
RAIRO. INFORMATIQUE THÉORIQUE

GIANNI AGUZZI
The theory of invertible algorithms
RAIRO. Informatique théorique, tome 15, no 3 (1981), p. 253-279
<http://www.numdam.org/item?id=ITA_1981__15_3_253_0>

© AFCET, 1981, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1981__15_3_253_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O. Informatique théorique /Theoretical Informaties
(vol. 15, n° 3, 1981, p. 253 à 279)

THE THEORY OF INVERTIBLE A L G O R I T H M S (*)

by Gianni AGUZZI (1)

Communicated by J.-F. PERROT

Abstract. — A class ofMarkov algorithms, called Invertible Pointer Algorithms (IPA), is defined and
ils main proper ties are given. It is shown that ever y IPA implements a bijectivefunction whose inverse
function is directly defined by the algorithm itselfwhen each ofits rules is considered in the "reverse
way". Moreover, the complete équivalence between the class oflPA's and that of bijective functions
over recursive domains is shown, by proving that for every such bijectivefunction it is always possible to
define an equivalent IPA. Some examples are presented as well as possible applications and extensions
are outlined.

Résumé. — On définit une classe d'algorithmes de Markov, nommée Invertible Pointer Algorithms
(IPA), et on donne ses principales propriétés. Il est montré que chaque IPA représente une fonction
bijective dont la fonction inverse reste directement définie par Valgorithme même en considérant
chacune de ses règles « à Venvers ». De plus, on établit Véquivalence entre la classe des IPA's sur
domaines récursifs et celle des fonctions bijectives sur domaines récursifs, en faisant voir que pour toute
telle fonction il est toujours possible définir un IPA équivalent. Des examples sont donnés et on
mentionne des applications et extensions possibles.

INTRODUCTION

In the recent past years many studies have been devoted to the subject of
Normal Markov Algorithms (NMA) [14] and related Markov Algorithm based
Computing Systems [9, 10, 7, 6, 5, 13].

A central rôle in this area has been played by the studies on the improvement
in the exécution time: by imposing certain conditions in the rules of the
algorithm, see for example Katznelson [11], or using the concept of ' 'pointer" in
order to speed up the search for the occurrence of a given subword into a given
word and for the proper rule into the set of rules as in Cerniavsky [8] or

(*) Received February 1980, revised August 1980.
i1) Istituto di Matematica Applicata, Facoltà di Ingegneria, 50134 Firenze, Italy.

R.A.LR.O. Informatique théorique/Theoretical Informaties, 0399-0540/1981/253/$ 5.00

© AFCET-Bordas-Dunod

254 G. AGUZZI

Laganà [12], Leoni [13] and Aguzzi [5]; more recently, see Paget [15], an abstract
machine (called Machine à Mémoire Associative) has been proposed as an useful
model for a faster exécution of every Markov Algorithm based Computing
System, so letting the concept of NMA unchanged.

The present paper originated in our work on an automatic translator writing
System for programming languages (p.L), called APS [5, 2, 3,4].

Our present idea about a possible automatization of the compiler writing job
is very simple: suppose we have a formai System by means of which it is possible
to write down the formai spécification, in an operational way, of the semantics of
p. l.*s. Let this System be, for example, an algorithmic System like APS, then the
semantics of a p. 1., S, can be stated building up an algorithm which is able to map
any program P e S into a suitable object C belonging to a given set of structures,
say O, for example a graph of states assumed during the virtual excution of P, or
a représentation of the final state reached by the machine on which P has been
executed, according to the fact we are giving a sort of translator or interpréter
oriented way of defining the semantics of S. Let As be such definitory algorithm,
so we visualize the above sketched ideas in the following way:

VPeS, AS(P) = C, CeO.

Now, suppose such an algorithm Asl for a given p.l. SI and an analogous
algorithm AS2 for another language 52 are available. Let SI be just the source
language for which we are interested to get a translator of its programs into
equivalent programs of S2, S2 being the target language.

