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ARBITRARY WEIGHT CHANGES
IN DYNAMIC TREES (*)

by Kurt MEHLHORN (* )

Communicated by J. BERSTEL

Abstract. — We describe an implementation ofdynamic weighted trees, called D-trees. Given a set
{Bo, . . ., Bn} oj objects and access frequencies q0, ql9 . . . , qn one wànts to store the objects in a
binary tree such that average access is nearly optimal and changes oj the access frequencies require only
small changes oj the tree. In D-trees the changes are always limited to the path oj search and hence
update time is at most proportional to search time.

Résumé. — Nous décrivons une implimentation d'arbres pondérés dynamiques appelés D-arbres.
Étant donnés un ensemble {£ 0 , . . . , Bn} d'objets et des jréquences d'accès qOi qu .. ., qnon désire
stocker les objets dans un arbre binaire de telle manière que le temps d'accès moyen est presque optimal
et que des changements des jréquences d'accès ne requièrent que de petites modifications de Varbre.
Dans un D-arbre, les modifications sont toujours limitées au chemin de recherche et par conséquent le
temps de mise à jour est au plus proportionnel au temps de recherche.

1. INTRODUCTION

One of the popular methods for retrieving information by its 'name' is to store
the names in a binary tree. In this paper we treat dynamic weighted binary search
trees.

Given a subset \,B0, Bl9 . . :, Bn} from an ordered universe U and access
frequencies qo,qu ...., qne N, the problemis to store the objects BQ.B^ . . .,Bn

in a binary tree such that:

(*) Received April 1979, revised Apri! 1980.
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D-6600 Saarbrücken.
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184 K. MEHLHORN

1) The weighted path length (and hence average search time):

is (nearly) minimal. Here a} dénotes the depth of Bj in the tree.
2) Changing the access frequency qj of Bj by an arbitrary amount deZ

requires only small changes of the tree. In particular, it should be possible to
insert new objects int o the tree (^ = 0) and to delete objects from the tree

The above problem comes up in many contexts. Consider for example a
library System. The objects would be books. Every request for a book would
increase its frequency count by 1. Retirement of a book corresponds to the
deletion of an object (d=—qj). Furthermore, acquisition of a new book
corresponds to the insertion of an object, i. t.q} was zero and will be increased to
some positive level. It is conceivable that a librarian might want to make an
initial guess at the popularity of a book and set d to an appropriate value; this
corresponds to the insertion with arbitrary positive d. Furthermore, one might
want to update the weight of objects not after every single request, but sum up the
request s separately, and increase the weight qj by d at one blow, say whenever the
weight has doubled.

In this paper we introducé D-trees which pro vide us with a solution to thé
above problem which is optimal up to a constant factor:

1) The average search time (average weighted path length) is always ^ 2 '
search time in an optimal tree.

2) The cost of updating the structure after an arbitrary weight change is at
most proportional to search time. This is achieved by restricting the changes of
the tree structure to the path of search.

A solution to the above problem is called a dynamic weighted tree; weighted
because of 1) and dynamic because of 2). An immense amount of knowledge is
available about weighted trees (access frequencies are static and no insertions
and deletions take place) and dynamic trees (access frequencies are 1, but
insertions and deletions are allowed). In particular, the weighted path length of a
binary tree for access frequencies <?0, qx, .. ., qn is at least:

« a w
H(q0, «!, • • -, <Z„)/log3= £ 7 > g -

; = o w Qi
n

where W= £ qt (cf. Mehlhorn, 1977). Implementations of dynamic trees are
ï = 0

known which allow insertions and deletions in O(logn) units of time.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



ARBITRARY WEIGHT CHANGES IN DYNAMIC TREES 185

Several kinds of dynamic weighted trees were already proposed. Baer
proposed the first solution, however he gave no theoretical analysis of it. Allen
and Munro describe and analyse a probabilistic approach. Unterauer
introduced £1/3 trees. The weighted path length of B1/3 trees is always nearly
optimal and the expeeted update time after the insertion of a new key is
proportional to the length of the path of search. The underlying assumptions
about the distribution of access frequencies are reasonable. However, the update
time may be exponential in the size of the tree in the worst case. D-trees were
introduced in Mehlhorn, 1979, see also Mehlhorn, 1977. In D-trees the frequency
changes are restricted to ± 1. D-tree exhibit the following behavior:

1 ) The weighted path length of a D-tree is always nearly optimal. In particular
a} = 0 (log W/qj) where aj is the depth of object Bj in the D-tree.

2) Update time is at most proportional to search time in the worst case.
In this paper we generalize D-trees and prove the following theorem.

THEOREM: Let {q0, qu . . . , qn) be a frequency distribution and let
^ : = <?o + <?i + - • • +<?«- Let T be a D-tree for this frequency distribution:

1) Searchingfor object Bt (which has frequency qt) takes time O (log W/qt). In
particular, the depth of object Bt in the tree T is bounded by 2 log Wlq^ + I.
Average weighted path length is bounded by 2. H + 3 S 2. y/ï. Popt + 3 where Popt is
the weighted path length of an optimal search tree.

2) Updating the tree structure after increasing q} by d takes time:

3) Update time after decreasing q} by d is:

0(log{1V7max{qj-d,l))). D

Note that.the factor log max (1, d/W) is usually negligible and hence update
time is proportional to search time. Since the search time is within a constant
factor of optimality we conclude that D-trees provide a realization of dynamic
weighted trees which is optimal up to a constant factor. Hence they generalize
the behavior of balanced trees ( A KL-trees, 2-3 trees) from the un weighted to the
weighted case.

