mathscr{P}_{n} \cap \mathscr{P}(E)$ $J\left(p_{i}^{n}\right)$ is a total function from D into $\{1, \ldots, n\} . I$ is naturally extendable to the set of basic terms:

$$
\left\{\begin{array}{l}
I(x)=J(x) \\
I(f v x)=J(f)(I(v x))
\end{array}\right.
$$

for all f in Σ_{1}, v in Σ_{1}^{*}.
An interpretation $I=(J, D)$ of E is free (or Herbrand) if $D=\Sigma_{1}^{*}, J(x)=\Lambda$, and $J(f)(t)=f t$ for all f in Σ_{1} and t in D.

A computation of a $M R$-scheme E may be considered as a rightmost derivation of the grammar $G(E)$ controlled by an interpretation I in the following sense.

Definition 4.2: Let $I=(J, D)$ be an interpretation of the $M R$-scheme above. Let $X=y_{1} F_{i} y_{2}$ and Y be two strings in $\left(\Sigma_{1} \cup W_{1}\right)^{*}$ and y_{2} be in Σ_{1}^{*}. Then:

$$
X \quad \Rightarrow_{E I} \quad Y \quad \text { if } \quad J\left(p_{m(i)}^{n(i)}\right)\left(I\left(y_{2} x\right)\right)=j
$$

for some $j \leqq n(i), Y=y_{1} u_{i j} y_{2}$ and the equation e_{i} in E is of the form:

$$
e_{i}: \quad F_{i} x=\left(p_{m(i)}^{n(i)} x \mid u_{i 1} x, \ldots, u_{i j} x, \ldots, u_{i n(i)} x\right)
$$

A sequence $c(E, I)=\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ is called an I-computation sequence of E if (a) $X_{0}=F_{1}$, and (b) $X_{i} \Rightarrow_{E I} X_{i+1}$ for all $i \geqq 0$. If the I-computation sequence $c(E, I)$ is finite, i.e. $c(E, I)=\left(X_{0}, X_{1}, \ldots, X_{r}\right)$ for some r, and its last string X_{r} is in Σ_{1}^{*} then it is called an $(I-)$ computation of E.

It is evident that for all interpretations I such that $c(E, I)$ is a computation it is at the same time a rightmost complete derivation of the $c f$-grammar $G(E)$. The tree of this derivation [denoted $T(E, I)$] is called a tree of the I-computation $c(E, I)$. The set of all trees of computations of E, i. e. the set $\{T(E, I) \mid I$ is an
interpretation of $E\}$ is denoted by $S(E)$. E is unambiguous (ambiguous) if $S(E)$ is unambiguous (ambiguous). We will consider two partial value functions:
$\operatorname{TERMVAL}(E, I)=\left\{\begin{array}{l}t(T(E, I)) \text { if } c(E, I) \text { is a computation of } E, \\ \text { undefined otherwise }\end{array}\right.$

$$
\operatorname{VAL}(E, I)=I(\operatorname{TERMVAL}(E, I) x)
$$

The set:

$$
T L(E)=\{\operatorname{TERMVAL}(E, I) \mid I \text { is an interpretation of } E\}
$$

is called a term language of E.
Definition 4.3: We say that $M R$-schemes E_{1}, E_{2} are termally (strongly) equivalent (notation $E_{1} \equiv_{t} E_{2}$ and $E_{1} \equiv{ }_{s} E_{2}$ respectively) if $T L\left(E_{1}\right)=T L\left(E_{2}\right)$ $\left[\right.$ respectively $\left.\lambda I . \operatorname{VAL}\left(E_{1}, I\right)=\lambda I . \operatorname{VAL}\left(E_{2}, I\right)\right]$.

Definition 4.4: An equivalence \equiv_{r} on \mathscr{E} is called reasonable if $E_{1} \equiv{ }_{r} E_{2}$ implies $E_{1} \equiv{ }_{t} E_{2}$ for all E_{1}, E_{2} in \mathscr{E}.

Remark: Strong equivalence of $M R$-schemes is of course a reasonable one. This follows directly from the fact that if $E_{1} \equiv{ }_{s} E_{2}$ then $\operatorname{VAL}\left(E_{1}, I\right)=\operatorname{VAL}\left(E_{2}, I\right)$ for each free interpretation I.

Definition 4.5: Let $\mathscr{E}_{1}, \mathscr{E}_{2}$ be two classes of $M R$-schemes and \equiv_{r} be a reasonable equivalence on \mathscr{E}. We say that \mathscr{E}_{1} is termally (strongly, r-) translatable into \mathscr{E}_{2} (notation $\mathscr{E}_{1} \Rightarrow_{t} \mathscr{E}_{2}, \mathscr{E}_{1} \Rightarrow_{s} \mathscr{E}_{2}$, and $\mathscr{E}_{1} \Rightarrow_{r} \mathscr{E}_{2}$ respectively) if for each $M R$-scheme E_{1} in \mathscr{E}_{1} there is a termally (strongly, r-) equivalent to E_{1} $M R$-scheme E_{2} in \mathscr{E}_{2}.

5. COMPLEXITY CLASSES AND MIMEOINVARIANT MEASURES

Application of complexity measures to structure sets leads in a straightforward manner to a natural notion of computation complexity of $M R$ schemes. In fact, we measure the complexity of trees in $S(E)$ bearing in mind that these are tree representations of the corresponding computations of E. So, we arrive at the following definition.

Definition 5.1: Let m be a complexity measure and E be a $M R$-scheme. By m-complexity of E we mean the function $m_{E}=\lambda n . m_{S(E)}(n)$.

So that to stratify the class \mathscr{E} of all $M R$-schemes into complexity classes we consider the following relations on the set of total functions on Z_{+}.

Notation: Let g and f be total functions. $g<f$ means $\lim _{n \rightarrow \infty} g(n) / f(n)=0, g \preceq f$ means $\varlimsup_{\lim } g(n) / f(n) \leqq c$ for some c in Z_{+}, i.e. $(\exists c)\left(\forall^{\infty} n\right)[g(n) \leqq c f(n)], g \asymp f$ means $g \preceq f \& f \preceq g$, and $g \nrightarrow f$ means that $g \preceq f$ but not $g \prec f$.

Definition 5.2: Let f be a total nondecreasing function. The set $\mathscr{E}_{f}^{m}=\{E \mid E$ is a $M R$-scheme, $\left.m_{E} \preceq f\right\}$ is a (m-) complexity class. Let $c \geqq 0$ be an integer. The set $\mathscr{E}_{c}^{m}=\left\{E \mid E\right.$ is a $M R$-scheme, $\left.(\forall n)\left[m_{E}(n) \leqq c\right]\right\}$ is a c-bounded $(m$-) complexity class. $\mathscr{E}_{\text {Const. }}^{m}=\bigcup_{i=0}^{\infty} \mathscr{E}_{i}^{m}$ is called a bounded (m-) complexity class.

Of course, $\mathscr{E}_{f}^{m}=\mathscr{E}$ for any function f limiting a complexity measure m.
Remark: All these notions can be (and they were) applied to $c f$-grammars. For example, the complexity function of a $c f$-grammar G is defined as $m_{G}=\lambda n . m_{S(G)}(n)$ for all complexity measures m.

Definition 5.3: A complexity measure m is nondegenerate if there is an unambiguous $M R$-scheme E whose m-complexity function m_{E} is unbounded.

Meanwhile, the definition 5.1 is too general to be workable. We are looking for a reasonable class of measures which (1) make the complexity stratifications $\left\{\mathscr{E}_{f}^{m}\right\}$ and $\left\{\mathscr{E}_{c}^{m}\right\}$ nontrivial, and (2) have close values on "topologically" similar trees. We attain both objectives imposing simple conditions on complexity measures. These conditions formalize a vague formulation of our second objective in terms of mimeomorphisms. In fact we assume that a s-tree T (strictly) linear mimeomorphic to another s-tree T^{\prime} is only negligibly different from it from the complexity point of view. The complexity measures meeting this condition are called mimeoinvariant.

Definition 5.4 (main definition): A nondegenerate complexity measure m is mimeoinvariant if it satisfies the axioms:

A

$$
\begin{aligned}
& \left\{\begin{array}{c}
\left(\exists c_{A}\right)\left(\forall T_{1}, T_{2} \text { in } \mathscr{S}\right) \\
\left.T_{1} \leqq{ }^{l} T_{2} \supset m\left(T_{2}\right) \leqq c_{A} m\left(T_{1}\right)\right],
\end{array}\right. \\
& \left\{\begin{array}{c}
\left(\exists d_{B}\right)\left(\forall T_{1}, T_{2} \text { in } \mathscr{S}\right) \\
{\left[T_{1} \leqq T_{2} \supset m\left(T_{1}\right) \leqq d_{B} m\left(T_{2}\right)\right],}
\end{array}\right.
\end{aligned}
$$

and it is asymptotically mimeoinvariant if it meets the conditions:
A^{a}

$$
\begin{aligned}
& \left\{\begin{array}{c}
(\exists c \geqq 0)\left(\forall T_{1}, T_{2} \text { in } \mathscr{S}\right) \\
{\left[T_{1} \leqq{ }^{s l} T_{2} \supset m\left(T_{2}\right) \leqq m\left(T_{1}\right)+c\right],}
\end{array}\right. \\
& \left\{\begin{array}{c}
\left(\forall T_{1}, T_{2} \text { in } \mathscr{S}\right) \\
{\left[T_{1} \leqq T_{2} \supset m\left(T_{1}\right) \leqq m\left(T_{2}\right)\right] .}
\end{array}\right.
\end{aligned}
$$

B^{a}

The measures μ and b are obviously mimeoinvariant and asymptotically mimeoinvariant, while c is not (it must be noted that c doesn't depend on form of s-trees). Note also that if m is (asymptotically) mimeoinvariant then all linear $M R$-schemes fall into $\mathscr{E}_{\text {Const. }}^{m}$.

6. RIGHT-NORMAL FORM $c f$-GRAMMARS AND COMPLEXITY OF INDIVIDUAL MR-SCHEMES

Let m be a complexity measure and f be an unbounded nondecreasing function. Let us say that a $c f$-grammar G is of nonreducible m-complexityf if: (1) $m_{G} \preceq f$ and (2) for no $c f$-grammar G^{\prime} such that $m_{G^{\prime}} \prec f L(G)=L\left(G^{\prime}\right)$.