If algorithm AS2 satisfies the following property:

VPeS2, AS2(P) = C, CeO and A^X{C) = P9

where A^2
 x is the algorithm representing the inverse of function given by AS2, As2

so being bijective over O, then:

VPeSl, AS1(P) = C9 CeO and AS2
1(C) = P', P'eS2,

where P ' represents the desired translation of P.
At a first glance the situation seems no so good: in order to get the translation

of programs of SI we have to construct algorithm A^1 if possible, once the
semantics of SI and S2 have been stated by means of ASI and AS2. This is just the
start point for this work. In this paper, the existence of a formai System, to write
down algorithms, is shown, such that whenever function ƒ simulâted by the
algorithm is a bijective correspondence between its domain and range, then the
algorithm itself interpreted in the "reverse way", constitutes, in a direct and
natural way, the inverse function ƒ ~1.

R.A.I.R.O. Informatique théonque/Theoretical Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 2 5 5

Thus, our first problem has a satisfactory solution: it suffïces to give the
semantics of 51 and 52 in the above sketched way by means of algorithms AS1 and
AS2 written in the form of IPA (i.e. Invertible Pointer Algorithm, the formai
System defined in the present paper), in order to directly have any translation
from 51 to S2 and vice versa.

The study of actual applications of such ideas will be the subject of further
work, we have always to look for algorithms representing bijective functions
possibly narrowing in a suitable way their domain and/or range. For the
moment let us introducé the basic notions in order to get effective "invertible"
algorithms.

The main resuit of this paper can be summarized in the following two
propositions:

"every IPA represents a bijective function, and its inverse function is
represented by the IPA obtained by reversing each rule of the original one" and
conversely:

"every bijective function over recursive domain is implemented by a suitable
IPA".

Moreover, other interesting properties of IPA's are shown referring to the
various ways IPA's can be composed among them, still obtaining an IPA,
namely:

"the class of IPA's is closed under the opération of algorithm composition"
and "given any pair of IPA's, say A and B, an IPA C is definable such that for
any input words w and v, C (w • v) = A (w) • B (i;)"; one more property is given,
reflecting the way a new IPA is defined starting from a given one, namely "given
an IPA A and a character V, a recursive IPA B is definable such that for any
input word w B(w) = ifa£w then w else B(A(w)), provided the process
terminâtes", i.e. B(w) is the first of the words wo = w, w1=A(w0), . . . ,
Wi~A (U^.JL), . . . such that 'a' does not occur in it.

This paper starts by giving in section 1 the définition of a class of Pointer
Algorithms (PA) (see [5,13]), called Right end Conditioned Pointer Algorithms
(RCPA), which is shown to be equivalent to the NMA's class. This class
represents a sort of normalization and extension of the NMA concept: in fact,
every RCPA terminâtes just after the right end of the object string has been
examinated and, moreover, class-names for subsets of the given alphabet can be
used into the rules of the algorithm and, finally, the application of every rule can
also be conditioned by the validity of a given predicate.

In section 2, the concept of "disjoint rules" is given and the notion of IPA is
defined as a subclass of RCPA's. Then, the above mentioned properties are
stated and some example is presented.

vol. 15, n°3, 1981

256 G. AGUZZI

1. RÏGHT END CONDITIONED POINTER ALGORITHMS

Let us introducé a class of NMA's which constitutes, on one hand, a sort of
normalized form for NMA's, since every algorithm of this class always
terminâtes after the examination of the rightmost characters of the object word
and, on the other hand, represents an extension of the concept of NMA's
conditioning the application of each rule (if it is desired) on the occurrence of a
certain subword into the object word, as usual, and on the validity of a given
condition over the left and right context of the matching subword in the object
word and also permitting the use of names for finite classes of characters into the
rules (for a larger extension of this last concept see also [5]).

Notation

An alphabet is any finite set A and its éléments are called characters or symbois.
A* is the free monoid on A and its éléments are called words or strings on A; the
identity of A* is the empty word X,

If w>, y e A*, the opération defined on A* is called concaténation and is
indicated by "wy". Let us call length the monoid homomorphism | | : A -• N,
N being the set of natural numbers, defined by \a\ = l9V aeA and | X \ = 0. The
free semigroup generated by A is denoted by A+ and A* =A+ u {X,}.

If w ! , w 2 E A * and there exist two words w ', w " G A * such that w x = w ' w 2 w ",
then w2 is a subword of w1.

Given any word weA* and a relative integer n such that abs (n) ^ | w |, with
n|ujwe dénote the first n characters of w if n > 0 or the last — n characters if
n < 0 and X if n — 0; with n J, u; we dénote the word u; leaving its first n characters if
n > 0 or the word u; leaving its last — n characters if n < 0 or w itself if n = 0. If
abs (n) > | w |, then both nÎ u; and n[w are A,.