D-trees are based on weight-balanced trees (Nievergelt and Reihgold). As a
byproduct of our analysis we obtain that weight-balanced trees support the full
repertoire of Concatenable Queue Opérations (Insert, Delete, Member,
Concatenate, Split) with logarithmic exécution time per opération.

In section 3 we review weight-balanced trees and introducé D-trees. In
section 2 we show how to support concatenable queues by weight-balanced
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186 K. MEHLHORN

trees, in section 4 we deal with weight increases and in section 5 with weight
decreases. Section 3 is mainly intended as a warm-up.

Knowledge of Mehlhorn, 1979 is helpful but not required.

2. PRELIMINAIRES: D-TREES

D-trees (Mehlhorn, 1977 or 1979) are an extension of weight-balanced
trees (Nievergelt and Reingold). Weight-balanced trees are a special case of
binary trees. In a binary tree a node has either two sons or no son. Nodes with no
sons are called leaves.

DÉFINITION: Let T be a binary tree. If 7 is a single leaf then the root-
balance p(T) is 1/2, otherwise we define p(T)= \Tt\/\T\9 where | Tt| is the
number of leaves in the left sub tree of Tand | T\ is the number of leaves in tree T.

DÉFINITION: A binary tree T is said to be of bounded balance a, or in the
set BB[ai\, for O ^ a g 1/2, if and only if:

2. T is a single leaf or both subtrees are of bounded balance a.

Remarks: a) The définition of root-balance is apparently unsymmetric with
respect to left and right. But note that | T\ = \ Tx | +1 Tr | where | Tr | is the number
of leaves in the right subtree and thus | Tr |/ | T\ = 1 - 1 Tî \/\ T\. This shows that
the unsymmetry is inessential.

b) If T is in class £J3[a], then | Tt\ ^ ( 1 - a ) . | T\9 | T , l ^ a . | r | ,
\Tt\ ^ [ ( l - a ) / a ] . \Tr\ and \Tl\^[a/(l-a)]. \Tr\. As an immédiate consé-
quence we infer that the depth of a BB[a] tree is O (log | T\ ).

We add a leaf to a tree Tby replacing a îeaf by a tree consisting of one node and
two leaves. "If upon the addition of a leaf to a tree in BB [a] the tree becomes
unbalanced relative to a, that is, some subtree of Thas root-balance outside the
range [a, 1 - a ] then that subtree can be rebalanced by a rotation or a double
rotation. In figure 1 we have used squares to represent nodes, and triangles to
represent subtrees; the root-balance is given beside each node".

Symmetrical variantes of the opérations exist.

If we dénote by xl9 x2 ) . . . the number of leaves in the respective subtrees
show in figure 1 then the root-balance of B after the rotation is

(X1+X2)/(X1+X2+X3). Using P2
 = X2/(X2 + *3) a n d Pi = : ^ l / ( x l + ^ 2 + X 3 ) t h i s

is easily seen to be equal to Pa +(1 - p j P2. The expressions for the other root-
balances are verified similarly.

R.A.LR.O. Informatique théorique/Theoretical Informaties
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Rotation

A

y

B

A h

C

Double
Rotation

Figure 1

For the sequel, a is a fixed reaî number, 2/11 ̂ oc£ 1 — y/212

Nievergelt and Reingold state in their paper (without proof) that rotations and
double-rotations suffice to rebalance a tree after the insertion or deletion of a leaf,
provided that a is restricted to the range 2/11 ̂ ot^ 1—^/2/2. In Blum and
Mehlhorn an rigorous proof may be found. They also show that a constant
number of rebalancing opérations suffices on the average provided that
ot< 1—^/2/2, i. e. they show that the total number of rotations and double-
rotations needed to process an arbitrary séquence of n insertions and deletions
starting with an empty tree is O {n). Hère, we need a more detailed outlook at the
effect of rotations and double-rotations in weight-balanced trees.

LEMMA 1: Let 0 < a ^ 1 -y/ï/2. Let Tbe a binary tree with ieft (right) subtree
Tx(Tr)such that:

1) Tx and Tr are in BB [a].
2) a(l-a)Sp(7 t)<a.
Then a rotation about the root of T will produce a tree in BB [a] if

p(rr)<;(l — 2a)/(l —a) and a double rotation otherwise.

Proof: Compute the balance parameters of the trees obtained by rotation and
double rotation and show that they are in the interval [a, 1 —a]. We give one
example and leave the rest to the reader.

vol. 15, n°3, 198Î



188 K. MEHLHORN

Suppose we perform a rotation. Then the balance parameter of the root is

By assumption:

a ( l -a )^Pi^a and

Since px +(1 — PJ p2 is increasing in both arguments:

Pi+(l-p1)P2ga+(l»a)(l-2a)/( l-a)=l-a

and:

if 2 - 2 a + a 2 ^ l if ( a - l ) 2 ^ 0 . D

A symmetricai variant of lemma 1 exists. Together they show that rotations
and double-rotations suffice to rebalance a BB [a]-tree as long as the root-
balances are in the range [a(l —a), 1— a(l— a)].

DÉFINITION: A node v in a binary tree is balancable if the balance p(v) of v
is in [a(l—a), 1—a (1—a)]. A pair (a, b) of real numbers is balancable
ifb/ae[oc(l-ot), l -oc ( l -o t ) ] .