A similar notion may be introduced for $M R$-schemes. This notion however relates upon a choice of equivalence relation among $M R$-schemes. We will consider only reasonable equivalences. So let \equiv_{r} be some reasonable equivalence relation on \mathscr{E} and \Rightarrow_{r} be the corresponding translatability relation.

Definition 6.1: A $M R$-scheme E is of r-nonreducible m-complexityfif: (1) E is in \mathscr{E}_{f}^{m} and (2) for no $M R$-scheme E^{\prime} such that $m_{E^{\prime}} \prec f E^{\prime} \equiv{ }_{r} E$.

Remark: If there is a $M R$-scheme of r-nonreducible m-complexity f then the class \mathscr{E}_{f}^{m} is unempty and is r-translatable neither into any class \mathscr{E}_{g}^{m} such that $g<f$, nor into $\mathscr{E}_{\text {Const. }}^{m}$.

In this section we give the conditions sufficient for a function and a constant to be nonreducible $M R$-scheme complexity bounds.

We start with a few simple observations.
Definition 6.2: A cf-grammar is in a right-normal form if all its productions are of the form $A \rightarrow \varphi u, u$ in Σ^{+}.

Proposition 6.1: For each cf-grammar G in right-normal form there is a MRscheme E such that $S(E)=S(G)$ and thus $m_{E}=m_{G}$.
[Of course, this is a scheme such that $G(E)=G$.]
The next proposition follows directly from the proof of the theorem 2.5 in [4].
Proposition 6.2: For every $M R$-scheme E there are a $M R$-scheme \hat{E} (unambiguous if E is unambiguous) with $G(\hat{E})$ in right-normal form and a bijection $q: \mathscr{I} \rightarrow \mathscr{I}$ on the set \mathscr{I} of all interpretations, such that $T_{1}=T(E, I)$ exists iff $T_{2}=T(\hat{E}, q(I))$ exists, and in the case they exist $t\left(T_{1}\right)=t\left(T_{2}\right)$ and $T_{2} \leqq{ }^{t} T_{1}$.

From these propositions we have:
Corollary 6.1: For every mimeoinvariant complexity measure m and for every $M R$-scheme E there is a cf-grammar G_{E} in right-normal form such that $m_{G_{E}} \asymp m_{E}$ and $L\left(G_{E}\right)=T L(E)$.

Corollary 6.2: For any mimeoinvariant complexitymeasure m, any reasonable equivalence relation \equiv_{r}, and any cf-grammar G in right-normal form of nonreducible m-complexity f there is a MR-scheme E of r-nonreducible m-complexity f.

In our papers $[6,8]$ we have developed a technics of constructing $c f$-grammars of nonreducible m-complexities. The abovestated propositions permit reconstruction of these $c f$-grammars into $M R$-schemes of nonreducible m-complexity in the case they are in right-normal form.

Definition 6.3: A function f is semihomogeneous if

$$
\begin{gathered}
\left(\forall c_{1}\right)\left(\exists c_{2}\right)\left(\forall n_{1}, n_{2}\right) \\
{\left[n_{1} \leqq c_{1} n_{2} \supset f\left(n_{1}\right) \leqq c_{2} f\left(n_{2}\right)\right] .}
\end{gathered}
$$

Remark: A semihomogeneous function cannot of course be superexponential.
Theorem 6.1: Let $\equiv{ }_{r}$ be a reasonable equivalence relation on \mathscr{E}, m be a mimeoinvariant complexity measure, and f be a nondecreasing unbounded semihomogeneous function m-limiting the s-set $S(E)$ for a MR-scheme E. Then there is a $M R$-scheme E_{f} of r-nonreducible m-complexity f.

Proof: Let m, r, f and E be as above. First of all we associate with E the $M R$ scheme \hat{E} as in the proposition 6.2 and consider the $c f$-grammar $G(\hat{E})$. Then we carry out the following construction originating from $[6,8]$. Let $G(\hat{E})=\left(\Sigma_{1}, W_{1}, A, P\right)$. We choose four new symbols a, b, c, d in $\Sigma-\Sigma_{1}$ and choose a symbol F_{π} in $W-W_{1}$ for each production π in P. After this we set:

$$
W_{1}^{\prime}=\left\{F_{\pi} \mid \pi \text { in } P\right\} \cup W_{1} \quad \text { and } \quad P^{\prime}=\bigcup_{\pi \text { in } P} P^{\prime}
$$

where for each $\pi=F \rightarrow \varphi$ in P :

$$
P_{\pi}^{\prime}=\left\{F \rightarrow c F_{\pi} d, F_{\pi} \rightarrow a F_{\pi} b, F_{\pi} \rightarrow a \varphi b\right\}
$$

As a result, we obtain the $c f$-grammar:

$$
\Gamma[G(\hat{E})]=\left(\Sigma_{1} \cup\{a, b, c, d\}, W_{1}^{\prime}, A, P^{\prime}\right)
$$

Since m is mimeoinvariant we infere from the proposition 6.2 that the function f is m-limiting the s-set $S(\hat{E})=S(G(\hat{E}))$. This being clear, we use the following fact proven in [6] (thm. 9.4) and in [8] (thm. 1).

Proposition 6.3: Let m be a mimeoinvariant complexity measure, f be a nondecreasing semihomogeneous function m-limiting the set $S(G)$ of a cf-grammar G. Then the cf-grammar $\Gamma[G]$ associated with G as abote is of nonreducible m-complexity f.

Thus we see that $\Gamma[G(\hat{E})]$ is a $c f$-grammar in right-normal form and of nonreducible m-complexity f. Hence by the corollary 6.2 we associate with $\Gamma[G(\hat{E})]$ the needed $M R$-scheme E_{f} of r-nonreducible m-complexity f.
Q.E.D.

Remark: Consider the $M R$-scheme:

$$
E_{0}: \quad F x=(p x \mid F F f x, g x) .
$$

It is evident that the function $\log n$ is μ-limiting the s-set $S\left(E_{0}\right)$ and the function $\lambda n . n$ is b-limiting this s-set. Since both these measures are mimeoinvariant, both functions are semihomogeneous, and $G\left(E_{0}\right)$ is in right-normal form the construction of the theorem 6.1 delivers a $M R$-scheme E_{1} of r-nonreducible μ-complexity $\log n$ and of r-nonreducible b-complexity $\lambda n . n$ for each reasonable equivalence relation \equiv_{r}. Though the proof of the theorem 6.1 defines this $M R$-scheme entirely we cite it out here:

$$
E_{1}:\left\{\begin{array}{l}
F x=\left(p_{1}^{2} x \mid c F_{1} d x, c F_{2} d x\right) \\
F_{1} x=\left(p_{2}^{2} x \mid a F_{1} b x, F F f x\right) \\
F_{2} x=\left(p_{3}^{2} x \mid a F_{2} b x, g x\right)
\end{array}\right.
$$

The same reduction leads to an infinite hierarchy of $M R$-schemes of bounded complexity.

Theorem 6.2: Let m be an asymptotically mimeoinvariant complexity measure, \equiv_{r} be some reasonable equivalence relation on \mathscr{E}. Then there is $c \geqq 0$ such that for any cs-tree T of m-complexity k there exists a $M R$-scheme E_{k} in \mathscr{E}_{k+c}^{m} which is not \equiv_{r}-equivalent to any $M R$-scheme in any class \mathscr{E}_{1}^{m} with $l<k$.

Proof: Consider a cs-tree $T=(\Delta . /)$ such that $\overline{\bar{\Delta}}>1$ and $m(T)=k$. Let Σ_{T} be the set of all terminal labels of nodes in Δ. We add four new terminal symbols a, b, c, d in $\Sigma-\Sigma_{T}$ to Σ_{T} and set $\Sigma_{1}=\Sigma_{T} \cup\{a, b, c, d\}$. With each nonbottom node v of T we associate two nonterminals A_{v}, B_{v} in W in such a way that $\left\{A_{v}, B_{v}\right\} \cap\left\{A_{u}, B_{u}\right\}=\varnothing$ for $v \neq u$ and set $W_{1}=\left\{A_{v}, B_{v} \mid v\right.$ in $\left.\Delta\right\}$. To each nonbottom node v of T such that $i(v)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $v_{1} \triangleleft v_{2} \triangleleft \ldots \triangleleft v_{n}$ we relate the system of productions $P(v)$:

$$
\begin{gathered}
A_{v} \rightarrow c B_{v} d, \\
\\
B_{v} \rightarrow a B_{v} b \\
B_{v} \rightarrow a X_{1} X_{2} \ldots X_{n} b,
\end{gathered}
$$

where:

$$
X_{i}= \begin{cases}A_{v_{i}} & \text { if } l\left(v_{i}\right) \text { is in } W \\ l\left(v_{i}\right) & \text { if } l\left(v_{i}\right) \text { is in } \Sigma_{T}\end{cases}
$$

Thus we obtain the $c f$-grammar $G_{T}=\left(\Sigma_{1}, W_{1}, A_{\Lambda}, P\right)$, where $P=\bigcup_{v \text { in } \Delta} P(v)$. In the first place we note that for each $c s$-tree T^{\prime} in $S\left(G_{T}\right) T \leqq{ }^{s l} T^{\prime}$ holds. Since m is asymptotically mimeoinvariant there is $c \geqq 0$ such that $m\left(T^{\prime}\right) \leqq m(T)+c=k+c$ for all T^{\prime} in $S\left(G_{T}\right)$ and hence $m_{G_{T}} \leqq k+c$. Secondly we observe that G_{T} is in rightnormal form. Thus by proposition 6.1 there is a $M R$-scheme E_{T} such that $S\left(E_{T}\right)=S\left(G_{T}\right)$ and hence E_{T} is in \mathscr{E}_{k+c}^{m}. In the paper [8] (corollary 3 from theorem 1) we prove that if a $c f$-grammar G is equivalent to G_{T} then there is no such $l<k$ that $m_{G}<l$. Assume that there is a $M R$-scheme E such that $E \equiv_{r} E_{T}$ and E is in \mathscr{E}_{l}^{m} for some $l<k$. By proposition 6.2 and the axiom B^{a} in the definition 5.4 there is a $c f$-grammar G_{E} such that $m_{G_{E}} \leqq m_{E}$ and $L\left(G_{E}\right)=T L(E)$. Hence we conclude that $m_{G_{E}} \leqq l<k$. But $L\left(G_{T}\right)=T L\left(E_{T}\right)=T L(E)=L\left(G_{E}\right)$, a contradiction.