In order to formalize the use of class-names for finite subsets of a given
alphabet into the rules of an algorithm, let us give the foliowing définitions.

DÉFINITION 1: Let To = (ƒ, O, X, G, F) be a NMA or a Pointer Algorithm (PA),
as defined in [13], where ƒ is the input alphabet, O the output alphabet, X disjoint
from I u O is the auxiliary alphabet, a is the start pointer and T a m-tuple of
transformation rules, a class or character language is any subset of
T= IKJOKJX. Let JB be an alphabet disjoint from Tand \i : B -> 2T be a function
from B into the set of classes; if Z g 71 is a class for which a n a a e B exists such
that Z = jx (a), then a is a class-name of Z.

We remark that a class can have se ver al names. This concept of class-name is
useful in writing down the rules of an algorithm and has been informally used
since the introduction of NMA's.

R A I R O Informatique théonque/Theoretical Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 257

DÉFINITION 2: Let Tand B as above, if ye(T\j B)+, y = yx y2 • • • yn-> a word
weT+, w~w1 w2 . . . wn9 matches y iff:

(i) V ij = 1,2, . . . , nif 3;,. = ^ then IU—U^;

(ii) Vf=l , 2, . . ., n if y^T then w^y^

(iii) V i = l , 2, . . . ,n if y ,eB then u ^ e u ^) .

The language of y is the subset of 7T+ defined as:

L(y) = {M;6r+ | w matches y].

We can now give the définition of Right end Conditioned Pointer Algorithms
as:

DÉFINITION 3: A Right end Conditioned Pointer Algorithm (RCPA) Ro is a 8-
tuple Ka =(/ , O, X, B, C, a, CD, R) where:

I is the input alphabet;

O is the output alphabet;
X disjoint from I u O is the auxiliary alphabet with F e l , set of pointers;

recall that given a NMA a character p e l is a pointer for it iff it occurs at most
once in all the words {labels) obtained during the computation for every input
word;

B disjoint from T— I u O u X is the set of class-names for5 = l u O u Z ' , with
Xf=X-P;

C is a finite set of recursive predicates (or conditions) over the set K = 5,* x S * ;
a is the start pointer;
co is the stopper pointer;

R is an ordered m-tuple of rules which are triples (p, q, c) where:
(1) p, the left hand member (1. h. m.), and q, the right hand member (r. h. m.)}

belong to {TuB) +,
(2) both p and q contain exactly one pointer in P,
(3) whenever aeB occurs in q it also occurs in p,
(4) triples containing the same pointer in their l.h.m.'s are consécutive,
(5) c is a predicate built up by means of usual logic and relational operators,

elementary string functions and, possibly, predicates in C; a triple as above, is
usually written as:

p^qifc,

where " -* " is the transformation arrow and is called conditioned rule; if c is the
constant predicate 1 (for true), the conditioned rule is simply written as p -> q,
i.e. omitting the condition part,

(6) the unique initial rule (the first in .R) has the form (a Ap ', q, c), p ' G I*, and

vol 15, n°3, 1981

258 G. AGUZZI

a, the start pointer, never occurs in any other Lh.m. or r.h.m. of rules in R,
AeX' is the left délimiter for any input word,

(7) the unique stopper rule has the form (p, q' Qa>, c), q'eO*, where co, the
stopper pointer, never occurs in any other Lh.m. or r.h.m. of rules in JR, and
QeX' is the right délimiter for any input word,

(8) for any input word wel*, the resuit word, if any, has the form Aw QCÛ,
with ibeO*.

In order to correctly apply RCPA's, we need the following:

DÉFINITION 4: Let RO={I, O, X, B, C, a, œ, R) be a RCPA as above, a
conditioned rule (p, q, c) in R is applicable to a word weT+, T— I u O u X, iff:

(i) w contains as a sub word an element of the language of p, as defined in
définition 2, i.e. w = w'pw", with peL(p) and (w', w")eK, K = S* xS* as
defined in définition 3;

(ii) c(w\ w") = 1, i. e. condition c is satisfied by the left and right context of
the matching subword into the word w.