D-trees are an extension of BB[a] trees. Given objects Bo, Bu . . ., Bn and
access frequencies q0, ql9 . ' . . , qn let T be a BB[a] tree with
W=qo-\-q1-\- . . . +<?nleaves. We label the leavesofT accordingto the folio wing
rule. The left-most q0 leaves are labelled by Bo, the next q± leaves are labelled by
B l s . . .

DÉFINITION: a) A leaf labelled by B} is a j-leaf.
b) A node v of T is aj-node iff ail leaves in the subtree with root v arey-leaves

and y's father does not have this property.
c) A node v of T is the j-j oint iff allj-leaves are descendants of v and neither of

u's sons has this property.
d) Consider thej-joint v. g^-leaves are to the left of v and q'j7-leaves are to the

right of v. If q'j^q'j' then the j-node of minimal depth to the left of v is active,
otherwise the j-node of minimal depth to the right of v is active.

e) The thickness th (v) of a node v is the number of leaves in the subtree with
root v.

A D-tree is finally obtained from the BB [a]-tree T by:

1) Pruning all proper descendants of j-nodes.
2) Storing in each node.
a) a query of the form "if X^Bt then go left else go right";

R.A.I.R.O. Informatique théorique/Theoretical Informaties



ARBITRARY WEIGHT CHANGES IN DYNAMIC TREES 189

b) the type of the node: joint node, 7-node or neither of above;
c) its thickness;
d) in the case of the j-j oint the number of j-leaves in its left and right subtree.

It was shown in Mehlhorn, 1979 that:
a) The depth a} of the active j-node is O (log Wlq}), more precisely aj^c1 log

W/qj + c2 where:

Cj^l/logCl/O-a)) and c2=\ + ct. •

b) Changes of the tree structure after increasing (decreasing) access frequency
q} by 1 are limited to the path from the root to the active ;-node and hence take
time O (log W/qj).

Compact D-trees were also introduced. They give the same access time and
update time bound, but use less space.

3. CONCATENABLE QUEUES BASED ON WEIGHT-BALANCED TREES

Aho, Hopcroft and Ullman introduced the concept of concatenable queues. A
Concatenable queue is a family of subsets of some ordered universe U together
with the opérations INSERT, DELETE, MIN, MEMBER, CONCATENATE
and SPLIT where:

INSERT (a, S)
DELETE (a, S)
MIN (S)
MEMBER (a, S)
CONCATENATE (Su S2, S3)
SPLIT (a, S, S ^ )

S<-Su{a}

min { a; a G S}
the predicate a e S

Sj <- {x; x^aandxeS} and
S2 ^ {x; x > a and x e 5 }

The opération CONCATENATE is only applicable if max S2 <min S3. The
sets S2, S3 (the set S) cease to exist after an application of CONCATENATE
( , S2, S3) (SPLIT ( , S, ,))e

Various implementations of Concatenable queues exist (cf. e. g. Aho,
Hopcroft and Ullman, Mehlhorn, 1977). Ail of them are based on some sort of
height-balanced trees (2-3 trees, HB-trees) and require O(logw) time units per
opération.

vol; 15, n°3, 1981



190 K. MKHLHORN

In this section we show that weight-balanced trees also support the full
repertoire of concatenable queue opérations. A set S of size n is représentée! by a
BB [ot]-tree with n leaves. The leaves are labelled from left to right by the éléments
of 5 in increasing order. An (interior) node is labelled by the label of the
rightmost leaf in the subtree rooted at v. In order to search for an element X in
the tree with root v we only have to compare X with the label of the left son of v. If
X is not greater than we continue the search process in the left subtree, otherwise
we proceed to the right subtree. It is well known that the opérations INSERT,
MIN, DELETE, MEMBER can be performed in O (log|5|) time units
(Reingold and Nievergelt, Mehlhorn, 1977).

CONCATENATE : Let sets Su S2 be represented by BB [a]-trees T1 and T2,
max S± <min 52. Assume w. 1. o g. that | Sx | ^ | S2 |. Let v09 vlt ..., vm be the
right spine of 7\ ; i. e. v0 is the root, vt + x is the right son of vA for 0 ̂  i < m, and vm is
a leaf. We will construct the following tree.

In order to make that construction work we only need to show that there exists
some i such that v0, ...,!;,• and v are balancable in the new tree. This follows from
the following lemma.

DÉFINITION : A séquence UJ0, WU W2, ... of positive reals is a-admissible if:

for all i.

REMARK : Let v0, vl3 v29 .- be a path through a i?.B[a]-tree, v0 being the root.
Let w^thiVi) be the thickness of node v. Then w0, wl9 w2,... is a-admissible.

REMARK : In the following estimations we will often use the fact that for b > a
the function f(x) = (x + a)/(x-\-b) is strictly increasing inx and
g{x) = (x — a)/(x-b) is strictly decreasing in x.

R.A.I R.O. Informatique théorique/Theoretical Informaties



ARBITRARY WEIGHT CHANGES IN DYNAMIC TREES 191

SPINE-LEMMA: Let w0, wu w2,.. .,wn be an a-admissable séquence and let

deU + .If:

then there exists some i namely:

1 if

otherwise,

such that:

1) (wi+1+d,d) is balancable or i = n;

2) (d + Wj,d-\-wj+1) is balancable for j ^i;

3) i^max^! \og(w0/d) + c2, —1) where:

c1 = l / log (1 / ( l — oc)) and c2 = l + c1 log ot.

Proof: If d/(w0 + d)^a, then put i : = - 1 .