> Q.E.D.

Corollary 6.3: Let m be an asymptotically mimeoinvariant complexity measure and \equiv_{r} be a reasonable equivalence relation on \mathscr{E}. Then there is an infinite sequence of nonnegative integers $n_{1}<n_{2}<\ldots<n_{k}<\ldots$ and MR-schemes E_{1}, $E_{2}, \ldots, E_{k}, \ldots$ such that for all $k>1 E_{k}$ is in $\mathscr{E}_{n_{k}}^{m}$ and for no $l \leqq n_{k-1}$ and no E in $\mathscr{E}_{l}^{m} E \equiv{ }_{r} E_{k}$.

7. INFINITE HIERARCHIES OF MR-SCHEMES OF NONREDUCIBLE COMPLEXITIES

Our main objective is to exibit conditions under which for a mimeoinvariant complexity measure m and for a reasonable equivalence relation \equiv_{r} there is an infinite hierarchy of $M R$-schemes $\left\{E_{f_{i}}\right\}$ of r-nonreducible m-complexities $f_{1} \succ f_{2} \succ f_{3} \succ \ldots$ This will give hierarchy of complexity classes $\mathscr{E}_{f_{1}}^{m} \not \mathscr{E}_{f_{2}}^{m} \neq \mathscr{E}_{f_{3}}^{m} \ddagger \ldots$ such that for no $i, j, i<j, \mathscr{E}_{f_{i}}^{m} \Rightarrow{ }_{r} \mathscr{E}_{f_{i}}^{m}$. A similar hierarchy $\left\{G_{f_{i}}\right\}$ of $c f$-grammars of nonreducible complexities is described in [6](theorem 9.5 and its corollaries) and in [8] (theorem 2 and its corollaries). Simple reductions of the preceeding section are unfit however for reconstruction of $\left\{G_{f_{i}}\right\}$ into $\left\{E_{f_{i}}\right\}$. The reason is that the grammars $G_{f_{i}}$ are not in right-normal form and even worse: the traditional reductions of $G_{f_{i}}$ to right-normal form increases their complexity to the maximal. Thus we must strengthen the results of $[6,8]$ and expose an infinite hierarchy of $c f$-grammars in right-normal form of nonreducible complexity. To this end we need some notions and notation related to Turing machines.

Notation: Let $\Sigma^{\mathrm{T}} \subset \Sigma$ be an infinite alphabet. We consider the class $\mathscr{M}\left(\Sigma^{\mathrm{T}}\right)$ of all one-tape one-head deterministic Turing machines such that for each M in $\mathscr{M}\left(\Sigma^{\mathrm{T}}\right)$ the set K_{M} of states of M and the set V_{M} of tape symbols of M are both subsets of Σ^{T}. We use the standard encoding of situations and computations of Turing machines. A situation of M is a string Q in $V_{M}^{*} K_{M} V_{M}^{*}$. If q_{0} is a start and q_{f} is a final state of M then situations $Q_{1}=q_{0} z_{1}$ and $Q_{2}=q_{f} z_{2}, z_{1} z_{2}$ in V_{M}^{*}, are starting and final respectively. The symbol Q with or without indices we reserve for the sequel as a variable over the set of Turing machine situations or their substrings. For situations Q_{1}, Q_{2} of $M Q_{1} \nvdash Q_{2}$ means that Q_{2} immediately follows Q_{1} in a computation of $M . n_{M}(Q)$ denotes the length of the situation Q^{\prime} such that $Q \vdash Q^{\prime}$. A substring of a situation Q is active if it containes an occurence м
of a state and passive if it doesn't. Let \S be a symbol in $\Sigma-\Sigma^{\mathrm{T}}$. A x-computation record of M is the string $P_{M}(x)=\S Q_{1} \S Q_{2} \S \ldots Q_{n-1} \S Q_{n}$, where $Q_{1}=q_{0} x$ is the starting situation with input string x, Q_{n} is a final situation and $Q_{i} \vdash Q_{i+1}$ for all $1 \leqq i<n$. In the class $\mathscr{M}\left(\Sigma^{T}\right)$ we select the subclass $\mathscr{N}\left(\Sigma_{T}\right)$ of all Turing machines such that:
(1) the record function $\lambda x . P_{M}(x)$ is total;
(2) the function $\lambda x .\left|P_{M}(x)\right|$ is nondecreasing with respect to the lengths of strings x, i.e. $\left|x_{1}\right| \geqq\left|x_{2}\right|$ implies $\left|P_{M}\left(x_{1}\right)\right| \geqq\left|P_{M}\left(x_{2}\right)\right|$.

With each Turing machine M we associate the following integervalued function p_{M} which is in a sense inverse to the record-length function $\lambda x .\left|P_{M}(x)\right|$:

$$
\begin{aligned}
p_{M}(n)= & i f(\exists x)\left[2\left|P_{M}(x)\right| \leqq n-|x|\right] \\
& \text { then } \max \left\{r \mid(\exists x)\left[|x|=r \& 2\left|P_{M}(x)\right| \leqq n-r\right]\right\} \\
& \text { else } 1 .
\end{aligned}
$$

Remark: It is easily seen that for each machine M in $\mathcal{N}\left(\Sigma^{\prime}\right)$ the function $p_{M}(n)$. is recursive and $p_{M}(n) \leqq n$ for all n.

Theorem 7.1: Let m be a mimeoinvariant complexity measure and f be a semihomogeneous unbounded nondecreasing function m-limiting the s-set $S(G)$ of a cf-grammar $G=\left(\Sigma_{1}, W_{1}, I_{1}, P_{1}\right)$. Then for each Turing machine M in $\mathcal{N}\left(\Sigma^{T}\right)$ there is a right-normal form cf-grammar G_{M} of non-reducible m-complexity $\lambda n . f\left(p_{M}(n)\right)$.

Proof: To expose the needed $c f$-grammar it is convenient to describe first the language it generates. To this end we introduce several operations and predicates. Let m, f, G, and M be fixed.

Notation: 1. Consider $L \subset \Sigma^{*}$ and:

$$
\begin{gathered}
U_{1}, U_{2} \subset \Sigma^{*} \times \Sigma^{*} . U_{1} L=\left\{z_{1} z z_{2} \mid z \text { in } L,\left(z_{1}, z_{2}\right) \text { in } U_{1}\right\}, \\
U_{1} \odot U_{2}=\left\{\left(z_{11} z_{21}, z_{22} z_{12}\right)\left\{\left(z_{11}, z_{12}\right) \text { in } U_{1},\left(z_{21}, z_{22}\right) \text { in } U_{2}\right\},\right. \\
U_{1}^{(0)}=U_{1}, U_{1}^{(k+1)}=U_{1}^{(k)} \odot U_{1}, U_{1}^{\bullet}=\bigcup_{k=0}^{\ell} U_{1}^{(k)} .
\end{gathered}
$$

2. Let Q_{1}, Q_{2} be two strings in $V_{M}^{+} \cup V_{M}^{*} K_{M} V_{M}^{*}$. Then $E R R_{M}\left(Q_{1}, Q_{2}\right)$ means that either: $(a) Q_{1}$ is active, $\left|Q_{2}\right|=n_{M}\left(Q_{1}\right)$, but Q_{2} does not coincide with the M-situation Q such that $Q_{1} \vdash Q$, or (b) Q_{1} is passive, $\left|Q_{1}\right|=\left|Q_{2}\right|$, but $Q_{1} \neq Q_{2}$.

Now we proceed to the description of the grammar G_{M} and the language $L_{M}=L\left(G_{M}\right)$.

1. First of all we apply to the grammar $G=\left(\Sigma_{1}, W_{1}, I_{1}, P_{1}\right)$ the construction outlined above in the proof of the theorem 6.1, relating to it the grammar $\Gamma[G]=\left(\Sigma_{0}, W_{0}, I_{0}, P_{0}\right)$ with $\Sigma_{0}=\Sigma_{1} \cup\{a, b, c, d\}$. The language $L(\Gamma[G])$ we denote by L_{0}.
2. Then we introduce the following system of languages and pair languages (is a symbol in $\Sigma-\left(\Sigma^{T} \cup\{s\}\right)$:

$$
\begin{gathered}
L_{1}=\left\{c a^{j} y b^{j} d \mid j \geqq 0, y \text { in }\{\Lambda\} \cup\left(\{c\} \cup \Sigma_{1}\right) \Sigma_{0}^{*}\left(\{d\} \cup \Sigma_{1}\right)\right\} . \\
L_{2}=\left\{Q^{R} \S x \mid Q \text { is a situation of } M, x \text { in } \Sigma_{0}^{*},|x| \geqq|Q|\right\}\left(^{6}\right) . \\
U_{0}=\{(\Lambda, \stackrel{\Delta}{ })\} . \\
U_{1}=\left\{\left(Q^{R} \S, \S Q\right) \mid Q \text { is a final situation of } M\right\} . \\
U_{2}=\left\{\left(Q^{R} \S, \S Q\right) \mid Q \text { is a situation of } M\right\} . \\
U_{3}=\{(\Lambda, \S Q) \mid Q \text { is a situation of } M\} . \\
U_{4}=\left\{\left(Q_{2}^{R} \S Q_{1}^{R} \S, \S Q_{3}\right) \mid Q_{1}, Q_{2}, Q_{3}\right.
\end{gathered}
$$

are situations of $\left.M .\left|Q_{1} Q_{2}\right|<\left|Q_{3}\right|+n_{M}\left(Q_{3}\right)\right\}$.
$U_{5}=\left\{\left(Q_{2}^{R} \S Q_{1}^{R} \S, \S Q_{3}\right) \mid Q_{1}, Q_{2}, Q_{3}\right.$
are situations of $\left.M,\left|Q_{2}\right|+n_{11}\left(Q_{1}\right)<2\left|Q_{3}\right|\right\}$.
$U_{6}=\left\{\left(Q_{22}^{R} Q_{21}^{K} \S Q_{1}^{R} \S, \S Q_{31} Q_{32}\right) \mid Q_{1}, Q_{21} Q_{22}, Q_{31} Q_{32}\right.$ are situations of $M,\left|Q_{31}\right| \geqq\left[\left|Q_{1} Q_{21}\right| / 3\right]-1$, $\left.E R R_{M}\left(Q_{32}, Q_{22}\right)\right\}$.
$U_{7}=\left\{\left(Q_{2}^{R} \S Q_{12}^{R} Q_{11}^{R} \S, \S Q_{31} Q_{32}\right) \mid Q_{11} Q_{12}, Q_{2}, Q_{31} Q_{32}\right.$
are situations of $M,\left|Q_{32}\right| \geqq\left[\left|Q_{2} Q_{12}\right| / 3\right]-2$,
$\left.E R R_{M}\left(Q_{11}, Q_{31}\right)\right\}$.
$U_{s}=\left\{\left(Q^{R} \S, \S Q\right) \mid Q\right.$ is a starting situation of $\left.M\right\}$.
$\left(^{6}\right) z^{R}$ denotes the reversal of a string $z:[\Lambda]^{R}=\Lambda,[w a]^{R}=a[w]^{R}$.
R.A.I.R.O. Informatique théorique/Theoretical Informatics