Remark that, due to the main property of PA's (see theorem 1 in [5]), since in
any label of the computation one only pointer occurs in it, if p is a subword of w,
peL(p), no other subword of w can exist matchingp.

F u r t h e r m o r e , w immediately générâtes w b y m e a n s of t h e i-th ru le (Pi,qi> ct),

i. e. w \-l w iff the i-th rule is the first in R applicable to w and w = w' qt w"9 where
qt is obtained from qt substituting to every occurrence of some character a e B the
character in pt corresponding to the same a in pt, i. e. the character associated to
a during the matching phase.

In the sequel, whenever a word w has a subword matching the 1. h. m. p of a
given rule (p, q,c), will be freely represented as w^w'pw" as well as the
resulting word w9 after application of the rule, will be also represented as
ib = w' qw".

Finally, RG is applicable to a word w with we/* iff it exists a word weO*
such that <JAWQ.\-*SAU>QG>, where h* dénotes the reflexive and stable
closure of \-,

The application of a RCPA Rc to a word wel* will be then indicated as:
Ra (w) or Ra (Aw Q) or R (a Aw Q) according to the present interest in the
context.

It is obvious that the présence of pointer co in the result Aw Qoo is only to signal
that the output word has been generated. In any case, the role of such "artificial"
pointer will be fully clarified in the next section.

For the sake of generality and completeness, let us give the following property
of RCPA's.

RA I.R.O. Informatique théonque/Theoretical Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 259

THEOREM 1: The class of RCPA's is equivalent to that of N M A's.

Proof: Standing the équivalence between PA's and NMA's {see [5]), the proof
is based on the construction, for every RCPA, of the equivalent PA on one hand,
and, for every PA of the simply obtained RCPA on the other. For the complete
construction see [1].

Sometimes a RCPA RG = (I, O, X, B, C, a, Ü), R) will be also simply indicated
as the 7-tuple Ra = (I, O, X, C, o, ©, R) hiding the set of class names B, but
reporting along with the rules of the algorithm the used class-names and the
corresponding sets given by function jx.

We are now in a position to attack the main problem concerned with bijective
fonctions and their inverse.

2. THE IMPLEMENTATION OF BIJECTIVE FUNCTIONS: INVERTIBLE POINTER
ALGORITHMS

2.1 Disjunction of rules

Having in mind to characterize RCPA's implementing bijective correspon-
dences between some domain D <= ƒ * and range R g 0*, let us now introducé
some more définitions which will be fundament al in the sequel. The idea is to
point out the concept of "disjoint patterns" as those described by (at least) a
couple of pairs (qt, c(), (qj, Cj) derived by the two conditioned rules (pi9 qiy ct)

DÉFINITION 5: Let A be any finite alphabet, B the set of class-names of subsets
of A and let the function \i : B -> 2A as above. We say that a.beAvjB agree
(a-b)iiï:

(1) a=b; or
(2) aeB.be A and b e \i (a) or a e A and b e B and a e u (b); or
(3) aeB, beB and u(a)n\i(b) # 0.
The négation of " ^ " will be denoted by "c^" and it is called disjunction

relation. It is trivial to show that ~ is an équivalence relation.

DÉFINITION 6: Given an alphabet A as above, let w = w' tw" and v — v' zv" be
two words such that w', w'\ v'9v"e(A u B)* and t,zeP, with Pn{AuB) = Ç).
Then, w and v are called simple disjoint structures {wdv) iff:

(1) t#z; or
(2) t — z and, if \w'\ = m and \v'\ = k, at least an integer j does exist,

lg;^min(m, /c), such that W'-J^VLJ, where wLj and vLj represent the j-th
character of w' and v' respectively, starting from their right end and going to the
left; or

vol. 15, n°3, 1981

260 G. AGUZZI

(3) t = z and, if \wn\ — n and |u"| = ft, at least an integer i does exist,
ISiSmin(n, h), such that w"$iv"9 where tu" and i?" are the z-th character of u/'
and V respecta vely, starting from the left.

Let us see some simple examples related to définition 6.

Example 1; Let A = {a, b, c} and x, yeB such that \i{x) = {a, b] and
^(j,) = {fl} andletP = {a, p j .