Otherwise let i be maximal such that:

Then d/(wi+ï+d)^CL or i — n, d<a wj{l-~(i) and d^a wi+1/(l—a).
1) We have to show: If i<n then (wi+1-\-d,d) is balancable. Since

l)^a by définition, it remains to show that:

For i= - 1 this is true by assumption, for i^0 we even show:

d/{d + wi+

Since d<a u?j/(l—a), u?,-+1^a wt and

a/(l—a) + a a + a( l—a) 5 a/3

2) (d + iüj, d + Wj.+ i) is balancable

Certainly:

vol. 15, n°3, 1981



192 K. MEHLHORN

Also d<au?£/(l —a^ocu^/CL—a) and u;J + 1 g ( l - a ) wy Hence:

+ Wj ~ a / ( l - a ) + l

3) Since it>fc5^(l—a)fcu;0:

d

Since z is chosen such that d/(d + u>j)<a we cannot have

Hence:

This proves 3) in the case z^O. For i = — 1 there is nothing to show. D

Let Wj=th(vj)forO^j^m. Then w0 = | ST̂  | and ium= 1. Let d = | S2 | ̂  1. Then:

and hence the spine lemma applies. Let i be defined as in the spine lemma. Since
d/(wm + d) = d/(l + d) ̂  1 /2 ̂  a we have f < m. We construct a new node u, maké
ui + ! the left son of Ü, make the root of T2 the right son of v and finally make v the
right son of vt. The label of v is the same as the label of the root of T2. The balance
of node y is wi + i/(\S2 \ +wi + 1), the balance of Vj(j^i) is
l—[(Wj+i+d)/(tUj + d)]. By 1) and 2) of the spine lemma t), u^ . . . , i? 0 are
balancable. Hence we only have to walk back to the root and restore balance by
rotations and double-rotations. Finally:

This proves:

LEMMA: Concatenate ( 9SUS2) takes 0{\\og\S1 | - l o g | 5 2 ||) units of time.
Hère | | dénotes absolute value.

Split: Let the set S be represented by 5U[ot]-tree Tand let a be an arbitrary
element of the universe. We first search for a in tree T. This takes 0 (log | S | ) units
of time. Then we delete all nodes on the path of search and collect the left and
right subtrees of that path in two sets êFx and SFr respectively. &x is an ordered
forest of BB [a] trees TuT29...9Tq for some ç^log \S\.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



ARB1TRARY WEIGHT CHANGES IN DYNAMIC TREES 193

Let t{ be the thickness of T{, l^i^q.

Trees Ti + 1,..., Tq are subtrees of the right brother tree of Tt, Hence:

by the remark foliowing the définition of BB[a]-trees. The tree Tu . ,.,Tq

represent sets Sx, . . ., Sq. We exécute ConGatenate (Sq_ r, Sq_ 1, Sq), Concatenate
{5q-2>$q-2>3i-x)—9 Concatenate (SX9Sl9S2) and obtain a tree T which
represents the first set obtained in the split Split (a, S, , ). Executing the above
séquence of q -1 Concatenate-Operations take:

units of time. Here | log . . . | dénotes absolute value. Since:

we have:

S ( log-

and hence:

log (1 — <x)/ot, otherwise

= \ O(21og(l-a)/a+log|S,|/( |S J+1 |

since:

vol. 15, n°3, 1981



194 K. MEHLHORN

for every fonction ƒ and arbitrary x[s:

= O(q) + O(log\Sx\/\Sq\)=- O(q + \og\S1\) = O(log\S\).

This shows that Splits can also be executed in time O (log S). Note further that
non-trivial bounds for q and Sq would allow us to improve the time bound. This
fact will be used in the discussion of case 1 in section weight decreases.

THEOREM 1: Weight-Balanced Trees support thefull repertoire of Concatenable
Queue opérations with a performance bound of O (log n) per opération.

4. WEIGHT INCREASES IN A D-TREE

We now return to D-trees. In this section we treat weight increases, in the next
section weight decreases. Let Tbe a D-tree for weights qo,Qi, • • • ,4»- Suppose
we want to increase qj by d. If d=l then the problem was treated already in
Mehlhorn, 1979. If d is small with respect to q} (precisely d<(a/( l— a ) ) ^ )
then the spine lemma is almost the answer. This is worked out in 4 .1 . If d is large
with respect to q^ then we need an extension of the spine lemma, the path lemma

4.1 . Small weight increases

In this section we show how to deal with small weight increases. Theorem 2 is
almost a direct conséquence of the spine lemma.

THEOREM 2: Let T be a D-tree of total thickness W=qo + qi+ . . . + qn.
Increasing qj by d can be done in time O (log W/q^ provided that d < (oc/(l — a)) qj
ord=l.

Proof: The case d= 1 is treated in Mehlhorn, 1979.

Suppose d<(oL/(\ — oc)) qy We first access the active;-node. This takes time
O (log W/qj). Let vOyv\, . . . 9vk9 . . . 9vm be the path from the root of T to the
active j-node; vk is the j-j oint. It is possible that k = m. In this case there is exactly
onej-node.

Let Wj = th (vj) for 0 Si S m. Then wk ^ q} > ((1 - a)/oc) d and hence
d/(d + wk)<OL. Let i be defined as in the spine lemma. Then ï^fc.