Now the language L_{M} is defined as $L_{M}=\bigcup_{i=1} L_{M i}$, where:

$$
\begin{aligned}
& L_{M 1}=\left(U_{0}^{\bullet} \bigcirc U_{1} \bigcirc U_{2}^{\bullet} \bigcirc U_{8}\right) L_{0}, \\
& L_{M 2}=\left(U_{i}^{\bullet} \bigcirc U_{2}^{\bullet} \bigcirc U_{3} \bigcirc U_{4} ■ U_{2}^{\bullet}\right) \square L_{1}, \\
& L_{M 3}=\left(U_{0}^{\bullet} \bigcirc U_{2}^{\bullet} \bigcirc U_{5} \bigcirc U_{3} \bigcirc U_{2}^{\bullet}\right) \square L_{1}, \\
& L_{M 4}=\left(U_{0}^{\bullet} \bigcirc U_{2}^{\bullet} \bigcirc U_{3} \bigcirc U_{6} \bigcirc U_{2}^{\bullet}\right) \square L_{1}, \\
& L_{M 5}=\left(U_{0}^{\bullet} \bigcirc U_{2}^{\bullet} \bigcirc U_{7} \bigcirc U_{3} \bigcirc U_{2}^{\bullet}\right) ■ L_{1}, \\
& L_{M 6}=\left(U_{0}^{\bullet} \bigcirc U_{2}^{\bullet} \bigcirc U_{3}\right) \square L_{2} .
\end{aligned}
$$

4. So that to specify the needed $c f$-grammar G_{M} let us notice that:
(a) $L_{2}=U_{9}\{\S\}$, where $U_{9}=\left\{\left(Q^{R}, x\right) \mid Q\right.$ is a situation of M, x in Σ_{0}^{+}, $|x| \geqq|Q|\}$;
(b) $L_{1}=\left(U_{10} \bigcirc \mathrm{U}_{11}^{\bullet}\right) \boldsymbol{\square}$, where $\quad U_{10}=\{(c, d)\}, \quad U_{11}=\{(a, b)\}$, $R=\{\Lambda\} \cup\left(\{c\} \cup \Sigma_{1}\right) \Sigma_{0}^{*}\left(\{d\} \cup \Sigma_{1}\right)$ is regular;
(c) for each pair language $U_{j}, 0 \leqq j \leqq 11$, and each pair (z, w) in it $w \neq \Lambda$, so, there is a linear function g_{j} for each $0 \leqq j \leqq 11$ such that for all (v, u) in $U_{j}^{\bullet}|v| \leqq g_{j}(|u|) ;$
(d) for each regular language there is a right-linear cf-grammar generating it.

From $(a)-(d)$ it follows directly that there are unambiguous right-normal form linear $c f$-grammars $G_{M 0}, G_{M 2}, G_{M 3}, G_{M 4}, G_{M 5}, G_{M 6}$ generating respectively the languages:

$$
L_{M 0}=\left(U_{0}^{\bullet} \bigcirc U_{1} \odot U_{2}^{\bullet} \bigcirc U_{8}\right) \varpi\left\{I_{0}\right\}, \quad L_{M 2}, L_{M 3}, L_{M 4}, L_{M 5}, L_{M 6}
$$

Let \bar{W}_{j} and \bar{P}_{j} be respectively nonterminal alphabets and production sets of the grammars $G_{M j}$ for j in $\{0,2,3,4,5,6\}$. We may assume without loss of generality that:
(1) all grammars $G_{M 0}, G_{M 2}, G_{M 3}, G_{M 4}, G_{M 5}, G_{M 6}$ have a common axiom I;
(2) the alphabets $W_{0}, \bar{W}_{0}-\{I\}, \bar{W}_{2}-\{I\}, \bar{W}_{3}-\{I\}, \overline{\mathrm{W}}_{4}-\{I\}$, $\bar{W}_{5}-\{I\}, \bar{W}_{6}-\{I\}$ are pairwise disjoint.

Let us denote by Σ_{1}^{M} the alphabet $K_{M} \cup V_{M} \cup\left\{\S, \Sigma_{i}\right\} \cup \Sigma_{0}$ and by $G_{M 1}$ the $c f$-grammar $\left(\Sigma_{1}^{M}, \bar{W}_{1}, I, \bar{P}_{1}\right)$, where $\bar{W}_{1}=W_{0} \cup \bar{W}_{0}$ and $\bar{P}_{1}=P_{0} \cup \bar{P}_{0}$.

Finally let us set $G_{M}=\left(\Sigma_{1}^{M}, W_{1}^{M}, I, P^{M}\right)$, where $W_{1}^{M}=\bigcup_{j=1}^{6} \bar{W}_{j}$ and $P^{M}=\bigcup_{i-1}^{6} \bar{P}_{j}$.
It is easily seen that $L\left(G_{M 1}\right)=L_{M 1}$ and $L\left(G_{M}\right)=L_{M}$. By the construction all the $c f$-grammars we have described, including G_{M}, are in right-normal form. It remains to prove that G_{M} is a $c f$-grammar of nonreducible m-complexity $\lambda n . f\left(p_{M}(n)\right)$.

UPPER Bound: $m_{G_{M}} \preceq f\left(p_{M}\right)$. To establish this bound we will show that there is a $c>0$ such that $m_{G_{M}}(z) \leqq c f\left(p_{M}(|z|)\right)$ for all z in L_{M}. Since the complexity measure m is mimeoinvariant there evidently is an integer $c_{m}>0$ such that for each linear s-tree $T m(T)<c_{m}$. This implies that for each $c s$-tree T in $S\left(G_{M j}\right), j$ in $\{0,2,3,4,5,6\}, m(T)<c_{m}$, thus $m_{G_{M}}(z)<c_{m}$ for all z in $\bigcup_{j=2}^{6} L_{M j}$. It suffice to establish the upper bound for all z in $L_{M 1}$.

Now, let us take a string z in $L_{M 1} . z$ may be represented in form:

$$
z=Q_{n}^{R} \S Q_{n-1}^{R} \S \ldots Q_{1}^{R} \S x \S Q_{1} \ldots \S Q_{n-1} \S Q_{n} \tilde{r}^{k}
$$

for some $k \geqq 0, n>1$, starting situation Q_{1} of M, final situation Q_{n} of $M, 1<j<n$, and x in L_{0}. Three alternatives arise.

1. The string $\S Q_{1} \S Q_{2} \ldots \S Q_{n}$ is not a computation record of M. In such a case there is a $i, 1 \leqq i<n$, such that $Q_{i} \nvdash Q_{i+1}$. Let i_{0} be the least such i. The computation error $Q_{i_{0}} \nvdash_{M} Q_{i_{0}+1}$ may be of the following four kinds.
(a) $\left|Q_{i_{0}+1}\right|>n_{M}\left(Q_{i_{0}}\right)$. In this case we find that:

$$
Q_{i_{0}-1}^{R} \S \ldots Q_{2}^{R} \S Q_{1}^{R} \S x \S Q_{1} \S Q_{2} \ldots \S Q_{i_{0}-1} \S Q_{i_{0}},
$$

belongs to $\left(U_{3} \bigcirc U_{2}^{\bullet}\right) \square L_{1},\left(\left[\S Q_{i_{0}} \S Q_{i_{0}+1}\right]^{R}, \S Q_{i_{0}+1}\right)$ belongs to U_{5} because:

$$
2\left|Q_{i_{0}+1}\right|>\left|Q_{i_{0}+1}\right|+n_{M}\left(Q_{i_{0}}\right),\left(\left[\S \mathrm{Q}_{\mathrm{i}_{0}+2} \ldots \S \mathrm{Q}_{n}\right]^{\mathrm{R}}, \S \mathrm{Q}_{\mathrm{i}_{0}+2} \ldots \S Q_{n \xi_{3}^{k}}\right)
$$

is in $U_{0}^{\bullet} \bigcirc U_{2}^{\bullet}$, and x is in L_{1} because $L_{0} \subseteq L_{1}$. Thus z belongs to $L_{M 3}$, there is a linear $c s$-tree T in $S\left(G_{M}\right)$ with the yield z and therefore $m_{G_{M}}(z)<c_{m}$.
(b) $\left|Q_{i_{u}+1}\right|<n_{M}\left(Q_{i_{0}}\right)$. In this situation we see that:

$$
Q_{i_{u}-1}^{R} \S \ldots Q_{2}^{R} \S Q_{1}^{R} \S x \S Q_{1} \S Q_{2} \ldots \S Q_{i_{0}-1}
$$

belongs to $U_{2}^{\bullet} ■ L_{1}$, $\left(\left[\S Q_{i_{0}} \S Q_{i_{0}+1}\right]^{R}, \S Q_{i_{0}}\right)$ is in U_{4} because:

$$
\left|Q_{i_{0}}\right|+n_{M}\left(Q_{i_{0}}\right)>\left|Q_{i_{0}} Q_{i_{0}+1}\right|
$$

$\left(\Lambda, \S Q_{i_{0}+1}\right)$ is in $U_{3},\left(\left[\S Q_{i_{0}+2} \ldots \S Q_{n}\right]^{R}, \S Q_{i_{0}+2} \ldots \S Q_{n}{\underset{ऊ}{k}}^{k}\right)$ belongs to $U_{0}^{\bullet} U_{2}^{\bullet}$, and x belongs to L_{1}. Thus z is in $L_{M 2}$ and therefore $m_{G_{M}}(z)<c_{m}$.