(1) Let w — ba and v = ab<xc,w and u are not simple disjoint structures, since it
is impossible to satisfy none of conditions (l)-(3); in fact, wt = b9\w

t\=liv
/ = ab

and ju'| = 2, so that min(2, 1)^1 andit;'_1 = iü'_1; on the other hand w" = Xi

|u;" | = 0, v" = c and | V | = l, so min(0, 1) —0, then it is impossible to find an
iteger i such that l ^ ï ^ O .

(2) Let w = ab and v = ab a c, it is easily seen that v and w are simple disjoint
structures, since it is possible to find an index i, 1 ^ i = 1, such that wf^ = b^c = v'{.

(3) Let w — ab$x and v = ax |3 y then w and v are not simple disjoint structures
since w'__l=b and vf_1~x with b e^i(x), furthermore u/_2 = i/_2 = ̂ , on the other
hand IÜ'/ = X, üi' = y and n(x)n|i(j>)^Ç).

From the above définitions 5 and 6 the following properties hoïd:
(pi) the empty word À, is never disjoint from any word weA*; i.e. X agrées

with ever y character;
(p2) iï'w and v are simple disjoint structures, then also w'^z'wz" and

v' = zf vz" with z', z"e(A u B)* are simple disjoint structures.
Once defined what simple disjoint structures are, the next step is to formalize

what disjoint conditions are, so let us give the following:

DÉFINITION 7: Given two conditioned rules of a RCPA (pi9 qt, ct) and
{Pj, qj, Cj), where qt^q'^nq^ and qj = qfjPqfj' with TE, peP (pointer set of the
RCPA) and \q'i\ = m\ \q[/\=m'\ \q'j\ = n/ and | # | = n",' let De^K
(K = 5* u S*, S = I u 0 KJ (X - P)) be the extension of condition ce with e = i, ;,
i.e. De = {(w', w")eK:ce(w', w")}, we say c{ disjoint from Cj {c^Cj) if the
following predicate holds:

if (m' = ri) and (m" = n") then ({w', w")

=>not Cj(w\ w") and

((w', w")eDj)^>not c^w', w") ehe, (7.1)

if (m' = n ') and {m"<n") then ((u/, u/')

((tu', w")eDj)=>not ct(w'9 {m"-n")Uj'w") else> (7-2)

R.A.LR.O. Informatique théorique/Theoretical Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 261

if {mf = n') and (m">n") then {{w\ w")eDt)

=>not Cj(w\ (nf/ — m")îqf/w")

and ((«/, w") e Dj) => nol ct (w\ (m" - n") j w") else, (7.3)

if(m'<ri) and (m" = n") then ({w\ w'^eD,)

=>not Cj((m' — nf)lw', w")

and ((»', w")eDj)=>not c^w'in'-m'^q'j, *>") else9 (7.4)

if (m'<n') and {m"<n") then ((w\ w'^

(n"-m")lw") and ((»', w")eDj)

^mtci{w'{nt-mf)UjAm"-n"Nqjw'')ehe9 (7.5)

if {m'<n') and {mft>n") then ((w\ w")eDt)

=>not Cj{(m' — n') ju;',

(n"-m")Uï*>") <md ((«?', w")eDj)

if (mf>n') and {m" = n") then ((»', w")eDt)

=>not Cj(w'{m'-n')îq'i9w")

and{(w',w")eDj)

^notCi((ri-m')lw\ w") else, (7.7)

if (mf>n') and (m"<ri') then ((w\ wff)eDt)

(n"-m") J w") and ((w', w")eDj)

^notci((n'-mf)lw\(m"-n")U'/w")else, (7.8)

if{mf>n')and(m">n") then ((wf, w")eDt)

(n"-m")Ï«;.'iü") and {(w', w")eDj)

=>notci({n'-m')lw\{m"-n")lw"y (7.9)

We remark that in every argument of conditions ct and Cj where a subword of a
r. h. m. qj and qt does occur, also class-names may occur; in this case, as usual,
such class-names stand for any possible element of the referred class.

Let us spend few words in order to illustrate, for example, case (7.1) from
which the other ones can be easily understood. Roughly speaking, by case (7.1),

vol. 15, n°3, J981

262 G. AGUZZI

two conditions ct, Cj are disjoint whenever the object word w = w'ptw" and
ct{w'', w") holds, and (the implication arrow "=>" imposing that) Cj(wf

9 w")
does not hold, and, vice versa, if w = w'pjW" and Cj(w',w") holds then
ct (w/, w") does not hold; i. e. whenever the i-th rule is applicable the left and right
context oîpi in the object word must be different from the left and right context of
Pj when the j-th rule is applicable.