Case 1; i ^ m - 1 . (This case will certainly apply if the active j-node is thej-
joint.) Then we increase the thickness of the active j-node by d, i. e. we increase its

R.A.I.R.O. Informatique théorique/Theoretical Informaties



ARBITRARY WEIGHT CHANGES IN DYNAMÎC TREES 195

thicknessfromi;mtoî;m 2)ofthespinelemrnathenodesi;0, . . -,vm_1

remain balancable. So we only have to walk back to the root and restore balance
by rotations and double-rotations as described in Mehlhorn, 1979.

Case 2: i^m — 2. The relative position of j-joint and active j-node is as shown
in the following figure. (We assume w.l.o.g. that the active j-node is a left
descendant of the j-j oint.)

vk) j- joint

We change the tree into.

active j-node = v

j-joint

vol. 15, n°3, 1981



196 K. MEHLHORN

v is a new node. lts right son is the new active j-node of thickness d. By the
spine lemma v, vi9 vt_ ls . . . , v0 are balancable. Hence we only have to walk back
to the root and restore balance by rotations and double rotations as described in
Mehlhorn, 1979.

In either case O (log W/qj) time units suffice to restore the D-tree
property. •

If CL = 1 f A then theorem 1 solves the problem as long as weights are never
increased by more than 33% in a single step. Iterating this process gives us a
solution to the gênerai problem with time bound O (max (1, log d/q^. log
Namely write d — dx +d2 + . . . +dk where:

dt= 2 ( 1 _ a ) ( ^ + rfi+- - • +di-i) f o r

and:

Then /c = 0(max(l, logd/^)). Increase qj by dl9 then by d2,... Smce:

d2+...+di < W

we obtain the above time bound. We show next that we can turn the
multiplicative factor max(l, log dlq}) into an additive factor.

4 .2. Arbitrary weight increases

We want to improve upon the procedure described at the end of the previous
section. Suppose we want to increase q^ by d. Let u0) vu . . . , vm be the path from
the root to the active j-node. As above we want to identify a node vt such that we
can leave the total weight increase below vt without destroying the balance above
vt too much. However, it will not be possible to leave the total weight increase d
in one additional j-node. Rather we will build two copies of the subtree rooted at
vi+1. In one copy we replace the left subtrees along the path from vi+1 to the
active j-node by new j-nodes of the appropriate weight, in the other copy we
replace the right subtrees. Then we make these copies the sons of a new node v.
v is the new j-joint. Finally v will take the position of v-i+x as a son of vt.

In order to show that this strategy works we need to prove a lemma similar to
the spine lemma. Before stating the lemma we need to discuss one of the

R.A.I.R.O. Informatique théorique/Theoretical Informaties



ARBITRARY WEIGHT CHANGES IN DYNAMIC TREES 197

= new j - joint

new j-nodes

assumptions in that lemma. Let's revisite the proof of theorem 2 again. Let
i>0, !>!, . . . , t?m be the path from the root to the active j-node and let i be defmed as
in the spine lemma, namely i = max {j;d/(d+Wj)< oc }. If i^m — 1 then case 1 of
the proof applies. In that case we did not make use of the fact that i; ̂  fc, i. e. vt is a
descendant of the J-joint. In other words, if d/(d+w^m_1) < a then we solved the
problem already.

PATH-LEMMA: Let wo,w1,.. .,wm_i beana-admissible séquence and let deU + .

(d — wo)/d<a and

then there exists an i namely :

such that:

1) (d,d — wi

3)

is balancable or i + 2 — m.

is balancable.

ï) is balancable for:

j^i-log a/log(l -
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Proof: If i<m — 2 then (d-~wi + 2)/d^.OL but {d — wi + i)/d<a and hence
d*èwi+2/(L — a) and d<wi+i/{l-oi), If i = m — 2 then (d — u ^ . J / ^ a and
hence d<wm_1/(l— oi)^wi+l/(l — a). Finally uji+2èotu^+1.

1) If f + 2<m then (d — wi + 2)/d^a is true by définition of i. Furthermore:

This proves condition 1).
2) We have to show:

2a 26

We first show 2b. Since d<wi+l/(l-ct):

iff ( a -

This shows 2b. Next we prove 2a.
If i = rn~2 then there is nothing to show.

Otherwise d^twi+2/(l —a) and i*Ji+2 = aM;i+i and hence
Thus:

This shows 2 a.
3) We have to show:

3a ^ + ^j 3b

for all 7 ̂  i - log a/log (1 — a) +1 :
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This shows 3a. Furthermore WJ^WJ+1/(1—OL) for all; and hence:

Thus:

199

( l - a ) * " 1 * !

iff l/((l-a) fc +1)^(1 - a ) ;
iff

This proves 3 b for all j with i— 7 —/c^log a/log(1— a)— 1. •
We are now ready to present the solution to the gênerai problem. Suppose we

want to increase q} by d. Let v0, vl9..., vm be the path from the root to the active
y*-node. Let Wj = th (vj). By the discussion proceeding the path lemma we may as
well assume that d/(d-\-wm_1)^OL.

Case l:(d~ wo)/d< oc. Then the path lemma applies. Let i be defined as in the
path lemma. Then i^m — 2. We may assume w. 1. o. g. that vi+2i$ the right son of
t>£+1. Consider the path from vi+l to vm^^ (both end points included). Let
L1,..., Lp (Rt,..., Rq) be the left (right) subtrees along that path. Lp and i^ are
the two sons of vm_x. One of them is the active j-node.
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Let Ij(rj) be the thickness of LjiRj). Then:

Construct two copies of the tree T rooted at vi+l.