The bounds established in (a) and (b) show that in the rest we may assume without loss of generality that $\left|Q_{i_{0}+1}\right|=n_{M}\left(Q_{i_{0}}\right)$. We need some additional notions and notation for the analysis to follow.

Notation: Let $Q=z_{1} \alpha \beta \gamma z_{2}$ be the representation of a situation of M such that $\left|z_{1}\right|=\left|z_{2}\right|,|\beta| \leqq 1$, and α, γ are in $V_{M} \cup K_{M}$. A central partition of Q is the unique
partition $Q=l_{M}(Q) r_{M}(Q)$ such that:
(a) if $z_{1} \alpha \beta$ is active then $l_{M}(Q)=z_{1} \alpha \beta \gamma$ and $r_{M}(Q)=z_{2}$;
(b) if γz_{2} is active then $l_{M}(Q)=z_{1}$ and $r_{M}(Q)=\alpha \beta \gamma z_{2}$.
2. Let Q_{1}, Q_{2} be two situations of M such that $\left|Q_{2}\right|=n_{M}\left(Q_{1}\right)$. We call a partition $Q_{2}=Q_{2}^{\prime} Q_{2}^{\prime \prime}$ of $Q_{2} \quad Q_{1}$-derivative if either $l_{M}\left(Q_{1}\right)$ is active and $\left|Q_{2}^{\prime}\right|=n_{M}\left(l_{M}\left(Q_{1}\right)\right)$, or $r_{M}\left(Q_{1}\right)$ is active and $\left|Q_{2}^{\prime \prime}\right|=n_{M}\left(r_{M}\left(Q_{1}\right)\right)$.

Let us return to the proof.
Let $Q_{i_{0}}=Q_{i_{0}}^{\prime} Q_{i_{0}}^{\prime \prime}$ be the central partition of $Q_{i_{0}}$ and $Q_{i_{0}+1}=Q_{i_{0}+1}^{\prime} Q_{i_{0}+1}^{\prime \prime}$ be the $Q_{i_{0}}$-derivative partition of $Q_{i_{0}+1}$. There are four additional cases.
(c) $Q_{i_{0}}^{\prime}$ is active and $Q_{i_{0}}^{\prime} \nvdash Q_{i_{0}+1}^{\prime}$. First of all we have $\left|Q_{i_{0}+1}^{\prime}\right|=n_{M}\left(Q_{i_{0}}^{\prime}\right)$ and $\left|Q_{i_{11}+1}^{\prime \prime}\right|=\left|Q_{i_{11}}^{\prime \prime}\right|$, From this follows:

$$
\left|Q_{i_{0}}^{\prime \prime} Q_{i_{0}+1}\right| \leqq\left|Q_{i_{0}}^{\prime \prime}\right|+\left|Q_{i_{0}}\right|+1 \leqq\left|Q_{i_{0}}^{\prime \prime}\right|+\left(2\left|Q_{i_{0}}^{\prime \prime}\right|+3\right)+1=3\left|Q_{i_{0}+1}^{\prime \prime}\right|+4
$$

Thus:

$$
\left|Q_{i_{0}+1}^{\prime \prime}\right| \geqq\left[\frac{\left|Q_{i_{0}+1} Q_{i_{0}}^{\prime \prime}\right|-4}{3}\right] \geqq\left[\frac{\left|Q_{i_{0}+1} Q_{i_{0}}^{\prime \prime}\right|}{3}\right]-2
$$

Besides this we have $E R R_{M}\left(Q_{i_{n}}^{\prime}, Q_{i_{0}+1}^{\prime}\right)$. That is why in this case:
$Q_{i_{0}-1}^{R} \S \ldots Q_{2}^{R} \xi Q_{1}^{R} \S x \S Q_{1} \S Q_{2} \ldots \S Q_{i_{n}-1} \S Q_{i_{\text {, }}}$ is in $\left(U_{3} \bigcirc U_{2}^{\bullet}\right) \square L_{1}$, $\left(\left[\$ Q_{i_{n}}^{\prime} Q_{i_{n},}^{\prime \prime} \$ Q_{i_{1}+1}\right]^{R}, \$ Q_{i_{n+1}}^{\prime} Q_{i_{0}+1}^{\prime \prime}\right)$ is in U_{7}
and:

$$
(\left[\S Q_{i_{n}+2} \ldots \S Q_{n}\right]^{R}, \S Q_{i_{n}+2} \ldots \S Q_{n} \overbrace{}^{k}) \text { is in } U_{0}^{\bullet} \bigcirc U_{2}^{\bullet}
$$

Therefore z is in $L_{M 5}$.
(d) $Q_{i_{0}}^{\prime}$ is passive and $Q_{i_{0}}^{\prime} \neq Q_{i_{0}+1}^{\prime}$. Since $Q_{i_{0}}^{\prime}$ is passive we have $\left|Q_{i_{0}+1}^{\prime}\right|<\left|Q_{i_{0}+1}^{\prime \prime}\right|$, $\left|Q_{i_{0}}^{\prime \prime}\right| \leqq\left|Q_{i_{0}+1}^{\prime \prime}\right|+1$ and therefore $\left|Q_{i_{0}+1} Q_{i_{0}}^{\prime \prime}\right| \leqq 3\left|Q_{i_{0}+1}^{\prime \prime}\right|$. Hence

$$
\left|Q_{i_{0}+1}^{\prime \prime}\right|>\left[\frac{\left|Q_{i_{0}+1} Q_{i_{0}}^{\prime \prime}\right|}{3}\right]-2
$$

Of course, $E R R_{M}\left(Q_{i_{0}}^{\prime}, Q_{i_{0}+1}^{\prime}\right)$ is true, so, as in the preceeding case ($\left[\S Q_{i_{0}}^{\prime} Q_{i_{0}}^{\prime \prime} \S Q_{i_{0}+1}\right]^{R}, \S Q_{i_{0}+1}^{\prime} Q_{i_{0}+1}^{\prime \prime}$) is in U_{7} and z falls into $L_{M 5}$ again.
(e) $Q_{i_{0}}^{\prime \prime}$ is active and $Q_{i_{0}}^{\prime \prime} \nmid Q_{i_{0}+1}^{\prime \prime}$. In this case $\left|Q_{i_{0}}^{\prime \prime}\right| \leqq\left|Q_{i_{0}}^{\prime}\right|+3$ and $\left|Q_{i_{0}+1}^{\prime}\right|=\left|Q_{i_{0}}^{\prime}\right|$, hence:

$$
\left|Q_{i_{1},} Q_{i_{, 1}, 1}^{\prime}\right| \leqq 3\left|Q_{i_{1,}}^{\prime}\right|+3 \quad \text { and } \quad\left|Q_{i_{0}}^{\prime}\right| \geqq\left[\frac{\left|Q_{i_{0}} Q_{i_{0}+1}^{\prime}\right|}{3}\right]-1
$$

As $E R R_{M}\left(Q_{i_{0}}^{\prime \prime}, Q_{i_{0}+1}^{\prime \prime}\right)$ is true we infere that:

$$
\left(\left[\S Q_{i_{0}} \S Q_{i_{0}+1}^{\prime} Q_{i_{0}+1}^{\prime \prime}\right]^{R}, \S Q_{i_{0}}^{\prime} Q_{i_{0}}^{\prime \prime}\right)
$$

belongs to U_{6}. Therefore:

$$
\begin{gathered}
Q_{i_{0}+1}^{R} \S Q_{i_{0}}^{R} \ldots \S Q_{1}^{R} \S x \S Q_{1} \S \ldots \S Q_{i_{0}} \text { is in }\left(U_{6} \odot U_{2}^{\bullet}\right) L_{1}, \\
Q_{i_{0}+1}^{R} \ldots Q_{1}^{R} \S x \S Q_{1} \ldots \S Q_{i_{0}+1} \quad \text { is in }\left(U_{3} \odot U_{6} U_{2}^{\bullet}\right) L_{1},
\end{gathered}
$$

and z is in $L_{M 4}$.
(f) The last alternative is: $Q_{i_{0}}^{\prime \prime}$ is passive and $Q_{i_{0}+1}^{\prime \prime} \neq Q_{i_{0}}^{\prime \prime}$. Here we have $\left|Q_{i_{0}}^{\prime \prime}\right|<\left|Q_{i_{0}}^{\prime}\right|$ and $\left|Q_{i_{1}+1}^{\prime}\right| \leqq\left|Q_{i_{n}}^{\prime}\right|+1$. Hence:

$$
\left|Q_{i_{0}} Q_{i_{0}+1}^{\prime}\right|<3\left|Q_{i_{0}}^{\prime}\right|+1 \quad \text { and } \quad\left|Q_{i_{0}}^{\prime}\right|>\left[\frac{\left|Q_{i_{0}} Q_{i_{0}+1}^{\prime}\right|}{3}\right]-1
$$

As $\quad\left|Q_{i_{0}}^{\prime \prime}\right|=\left|Q_{i_{0}+1}^{\prime \prime}\right|$ and $Q_{i_{0}+1}^{\prime \prime} \neq Q_{i_{0}}^{\prime \prime}, \quad E R R_{M}\left(Q_{i_{0}}^{\prime \prime}, \quad Q_{i_{0}+1}^{\prime \prime}\right)$ is true and $\left(\left[\S \mathrm{Q}_{\mathrm{i}_{0}} \S \mathrm{Q}_{\mathrm{i}_{0}+1}^{\prime} \mathrm{Q}_{\mathrm{i}_{0}+1}^{\prime \prime}\right]^{\mathrm{R}}, \S \mathrm{Q}_{\mathrm{i}_{0}}^{\prime} \mathrm{Q}_{\mathrm{i}_{0}}^{\prime \prime}\right)$ belongs to U_{6}. Therefore just as in the preceeding case z falls into $L_{M 4}$.