Finally, we can characterize disjoint rules by means of the following:

DÉFINITION 8: Given two conditioned rules of a RCPA (pi9 qi9 c%) and
(p j9 qj9 Cj) as above in définition 7, the pair s (qi9 cjandfa,., Cj) BIG caüed disjoint
patterns ((qi9 ct) dp (qj, Cj)) iff:

(8.1) qtdqj or c^Cj,

Furthermore, every pair of rules (pl9 qi9 ct), {Pj, qj, Cj) such that
(<?*> cjdpiqj, Cj) are called disjoint rules ((pi9 qi9 ci)dr(pJ-, qjt Cj)).

Example 2: Let A, B, x9 y and P be as in example 1.

(1) Let:

1 = (| ÏÜ' | = |IÜ"|) = L 1 and qj

then (qi9 c^)dp(^;, Cj) since qt and qj are not simple disjoint structures but they
are of the same length (more precisely | q\ \ = \ qfj \ and | q"\ = \ q'j |) and, by case
(7.1),

((w'9w")eDl)^>not{\w'\<\w"\)
and:

is always true.

(2) Let qt = bac, c{ — Lx and qj^abac, Cj = L2, then (qi9 ct) and (qj9 Cj) are
not disjoint patterns, since, on account of case (7.4),

((w',w")eDi)=>not{\-llw'\<\w"\)

and
((w'9w")eDj)=>not(\w'a\ = \w"\)

is not true.

On the other hand, if ct = (| w' \ < \ w" \) and c} = (| w' | > | w" \), it is easy to see
thatfo, cJdpiqjtCj).

R.A.I.R.O. Informatique théorique/Theoretical Informaties

THE THEORY OF INVERTIBLE ALGORÏTHMS 263

(3) Let us eonsider, finally, qt = bac, ci = L1 and qj — bpc, cj = L1, then
{qt, c^dpiqj, Cj) since, in spite of Ci = Cj~Ll9 qtdqj holds so (8.1) is satisfied.

2 .2. Invertible Pointer Algorithms

We are now in a position to give some interesting property of a particuîar class
of RCPA's, namely the class of RCPA's the set of rules of which is composed by
mutually disjoint rules, so let us start with the following:

DÉFINITION 9: Any RCPA Ra = (I, O, X, B, C, a, o, R) such that:
(9.1) for each rule in R, if a class-name, say x, does occur in its 1. h. m., then it

occurs at least once in its r. h. m. too (remember that whenever class-names like
x l s x2 such that li(x1) = \i(x2) are used in a rule, they are considered different
class-names for the same class); and

(9.2) if R is a m-tuple of conditioned rules, then Vi, j , i

j jj

is called an Invertible Pointer Algorithm (IPA). The reason of such name will be
justified by the properties of this class of RCPA's we are going to present.

THEOREM 2: Every IPA Ja = {I, 0 , X, C, a, œ, J) , with J = {(pl9 ql9 Ci)>
(P2. «2»c2),, {Pm,qm,cm)), represents a bijective function

The inverse function J " 1 :R-*D, is représentée by the inverse algorithm
J&1 =={0,1, X, C, (o, a, J " 1) , wherewis the start pointer, a the stopper pointer
and:

J~1=((q.i, Pu Ci)s {q2, Pi, c2), . . ., (qm9 pm9 cm)).

In other words, the following properties hold:

(2.1) For any wi9 Wj with w^Wj and wi9 WjeD, we have J'„(w^^J^(Wj).

(2.2) For any word we/* , such that J(aAwQ) = AwQ(ù, we have

Proof: First of all we shall prove that (2.1) holds, i. e. J a represents an injective
function from D over R.