In the first copy, call it Tt, replace the trees R,,..., Rq by j-nodes of thickness
ru , , ,,rq respectively, in the second copy, call it T2, replace the trees
Lt,.. .9Lp by j-nodes of thickness d—wi+2,l2> — -Jp respectively.

Finally make Tx (T2) the left (right) subtree of a new node v, and let v replace
vi+ , as a son of f,-.

REMARK: Note that on either side it may be possible to combine j-nodes into
larger nodes. This is easily done by checking if the brothers of the newly
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construeted j-nodes are j-nodes. We assume for the sequel that these
combinations are done. In particular, if i = m — 2 and vm is the right son of pm_ t

then the right son of v is a j-node of thickness d. (Note that u)m+2 = rr)

Tt is certainly a tree in BB [ot], as is the right subtree of T2. The right subtree of
T2 has thickness wi+2, its left subtree is a j-node of thickness d — wi+2.lïi = fn—2
then we can combine both nodes to a single j-node of thickness d, cf. the
preceeding remark. If i < m — 2 then the root of T2 is balancable by condition 1 )
of the path lemma. Furthermore v is balancable by condition 2) of the patji
lemma.

Next we need to show that the j-leaves still form a eontiguous segment of the
leaves of the underlying BB [a] tree, that we can détermine the queries assigned to
the new nodes efïiciently, and that we can détermine the type of each of the new
nodes, The first problem is resolved by the foliowing observation. Either L p or
Rq is the active j-node and hence we insert the new j-leaves immediately adjacent
to some already existing j-leaves. Hence the j-leaves still form a contiguous
segment of leaves, The-assignment of queries to the fathers of the new j-nodes of
thickness riy . . . , rq is also easy. The active j-node has to be to the right of them
and hence they receive the query "if X^B^_l then go left else go right".
Analogously the query "ifX ^ Bj then left else right" is assigned to the fathers of
the new j-nodes of thickness d — wi+2i l2, . . . , lp respectively. It remains to
consider node v, If v is not the j-j oint then one of its sons is a j-node and we assign
the query as described above. Suppose now, that v is the j-joint The distribution
of j-leaves with respect to v is easily computed from the distribution with respect
to the old j-joint and the numbers rl9 . . . , rqi d*~wi+2i l2) . . . , lp. Note that the
old j-joint has to be one of the nodes vi+1, vi+2, ..., üm__t in this case.

Let qx (q2) be the number of j-leaves to the left (right) of it in the D-tree before
the insertion. Then <j1 + r1+ . . . +rq(q2 + d-wi+2 + l2+ . . . + lp) j-leaves are to
the left (right) of r.

It remains to show how to détermine the type of the new nodes. This was done
already in the case of u. Consider any of the new nodes in Tt. If such a node has
an L t as its left son then it is an "xj>z"-joint if the corresponding node in Twas a
an 'xyz'-joint. If it does not have an L t as its left son then it is of no special type.
An analogous statement holds for T2.

This shows that we still have a D-tree after the weight increase of qj by d except
that some of the nodes v0, vu ..., vt, v root of T2 may be out of balance. Àlso
0(\og{W/qj)) time units were spent up to this point.
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Example: a = 1 /4, we want to increase:

+ d = 13

[active j-node| = j - joint

qj from 1 by 13. The path from the root to the active j-node defmes the folio wing
oc-admissible séquence 48, 28, 14, 10, 7, 2, 1.

In the path lemma we have ï~2. We construct:

Node v is the newy-joint. Among the nodes v0, vl9 v2i v, vf
3 only v2 is out of

balance. It's balance is 4/27 < 1/4 (1 — 1/4). Hence v2 is not even balancable.
This is in accordance with claim 3) of the path lemma.

It remains to show how to rebalance nodes vOi vu .. ., vi9 v, root of T2- By
claims 1 and 2 of the path lemma nodes u, root of T2 are balancable. Hence we
can use rotations and double rotations as described in Mehlhorn, 1911 a.

Furthermore, by claim 3 there is some p:gloga/log(l— a)— 1 such that
{d -h wj, d + wj + 1 ) is balancable for ail jSi~P and either
(rf-f u;l_p+1, d + wt^p+2) is not balancable or i—p + l = ï + l, i.e. p = 0. If p=0
works then we only have to walk back to the root and restore balance by means
of rotations and double-rotations. Suppose p>0. (In our example i = 2 and
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p= 1.) Consider the path from vt„p+ x to the root v of the newly constructed tree
T of thickness d + wi+i.

Let Ll9 L2, . . . , I r and Rl9 . . . , Rq be the left and right subtrees along that
path. Let ls(rs) be the thickness of LS(RS). So we are left with an ordered forest
{Llf L2i .. .,Lri tree T with root v, Rq, . . . , Rt} of £>-trees. This forest
contains p + 1 trees. Consider any left subtree £ s . lts thickness ls is equal to
Wj — wj+1 for some j , i —

Hence:

by the proof of the path lemma. Also:
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Thus:

and:

We want to use the spine lemma to insert L r, . . . , L1 (in that order) into the left
spine of T and Rq9 . . . , Rx (in that order) into the right spine of 71. Thas
thickness d + wi+t. Hence:

I-a < 1
2 —a = 2

and the spine lemma applies (w} — wj+l plays the role of d and d + wi + 1 the role of
w0 in that lemma). From the proof of the path lemma we know wi + 2 ̂ (1 - a) d
and wi+ ! ̂ ( l/a)iü i + 2. Hence u;£ + 1^((l—a)/a)d. Afterinserting the first(p —1)
trees into the left and right spine of T its thickness has grown to at most:

Hence the i of the spine lemma is in:

This shows that the trees Lr, . . ., L u Rqi ..., R1 will be inserted above some
constant depth in Tand hence these insertions take time 0(1). It is easy to see
how to update the additional ZMree information during the insertion process.
Finally, we use rotations and double-rotations to restore balance above ü£_p.
This shows that increasing q j by d can be done in time 0 (log Wlqj) provided that
(d — wo)/d<oi9 i.e. d<wo/(l— a).