Thus in all the cases (c) to $(f) m_{G_{M}}(z)<c_{m}$. This shows that $m_{G_{M}}(z)<c_{m}$ for all z in $L_{M 1}$ of the form $z=P^{R} x P \hat{z}^{k}$, where P is not a computation record of M. Now let us take the second alternative.
2. $\S Q_{1} \S Q_{2} \ldots \S Q_{n}$ is a computation record of M but $|x| \geqq\left|Q_{1}\right|$. Then we find that $Q_{1}^{R} \S x$ belongs to $L_{2}, Q_{1}^{R} \S x \S Q_{1}$ belongs to $U_{3}-\mathbf{L}_{2}$, and z falls into $L_{M 6}$. So in this case as in all the preceeding $m_{G_{M}}(z)<c_{m}$.

The last alternative is:
3. $z=Q_{n}^{R} \S Q_{n-1}^{R} \S \ldots Q_{1}^{R} \S x \S Q_{1} \ldots \S Q_{n-1} \S Q_{n}{ }^{k}{ }^{k}, x$ in $L_{0},|x|<\left|Q_{1}\right|$, and $\S Q_{1} \ldots \S Q_{n}$ is a y-computation record of M for some y. Such a string z is 6
evidently in $L_{M 1}-\bigcup_{i=2} L_{M i}$. Hence there is the only one derivation tree T in $S\left(G_{M 1}\right)$ such that $t(T)=z$ and therefore $m_{G_{M}}(z)=m(T)$. By the definition of $G_{M 1}$ this tree T can be represented in the form $T=\operatorname{com}\left(T_{0}, v, T_{1}\right)$, where T_{0} is the linear derivation tree in $S\left(G_{M 0}\right)$ such that $t\left(T_{0}\right)=Q_{n} \ldots Q_{1}^{R} \S I_{0} \S Q_{1} \ldots \S Q_{n}$ is $^{k}, v$ is the bottom node of T_{0} such that $l(v)=I_{0}$, and T_{1} is the derivation tree in $S(\Gamma[G])$ such that $t\left(T_{1}\right)=x$.

Now let us notice that since $|x| \leqq|y|$ we have $\left|P_{M}(x)\right| \leqq\left|P_{M}(y)\right|$. This implies that $\left|P_{M}(x) x P_{M}(x)\right| \leqq|z|-k$ which in turn implies $|x| \leqq p_{M}(|z|-k) \leqq p_{M}(|z|)$.

Since T_{1} is a tree in $S(\Gamma[G])$ there is a tree T_{2} in $S(G)$ such that $t\left(T_{2}\right)=u, u$ in $L(G)$, and $T_{2} \leqq{ }^{s l} T_{1}$. First of all this implies that $|u| \leqq|x|$ and hence $|u| \leqq p_{M}(|z|)$. Secondly, f is m-limiting the s-set $S(G)$. From this it follows that
$m\left(T_{2}\right) \leqq c_{f} f(|u|)$ for a constant $c_{f}>0$ independent of T_{2}. Third, because m is mimeoinvariant $m\left(T_{1}\right) \leqq c_{A} m\left(T_{2}\right)$ is true for $c_{A}>0$ independent of T_{1}, T_{2}. Finally we remark that $T=\operatorname{com}\left(T_{0}, v, T_{1}\right)$ implies $T_{1} \leqq{ }^{s l} T$ and therefore $m(T) \leqq c_{A} m\left(T_{1}\right)$. Grouping together all these inequalities and bearing in mind that f is nondecreasing we infere:

$$
m_{G_{M}}(z)=m(T) \leqq c_{A} m\left(T_{1}\right) \leqq c_{A}^{2} m\left(T_{2}\right) \leqq c_{f} c_{A}^{2} f(|u|) \leqq c_{f} c_{A}^{2} f\left(p_{M}(|z|)\right)
$$

which gives the needed upper bound.
Lower bound: To establish this bound it is enough to specify for each $c f$-grammar G such that $L(G)=L_{M}$ an infinite sequence $\left(z_{i} \mid i\right.$ in N) in L_{M} such that for an integer $c>0$ and for all i in $N c m_{G}\left(z_{i}\right) \geqq f\left(p_{M}\left(\left|z_{i}\right|\right)\right)$.

Let G be a $c f$-grammar such that $L(G)=L_{M}$. The following lemma which is the main technical means of our proof of the lower bound assigns to each $c f$ grammar G a parameter $n(G)$.

Lemma 7.1: For each cf-grammar G with infinite language $L(G)$ there is an integer $n(G)>0$ such that for any x in $L(G)$ and any its complete derivation $D=\left(I=X_{1}, \ldots, X_{m}=x\right)$ if $x=x_{1} z x_{2}$ and $|z|>n(G)$ then the substring z can be decomposed into three parts $z=z_{1} u z_{2}$ so that $|u| \neq 0$ and the derivation D is representable either in form:

$$
I \quad \Rightarrow^{*} \quad x_{1} z_{1} A y \Rightarrow^{*} \quad x_{1} z_{1} u A u_{1} y \quad \Rightarrow^{*} \quad x_{1} z_{1} u v u_{1} y=x
$$

or in form:

$$
I \Rightarrow^{*} y A z_{2} x_{2} \Rightarrow^{*} y u_{1} A u z_{2} x_{2} \Rightarrow^{*} y u_{1} v u z_{2} x_{2}=x .
$$

[This result is due to A. V. Gladkii (see for example [13]). Some later it was reproven in a stronger form by W . Ogden [14].]

To specify the sequence $\left(z_{i} \mid i\right.$ in N) we need some notions and notation.
Notation: With each tree T in $S(G)$ we will associate an infinite sub-language of L_{M} whose elements we will call T-terms. A T-term will be defined by induction on full subtrees $T(v)$ of T :
(1) let v be a bottom node of T with $l(v)=X$. Then X is an elementary $T(v)$-term;
(2) let v be a node of T such that $i(v)=\left\{v_{1}, \ldots, v_{k}\right\}, v_{1} \triangleleft v_{2} \triangleleft \ldots \triangleleft v_{k}$ and the $T\left(v_{i}\right)$-terms θ_{i} have been defined so far for all $1 \leqq i \leqq k$. Then for all $j \geqq 0$ the string $\theta^{\langle j\rangle}(T, v)=c a^{j} \theta_{1} \ldots \theta_{k} b^{j} d$ is a $T(v)$-term, j is a degree of this term, and $\theta_{1}, \ldots, \theta_{k}$ are its subterms;
(3) each term θ is a subterm of itself and each subterm of a subterm of θ is a subterm of θ;
(4) if v_{0} is the root of T then $\theta^{\langle j\rangle}\left(T, v_{0}\right)$ is a T-term for each $j \geqq 0$.

Now we can specify the sequence $\left(z_{j} \mid j\right.$ in $\left.N\right)$. Let $T_{1}, T_{2}, T_{3}, \ldots$ be a fundamental sequence of f in $S(G)$. Let us associate with each T_{j} the T_{j}-term θ_{j} such that the degrees of all its nonelementary subterms are equal to $n_{1}=n(G)+1$. Let e be the first symbol in V_{M}. Then we set:

$$
z_{i}=\left[P_{M}\left(e^{r_{i}}\right)\right]^{R} \theta_{i} P_{M}\left(e^{r_{i}}\right) \tilde{t}^{v i\left|\theta_{i}\right|},
$$

where r is the width $\left({ }^{7}\right)$ of G and $r_{i}=(v+1)\left|\theta_{i}\right|$.
Let us note that the set $\left\{r_{i} \mid i\right.$ in $\left.N\right\}$ and hence the set $\left\{z_{i} \mid i\right.$ in $\left.N\right\}$ are infinite. Besides this $p_{M}\left(\left|z_{i}\right|\right)=r_{i}$ for each i. Therefore it is enough to show that there is an integer $c>0$ such that for all $i, c m_{G}\left(z_{i}\right) \geqq f\left(r_{i}\right)$. The proof of this last statement is rather tedious and lengthy. Its essence is the following proposition.

Proposition 7.1: Let T in $S(G)$ be a cs-tree such that $t(T)=z_{i}$ for some i. Then T can be represented in form $T=\operatorname{com}\left(T_{0}, v, T(v)\right)$ so that $T_{i} \leqq T(v)$.

The proof of this proposition is omitted here. However it may be found in [6] (a part of the proof of theorem 9.5) and in [8] (a part of the proof of theorem 2).

So let T be the simplest tree in $S(G)$ such that $t(T)=z_{i}$. Then $m_{G}\left(z_{i}\right)=m(T)$. Since m is mimeoinvariant and by proposition $7.1 d_{B} m(T) \geqq m\left(T_{i}\right)$ for a $d_{B}>0$ independent of T and T_{i}. As ($T_{i} \mid i$ in N) is a fundamental sequence of f in $S(G)$ there is a $e_{f}>0$ independent of i such that $e_{f} m\left(T_{i}\right)>f\left(\left|T_{i}\right|\right)$. It is easy.to see that $\left|\theta_{i}\right|<2(v+1)\left(2 n_{1}+3\right)\left|T_{i}\right|$, which implies that $r_{i} \leqq 2(v+1)^{2}\left(2 n_{1}+3\right)\left|T_{i}\right|$. Since f is a semihomogeneous function there is a $c>0$ independent of i such that $c f\left(\left|T_{i}\right|\right) \geqq f\left(r_{i}\right)$. Finally we have

$$
d_{B} e_{f} c m_{G}\left(z_{i}\right)=d_{B} e_{f} c m(T) \geqq e_{f} c m\left(T_{i}\right) \geqq c f\left(\left|T_{i}\right|\right) \geqq f\left(r_{i}\right)
$$

for all i,
Q.E.D.

Corollary 7.1: Let m be a mimeoinvariant complexity measure and f be a nondecreasing unbounded semihomogeneous recursive function m-limiting the s-set $S(G)$ of a cf-free grammar G. Then for each unbounded and nondecreasing with respect to both arguments recursive function $\lambda m, n . h(m, n)$ there are an unbounded nondecreasing recursive function φ and a cf-grammar G in right-normal form of nonreducible m-complexity φ such that for all but finitely many n, $\varphi(n) \leqq h(n, f(n))$.

[^4]Corollary 7.2: Let m be a mimeoinvariant complexity measure, \equiv_{r} be a reasonable equivalence relation on \mathscr{E}, and f be a nondecreasing unbounded semihomogeneous recursive function m-limiting the s-set $S(E)$ of a MR-scheme E. Then for each unbounded and nondecreasing with respect to both arguments recursive function $\lambda m, n . h(m, n)$ there are an unbounded nondecreasing recursive function φ and a MR-scheme E_{φ} of r-nonreducible m-complexity φ such that for all but finitely many $n, \varphi(n) \leqq h(n, f(n))$.

Corollary 7.3: Let m be a mimeoinvariant complexity measure and \equiv_{r} be a reasonable equivalence relation on \mathscr{E}. If there exist a $M R$-scheme E and an unbounded nondecreasing semihomogeneous function f m-limiting $S(E)$ then there is an infinite sequence of unbounded nondecreasing functions $f_{1} \succ f_{2} \succ f_{3} \succ \ldots$ such that $f=f_{1}$ and for no $i<j, \mathscr{E}_{f_{i}}^{m} \Rightarrow \mathscr{E}_{f_{j}}{ }^{m}$.

Corollary 7.4: Let m be a mimeoinvariant complexity measure and \equiv_{r} be a reasonable equivalence relation on \mathscr{E}. If there exist a $M R$-scheme E and an unbounded nondecreasing semihomogeneous recursive function f m-limiting $S(E)$ then for no nondecreasing unbounded recursive function $g, \mathscr{E}_{g}^{m} \Rightarrow_{r} \mathscr{E}_{\text {Const. }}^{m}$.

The proof of the corollary 7.1 may be found in [6] (corollary 1 from the theorem 9.3) and in [7] (corollary 1 from the theorem 3). Corollaries 7.2-7.4 follow from it directly.

8. ALL MIMEOINVARIANT COMPLEXITY MEASURES PROVIDE INFINITE CLASSIFICATIONS OF MR-SCHEMES

In sections 6, 7 we considered some simple conditions sufficient for the existence of individual $M R$-schemes or infinite hierarchies of $M R$-schemes of nonreducible complexities. It is a pity but we cannot guarantee that these conditions hold for all mimeoinvariant complexity measures. So in this section classes of $M R$-schemes are compaired in terms of set theoretical inclusion, and not in terms of translatability. In this much weaker sense we will show that all mimeoinvariant complexity measures provide nondegenerate classifications of $M R$-schemes. To this end we will simplify the construction of the theorem 7.1 so as to infere that for each mimeoinvariant complexity measure m there is an intınite herarchy of cf-grammars in right-normal form of different m-complexities (these grammars however not always being of nonreducible m-complexities).

Theorem 8.1: For each mimeoinvariant complexity measure m there is an unbounded nondecreasing recursive function f such that for each Turing machine M in $\mathcal{N}\left(\Sigma^{T}\right)$ there is a right-normal form cf-grammar $G_{M m}$ such that $m_{G_{M m}} \rightarrow f\left(p_{M}\right)$.
vol. $15, \mathrm{n}^{\circ} 1,1981$

Proof: Our mimeoinvariant complexity measure m is nondegenerate by definition. So there is an unambiguous $M R$-scheme E with unbounded complexity function. We apply to E the proposition 6.2 so that to obtain the $M R$-scheme \hat{E} with the following properties:

1. $G(\hat{E})$ is a right-normal form $c f$-grammar;
2. \hat{E} is unambiguous (because E is unambiguous);
3. $m_{\hat{E}}$ is recursive (because every nonbottom node of every tree T in $S(E)$ has a width no less than 2 , and therefore there are only finitely many trees in $S(\hat{E})$ with n bottom nodes for all n);
4. $m_{\tilde{E}}$ is unbounded (because m is mimeoinvariant and hence $m_{E} \asymp m_{\hat{E}}$).

Next we show that the complexity function $m_{\hat{E}}$ is m-limiting $S(\hat{E})$. First of all we infere from unambiguity of $S(\hat{E})$ that:

$$
m_{S\left|\hat{E}_{\hat{E}}\right|}(n)=\max \{0, m(T) \mid T \text { in } S(\hat{E}),|T| \leqq n\} \text { for all } n
$$

This means that for every tree T in $S(\hat{E}), m(T) \leqq m_{S(\hat{E})}(|T|)$. Secondly we choose for each n a tree T_{n} in $S(E)$ (if any) such that:

$$
\left|I_{n}\right| \leqq n \quad \text { and } \quad m\left(T_{n}\right)=\max \{m(T) \mid T \text { in } S(\hat{E}),|T| \leqq n\}
$$

Since $m_{S(\hat{E})}$ is unbounded and because of the abovementioned width property of $S(\hat{E})$ the set $\left\{\left|T_{n}\right| \mid n>0\right\}$ is infinite. Finally we note that $m\left(T_{n}\right)=m_{S(\hat{E})}\left(\left|T_{n}\right|\right)$ for all (but finitely many) n.

This argument shows that there are a cf-grammar $G_{0}=\left(\Sigma_{0}, W_{0}, I_{0}, P_{0}\right)$ in right-normal form and an unbounded nondecreasing recursive function f m-limiting the s-set $S\left(G_{0}\right)$. We apply to G_{0} the following construction.

Let M be a Turing machine in $\mathcal{N}\left(\Sigma^{r}\right)$. We associate with M and G_{0} the pair languages $U_{1}-U_{8}$ from the proof of the theorem 7.1 and the languages:

$$
L_{3}=\left\{Q^{R} x \mid Q \text { is a situation of } M, x \text { is in } \Sigma_{0}^{*}, 1+|x|>|Q|\right\}
$$

$L_{4}=\left\{Q_{1}^{R} \times Q_{2} \mid Q_{1}, Q_{2}\right.$ are situations of M,

$$
\left.x \text { is in } \Sigma_{0}^{*}, 2\left|Q_{2}\right|>\left|Q_{1}\right|+|x|+1\right\}
$$

and set $L_{M m}=\bigcup_{i=1}^{7} L_{M m i}$, where:

$$
\begin{aligned}
& L_{M m 1}=\left(U_{1} \bigcirc U_{2}^{\bullet} \bigcirc U_{8}\right) \square L\left(G_{0}\right), \\
& L_{M m 2}=\left(U_{2}^{\bullet} \bigcirc U_{3} \bigcirc U_{4} \bigcirc U_{2}^{\bullet}\right) ■ \Sigma_{0}^{+}, \\
& L_{M m 3}=\left(U_{2}^{\bullet} \bigcirc U_{5} \bigcirc U_{3} \bigcirc U_{2}^{\bullet}\right) \square \Sigma_{0}^{+}, \\
& L_{M m 4}=\left(U_{2}^{\bullet} \bigcirc U_{3} \bigcirc U_{6} \bigcirc U_{2}^{\bullet}\right) \square \Sigma_{0}^{+}, \\
& L_{M m 5}=\left(U_{2}^{\bullet} \bigcirc U_{7} \bigcirc U_{3} \bigcirc U_{2}^{\bullet}\right) \Sigma_{0}^{+}, \\
& \dot{L}_{M m 6}=\left(U_{2}^{\bullet} \bigcirc U_{3}\right) L_{3}, \\
& L_{M m 7}=U_{2}^{\bullet} \boldsymbol{m} L_{4} .
\end{aligned}
$$

R.A.I.R.O. Informatique théorique/Theoretical Informatics

There are linear $c f$-grammars in right-normal form $G_{M m 0}, G_{M m 2}, G_{M m 3}, G_{M m 4}$, $G_{M m 5}, \quad G_{M m 6}, \quad G_{M m 7} \quad$ generating respectively the languages $L_{M m 0}=\left(U_{1} \bigcirc U_{2}^{\bullet} \bigcirc U_{8}\right) ■\left\{I_{0}\right\}, L_{M m 2}, L_{M m 3}, L_{M m 4}, L_{M m 5}, L_{M m 6}, L_{M m 7}$. We assume that these grammars share the axiom I and that for any two of them I is their single common nonterminal. Besides this we denote by Σ_{0}^{M} the alphabet $K_{M} \cup V_{M} \cup \Sigma_{0} \cup\{\S\}$ and by $G_{M m 1}$ the $c f$-grammar $\left(\Sigma_{0}^{M}, W_{0}^{\prime}, I, P_{0}^{\prime}\right)$, where $W_{0}^{\prime}=W_{0} \cup \bar{W}_{0}, P_{0}^{\prime}=P_{0} \cup \bar{P}_{0}, \bar{W}_{0}$ is the nonterminal alphabet and \bar{P}_{0} is the production set of $G_{M m 0}$.

Finally we set $G_{M m}=\left(\Sigma_{0}^{M}, W_{1}, I, P\right)$, where W_{1} is the union of nonterminal alphabets and P is the union of production sets of the grammars $G_{M m j}, 1 \leqq j \leqq 7$. Of course, $L\left(G_{M m}\right)=L_{M m}$ and $L\left(G_{M m 1}\right)=L_{M m 1}$.

UPPER BOUND: $m_{G_{M m}} \preccurlyeq f\left(p_{M}\right)$. The proof of this inequality is very close to the proof of the corresponding inequality in the theorem 7.1 and is left to the reader.