Example continued: In our example we have p = 1, i. e. we need to insert the left
subtree of v2 in the left spine of the tree with root v. We obtain:

Case 2: {d-wo)/d^oi, i.e. d^wo/{l-a),
Choose any d''<d such that (df — wo)/d'<a and (d' — wx)d'>aL.
Then go through the above with d' instead of d.
Case 1 applies with i = — 1 and hence the tree shown in the discussion of case 1

will be the entire D-tree after increasing q} by d '. Now the root of the D-tree is the
;-joint and hence we may apply theorem 2 repeatedly in order to increase qs by
additional d — d' units. The discussion following theorem 1 shows that
0(\og(d/w0)) itérations will suffice each of which costs 0(1) units of time.
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THEOREM 3: Let T be a D-tree of total thickness W=qo + qi -f . . . +#„.
Increasing q} by d can be done in time O(log PF/^ + log(max(l, d/W))).

So we can increase access frequenties by an arbitrary amount with hardly
paying any penalty [only O (log d/W) time units in addition to the access cost]. It
is left as an exercise to the reader that the penalty can be bounded by a constant in
compact D-trees, i. e. weight increases in compact trees take time O (log W/q}).

5. WEIGHT DECREASES

In this section we will show how to decrease the access frequency q}by deN.
We will assume 0^d^q}. The solution will rely heavily upon the spine lemma.

Let v0, vit . . . , vn be the path from the root to the active j-node, let vk be the
y-joint, k^n. Remember that the number ofy-leaves to the left and right of the
jTJoint are stored in thej-joint and that the thickness wn _ 1 of the father vn _ x of the
active j-node is at least qj/2. This follows from the fact that allj-leaves which are
on the same side of thej-joint as the active j-node are descendants of un_ t . Hence
the thickness wn of the active j-node is at least a qj/2.

Suppose d > wn first. The following figure shows the relative position of j-joint
and j-nodes.

Let x1 be the thickness of the active j-node and let qr
jy q'j be the distribution of

j-leaves with respect to the j-joint, qj = qfj + q/
j
f. Then x t ^
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j - j o t n t

Figure 2. - Dotted lines . . . dénote zero or more tree edges.

Suppose w. 1. o. g. that the active y-node is a left descendant of they-joint. We
delete the active j-node of thickness xx and update the distribution numbers
ctji-q'j — Xx, q'j' <- q 'j in they-joint. If q'j > q '• then we consider next the j-node of
minimal depth to the left of they-joint. Let its thickness be x2. As above (in the
first paragraph of this section) one shows:

We delete they-node of thickness x2. Similariy, iiq'^q'j then we consider next
they-node of minimal depth to the right of they-joint. In this fashion we delete
y-nodes of thickness xl9 . . ., x r_ : until x1 + x2+ ... + xr^d. It is easy to see
that xi^oi(qj~x1 - . . . —x^^/2 for all i.

If we keep a pointer to thej-joint and to the fathers of they'-nodes on either side
of the j-joint which were deleted last then the process above takes time

O(r+ max depth (xj). Here and in the sequel we will misuse notation and use x̂

also for they'-node of thickness xt. We need a bound on r and depth (x,).

LEMMA: Let yl9 y2, . . . , yqe N with:

yi^ct/2.(yi + yi + 1+...+yq) for l^i^q^

Let 0<d^Ly1+y2+ . . . +yq= Y and:

Then:

a) r = O(logmin(y,

b) yi = Q(msix(Y-dy l))for all i£r.
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Proof: Let i^r. Then:

ylZ0L/2(yl + yt+1+ . . . + yq) ^a/2{yr + yr + t + ... + yq)^

This proves b). Define:

YtJ=yt+yi+1+..-+yj for i^j.

Then y ^ a / 2 . YitJ and hence:

and further:

For j = r—1 we obtain:

(V-d).

This proves a) for d< Y. If d= Y then we only have to observe that:

CL)]*-x. D

Let xl9 x29 . . . , xq be the thickness of j-nodes in the order in which they would
be deleted if we wanted to delete them all. Then qj = x1 + x2 + •. • +xq and:

Hence the lemma applies and we have:

r = O{\ogmm{qpdl{q}-d)))
and:

depth (x,) - O (log Wlxt) = O (log min ( W/(q} - d ), W)).