LOWER BOUND: $m_{G_{M m}} \Rightarrow f\left(p_{M}\right)$. The proof of this statement is straightforward. Indeed, since f is m-limiting $S\left(G_{0}\right)$ we find there a fundamental sequence $\left(T_{i}^{f} \mid i>0\right)$. Let us denote by x_{i} the string $t\left(T_{i}^{f}\right)$ and set $z_{i}=\left[P_{M}\left(e^{\left|x_{i}\right|}\right)\right]^{R} x_{i} P_{M}\left(e^{\left|x_{i}\right|}\right)$ for each i, where e is the first symbol of V_{M}. The string $\left[P_{M}\left(e^{\left|x_{i}\right|}\right)\right]^{R} I_{0} P_{M}\left(e^{\left|x_{i}\right|}\right)$ is the yield of a single tree T_{i}^{M} in $S\left(G_{M m 0}\right)$ for each i. We denote by T_{i} the tree $\operatorname{com}\left(T_{i}^{M}, v_{i}, T_{i}^{f}\right)$, where v_{i} is the single bottom node of T_{i}^{M} labelled by I_{0}. It is obvious that T_{i} is in $S\left(G_{M m 1}\right)$, $t\left(T_{i}\right)=z_{i}$, and T_{i} is the single tree in $S\left(G_{M m}\right)$ with the yield z_{i}. This means that for each $i, m_{G_{M m}}\left(z_{i}\right)=m\left(T_{i}\right)$. Since $T_{i}^{f} \leqq T_{i}$ and m is mimeoinvariant there is an integer $d_{B}>0$ (not dependent on i) such that $m\left(T_{i}^{f}\right) \leqq d_{B} m\left(T_{i}\right)$. Further, ($T_{i}^{f} \mid i>0$) is a fundamental sequence for f in $S\left(G_{0}\right)$, so there is an integer $c_{f}>0$ one for all i such that $c_{f} m\left(T_{i}^{f}\right) \geqq f\left(\left|x_{i}\right|\right)$. Finally, for all $i,\left|x_{i}\right|=p_{M}\left(\left|z_{i}\right|\right)$. Summarizing these inequalities we obtain for all i :

$$
\begin{aligned}
c_{B} c_{f} m_{G_{M m}}\left(\left|z_{i}\right|\right) \geqq c_{B} c_{f} m_{G_{M m}}\left(z_{i}\right)=c_{b} c_{f} m & \left(T_{i}\right) \\
& \geqq c_{f} m\left(T_{i}^{f}\right) \geqq f\left(\left|x_{i}\right|\right)=f\left(p_{M}\left(\left|z_{i}\right|\right)\right) .
\end{aligned}
$$

Q.E.D.

Corollary 8.1: For any mimeoinvariant complexity measure m there is an infinite sequence of unbounded nondecreasing recursive functions $f_{1} \succ f_{2} \succ f_{3} \succ \ldots$ such that for all $j>0, \mathscr{E}_{f_{j}}^{m}-\mathscr{E}_{f_{j+1}}^{m} \neq \emptyset$.

Corollary 8.2: If m is a mimeoinvariant complexity measure then for any nondecreasing unbounded recursive function $\varphi, \mathscr{E}_{\varphi}^{m}-\mathscr{E}_{\text {const. }}^{m} \neq \emptyset$.

9. COMPLEXITY OF UNAMBIGUOUS MR-SCHEMES

In this little section we show that under most reasonable conditions complexity of unambiguous $M R$-schemes is of extremal nature. We discuss first a formalization of an informal concept of extremal complexity.

Definition 9.1: Let m be a complexity measure and f be a function limiting it. Then we say that a $M R$-scheme E is of maximal m-complexity if for no $g<f, E$ is in \mathscr{E}_{g}^{m}.

The following proposition shows that this definition is sensible at least for mimeoinvariant complexity measures.

Proposition 9.1: Let m be a complexity measure and f be a function limiting m. Then:
(a) if E is a MR-scheme of maximal m-complexity then it is not in $\mathscr{E}_{\text {Const. }}^{m}$:
(b) if m is mimeoinvariant and f is semihomogeneous then there exist MR-schemes of maximal m-complexity.

Proof: (a) Since the range of m is infinite f is unbounded; hence m_{E} is unbounded too.
(b) Let $T_{1}, T_{2}, T_{3}, \ldots$ be a fundamental sequence of f. Since m is mimeoinvariant we may assume without loss of generality that in every tree T_{i} in this sequence each nonbottom node is of width no less than 2 (we will refer to this condition as width condition).

Let k_{0} be a number such that $\left\{T_{1}, T_{2}, T_{3}, \ldots\right\} \subseteq \mathscr{S}^{c}\left(\Sigma, W, k_{0}\right)$. Consider the $M R$-scheme:

$$
E_{k_{0}}: \quad F x=\left(p x \mid c x, a F b x, \ldots, a F^{k_{0}} b x\right)
$$

where p is in $\mathscr{P}_{k_{0}+1}$, and a, b, c are basic function symbols. $E_{k_{0}}$ is unambiguous and has the following property: for each $i>0$ there is a tree T_{i}^{*} in $S\left(E_{k_{0}}\right)$ such that $T_{i} \leqq{ }^{s l} T_{i}^{*}$ while $\left|T_{i}^{*}\right|<3\left|T_{i}\right|$ (this upper bound follows directly from the width condition). Since $E_{k_{0}}$ is unambiguous we have $m_{E_{k_{0}}}\left(\left|T_{i}^{*}\right|\right) \geqq m_{E_{k_{0}}}\left(T_{i}^{*}\right)=m\left(T_{i}^{*}\right)$, by the axiom B in the definition 5.4 there is a $d_{B}>0$ (one for all i) such that $d_{B} m\left(T_{i}^{*}\right) \geqq m\left(T_{i}\right)$. As T_{i} is a member of the fundamental sequence $c m\left(T_{i}\right) \geqq f\left(\left|T_{i}\right|\right)$ (c is independent of i). Finally the linear inequality $\left|T_{i}^{*}\right|<3\left|T_{i}\right|$ and semihomogenity of f imply that there is a $b>0$ such that $b f\left(\left|T_{i}\right|\right) \geqq f\left(\left|T_{i}^{*}\right|\right)$ for all i. Hence $b c d_{B} m_{E_{k_{0}}}\left(T_{i}^{*}\right) \geqq f\left(\left|T_{i}^{*}\right|\right)$ for all i.
Q.E.D.

Remark: For density and branching we have $\mu_{E_{2}} \nrightarrow \log n, b_{E_{2}} \nrightarrow n$. Since μ and b are both mimeoinvariant and the functions $\log n$ and $\lambda n . n$ are both
semihomogeneous E_{2} is a $M R$-scheme of maximal density and maximal branching.

THEOREM 9.1: Let m be a mimeoinvariant complexity measure m-limited by a semihomogeneous function. Then every unambiguous $M R$-scheme is either of maximal m-complexity or of bounded density (i.e. falls into $\mathscr{E}_{\text {Const. }}^{\mu}$).

Proof: The proposition 6.2 guarantees that for each $M R$-scheme E there is a $M R$-scheme \hat{E}, unambiguous if E is unambiguous, such that $m_{E} \asymp m_{\hat{E}}$ and $S(E)=S(G(E))$. This reduces our theorem to the following theorem proven in [6, 9]:

If a mimeoinvariant complexity measure m is m-limited by a semihomogeneous function then every unambiguous cf-grammar is either of maximal m-complexity or of bounded density.

> Q.E.D.

Remark: From results of $[11,12]$ it follows that $\mathscr{E}_{\text {Const. }}^{\mu}$ coincides with the class of all quasirational $\left({ }^{8}\right) M R$-schemes.

REFERENCES

1. R. L. Constable, Type Two Computational Complexity, in Proceedings of the Fifth Annual A.C.M. Symposium on the Theory of Computing, May 1973.
2. K. Weihrauch, The Computational Complexity of Program Schemata, J. Comput. Syst. Sc., Vol. 12, 1976, pp. 80-107.
3. Y. Igarashi, On the Complexity of Generalized Monadic Recursion Schemes, Systems. Computers. Controls, Vol. 5, 1974, pp. 18-25.
4. St. J. Garland and D. C. Luckham, Program Schemes, Recursion Schemes, and Formal Languages, J. Comput. Syst. Sc., Vol. 7, 1973, pp. 119-160.
5. Sh. A. Greibach, Theory of Program Structures: Schemes, Semantics, Verification, Lecture Notes in Comput. Sc., Vol. 36, 1975.
6. A. Ja. Dikovskil, General Theory of Derivation Complexity and Syntactic Description in Context-Free Grammars, in A. V. GladkiI, Formal Grammars and Languages, Nauka, M., 1973, 9th chapter added in translation (submitted for translation into English in North-Holland Publishing Co.).
7. A. Ja. Dikovski, A General Notion of Complexity of Derivation and Syntactic Description in Context-Free Grammar, in Semiotika i informatika, Vol. 7, M., 1977, pp. 83-105 (Russ.).
8. A. Ja. Dikovski, Classifications of Context-Free Languages by Derivation Complexity (submitted for publication in Semiotika i informatika) (Russ.).

[^5]9. A. Ja. Dikovskil, Derivation Complexity of Unambiguous Context-Free Grammars and Languages (submitted for publication in Semiotika i informatika) (Russ.).
10. F. Harary, Graph Theory, Addison-Wesley Publ. Co., Reading, Mass., 1969.
11. A. Ja. Dikovski, Languages of Bounded Active Capacity, Soviet Math. Dokl., Vol. 11, 1970, pp. 748-750.
12. A. Ja. Dikovskii, Density of Derivation Trees and Active Capacity of Grammars, Problemy peredači informacii, Vol. 8, 1972, pp. 88-98 (Russ.).
13. A. V. Gladky, Formal Grammars and Languages, Nauka, M., 1973 (submitted for translation from Russian into English in North-Holland Publ. Co.).
14. W. Ogden, A Helpful Result for Proving Inherent Ambiguity, Math. Syst. Theory, Vol. 2, 1968, pp. 191-194.

[^0]: (*) Received January 1980.
 ${ }^{(1)}$ Bul'var Guseva, 30, kv. 40, Kalinin, 170043 U.R.S.S.

[^1]: $\left({ }^{2}\right)$ In our definitions and theorems we admit empty labels, empty right sides of productions, empty equations, and so on. However in the proofs of theorems we dont consider such cases for the reasons of space and because of triviality or routine character of the corresponding arguments.

[^2]: $\left(^{3}\right)$ For a language L and a string $z, z \backslash L$ denotes the quotient language $\{w \mid z w$ is in $L\}$.

[^3]: $\left({ }^{4}\right)$ Some other examples of measures of importance for $c f$-grammar theory such as index, Yngve measures, dispersion, selfembedding index, and so on, may be found in $[6,7]$.
 $\left({ }^{5}\right)$ Functions that we use for measuring complexity are total nondecreasing functions from Z_{+} into Z_{+}. For example, $\log n$ denotes the function $\lambda n .\left[\log _{2}(n+1)\right]$.

[^4]: $\left(^{7}\right)$ The width of a $c f$-free grammar G is the least integer v such that $S(G) \subseteq \mathscr{S}^{c}(\Sigma, W, v)$.

[^5]: $\left({ }^{8}\right)$ A definition of quasirational schemes may be found in [4].