This shows that up t o no w only O (log min ( W/( qj — d), W)) time units are spent.
At this point we are left with the following problem. We are currently working

on a j-node of thickness xr with x x + . . . + x r _ 1 < d ^ x 1 + . . . + x r and
xr = Çl(qj — d), we deleted j-nodes of thickness xi9 . . . , xr_l and thus created
many unbalanced nodes. If d£wn then r= 1 and no j-node was deleted so far.
Next we distinguish cases: whether the thickness xr of the currently considered
j-node has to be reduced considerably or not, i.e. whether x± + . . . +xr — d is
small or not.

vol. 15, n°3, 1981



208 K. MFHLHORN

Case 1; xt+ .. . +xr — d^(qj — d)/2, i.e. the thickness xT has to be reduced
considerably. In this case we also delete they-node of thickness xr completely and
in a second pass increase they-th access frequency by (xx + . . . +xr) —d. At this
point we deleted some y-nodes to the left of they-joint and some y-nodes to the
right of they-joint, Consider the situation to the left of they-joint first. Let u0 be
the father of they-node of thickness xl and let um be the father of they-node of
maximal depth which was deleted to the left of they-joint. Let uo>

 Mi> • • - > um ̂ e

the path from u0 to um. Then the deleted y-nodes were right sons of some of the
«i's. In particular, they-node of thickness x± was the right son of u0. Deleting
wo> • •., wm leaves us with an ordered forest consisting of the left subtrees of those
u, which are not father of a deleted /-node plus the left subtree of um. We want to
concatenate these subtrees as described in section 3 on concatenable queues.
The situation hère corresponds exactly to the SPLIT opération. Let tu ..., tq

be the thickness of the trees in the ordered forest. Then
t1^ti+ . . . -f tq^((l-a)/a)x1sincethethicknessoftheleft(right)subtreeofM0

is less then tx -f .. . + tq (equal to xt).
Furthermore tq ̂  (ot/(l — oc)) xr since tq is the thickness of the left subtree of um

and the thickness of the right subtree of um is at least xr. The analysis of the
SPLIT opération [remark immediately preceeding the statement of theorem 1.
Note that q£depth(xr) and \S1\ =tu \Sq\ =tq] shows that:

o(depth(xP) + l o g M = O (log min {W, W/(qj-d)))

time units suffice to concatenate this ordered forest. [Note that tq is the brother of
xr and hence t1/tq^W/tq=^O(W/xr). Furthermore depth (xr) = 0 (log W/xr).
Finally observe that xr — Q(qj — d) and that x r^l .]

An analogous statement holds for the right side of the y-joint. Let us
summarize what we achieved so far. We reorganized the tree below the fathers of
the y-nodes of minimal depth on either side of the y-joint. Next we need to
organize above these nodes. We concentrate on the left side first. Let vn_x be the
father of they-node of thickness xt. By the reorganization described so far the
subtree rooted at vn_1 was replaced by a subtree of smaller thickness [at least
thickness tq = Sl(qj — d)]. This réduction in thickness unbalancesi;n_2, t>„-3, . . .
However Vj will remain balancable fory^rc-/?. We will show that p can be
bounded by a constant.

LEMMA: Let w0, wu . . . , wn be an a-admissible séquence. Then
(wi — wni wi + i—wn) is balancable for all:
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Proof: From wn_k^wn/(l — a)k we infer:

if:

if:
log ( a 2 / ( l -

l og ( l - a )

This pro ves the lemma. D

The lemma shows that p can be bounded by a constant even if we replace vn _ x

by a node of thickness 0. (Use n — 1 instead of n in the lemma.) Since we replace
vn_x by a tree of non-zero thickness this is even more true.

Hence we only need to consider the ordered forest of subtrees along the
path from vn_p to t>n-i- These subtrees have thicknesses
un-p — wn^p+ly . . . , M^„-2~w;n-i> n e w thickness of !?„_!• We merge this
subtrees by means of the spine lemma, say by choosing the thickest one and then
merging the other ones into its left and right spine. All except one of these merges
can be performed in constant time. The single exception is the merge with the
new subtree with root vn_1. However, this subtree has thickness Q(<?y—d), and
the other trees certainly have thickness ^W, Hence the time bound
0{\ogmm(W/(qj-d), W)) also holds. The nodes above vn_p and below the;-
joint are balancable. Hère rotations and double rotations suffice to rebalance
them. An analogous statement holds for the right side of the j-joint.

Finally we need to balance thej-joint and the nodes above it. By arguments
quite similar to the ones above one can show that the same time bound
O(\ogmm(W/(qj~d), W)) again holds.

Altogether we have shown that the tree can be rebalanced in
O (logmin(^/(^fj — d), W)) time units after deleting j-nodes of thickness
xu . . . , xr. The j-th acess frequency now has the value:

qj-(xx+x2+.. . +xr) = (qj-d)~{x1 +x2+ .. . +xr-d)^(^—d)/2.

In a second pass we increase the j-th access frequency by xx + . . . +x r — d. By
theorem 3 this does not destroy the time bound stated above.

Case 2: xx + . . . -f x r -
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In this case we do not delete they-node of thickness xr. Rather we decrease its
thickness to xr — (d — xt— x2— . .. — * r - i ) and include its remnants into the
ordered forests considered above. Note that the remnants have thickness
>(qj — d)/2 (this is on the order of the bound we had for xr and tq above) and
hence the time bounds developed in case 1 are still valid.

We summarize:

THEOREM 4: Let T be a D-tree of total thickness W~
Decreasing qj by d can be done in time O (logmin(PF, W/i

So, the time needed to restructure the tree is at most proportional to the new
access time.

Example: We continue our example of the previous section. Suppose we want
to decrease q} by 7. This forces us to delete the activey-node of thickness 6. Since:

(6 + 5)-7>(14-7)/2

we decrease the thickness of the j-node of thickness 5 to 4. Then we reassemble
the forest consisting of the two trees:

into

and replace the tree rooted at u by the tree above. No other changes are required.
If we wanted to decrease q3 by 8 then case 1 would apply. In this case the

subtree rooted at u would be replaced by the tree:

No other changes are required. In a second pass we would increase q} by 3.
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