Suppose, by absurd, that given w^Wj as in (2.1) we have Jc(wi) = JG(wj).
This implies that two integers, say kl and /c2, must exist such that from
IÜJ1 = w'.kl pe w"kl and w]2 = wf2 pn w'*2, with w*1 # w)2 representing the fcl-th
and k2-th label in the computation for wi and Wj respectively, by means of the
application of the e-th and n-th rule respectively, we would obtain:

vol. 15, n°3, 1981

264 G. AGUZZI

Then, the unique pointer present in the strings, on account of theorem 1 in [5]
has to be in the same position in both words, and qe and qn have to be not simple
disjoint structures. Moreover, according to the various possibüities we have for
what concerns the lengths of q'e, q'J, qf

n, q^, where qe = q'en q'J and qn = q'nn q'^ we
have to consider nine cases as in définition 7. Our discussion will refer only to
two of these, the other ones being manageable in an analogous way. Suppose
that \q'e\=e' = \q'H\ = n' and k';i = e" = | *»! = *", then w'ki = w'k2 and
M?J'kl = w'j'k2 which is impossible by the hypothesis of disjoint patterns. In fact,
holding not(qedqn), cel>cn has to be true and this implies that [for (7.1)]:

cH{w\ w") and ((u?', w")eDn)=>not ce{w', w")

has to be true; so the unique pair (w'ki, w"kl) cannot satisfy both ce and cn. Now,
suppose that e' = n' and ë'<n'\ then wfkl = wf2 and u>ïkt = (e"-n") î q'; w';k2

which is impossible to happen, still by the hypothesis of disjoint patterns. In fact,
on account of (7.2), the following has to be true:

((«?', w")eDe)=>not cn(w', (n"-e") jw/')
and:

((w', w")e Dn^not ce(w\ (ë' - n") î £ w'%

which surely implies that w\kl^wf2 or w'^1 #(e" -n") î & w';kl. Hence, (2.1)
has been proved.

Let us now turn our attention to property (2.2). Since Ja is an IPA and hence a
RCPA too, the first and unique rule of J~ * applicable to any string Aw Q oo, with
weD, will be the inverse of the stopper rule in J, i. e. the last applied during the
génération of AWQCÙ, SO applying it we exactiy get the word before the last step
during the direct génération. This is possible because all the rules, on account of
(9.1), are not class-names deleting. Now, on account of (9.2) all rules in J being
disjoint and on account of theorem 1 [5] being unique the pointer present in the
word, at every step the only applicable rule is just the reverse of that applied
during the direct génération. Then, the first rule applied during the direct
génération is the terminal one for J~x, and hence the result necessarüy is a AM; Q,
so (2.2) has been proved too.

Example 3; The bijective function J : N -* N, defined by J (n) — 1 + 2 -f . . . + n,
is implemented by the following IPA, assuming binary notation for integers:

Jt = ({0, 1}, {0, 1}, {i, a, x, 0, x, p, 8, a, e, n, ji, TJ, V, I\ O, A, « } ,

{ci59 c21, c2 3}, i, ©, J),
where the set of pointers:

P = {i, a, x, 9, T, p, 8, a, e, n9\i,r\}

R.A.I.R.O. Informatique théorique/Theoreticai Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 2 6 5

and:

c15 = (u/ = i?Vü/); c21=(iü" = 0Qor u/' = Q); c23 = (Veu/),

and J is:

c. initialization:

iA->Aoc (1)

ac->ca, (2)

aQ-xTOQ (3)

c. the end of the algorithm:

(4)

(5)

(6)

(7)

Qc^cQ (8)

0 Q - Q o) (9)

c. copy of n occurring in A n T in A n V n T:

(10)

(11)

cp^pc (12)

(13)

c. the copy is completed, we are going to successor applied to n3, where
w = Anl V n^ F n3Q:

Sz^zô (14)

S r ^ T 8 if c15 (15)

(16)

c. successor applied to n3:

r O a O ^ T e l O (17)

la -»aO (18)

TaO^TelO (19)

vol. 15, n°3, 1981

266 G. AGUZZI

cOot^celt (20)

cel - > e c l if c21 (21)

c1ec2-+£c1c2 if not c21 (22)

Te ^ TiT i/ c23 (23)

c. predecessor applied to n2 or to n1 according to the present state of w:

dlnT^dOiiT (24)

cln^cön (25)

Qn-*nl (26)

d l T c l - ^ d n l (27)

l i l - l H (28)

^iT^T (f c23 (29)

ifnotc2Z (30)

c. the control is made whether n2 =0 , in such a case predecessor is applied
to n l5 otherwise to n3:

V0 r | r - > 7 t r if not c23 (31)

rir->r5 if not cls (32)

where:

^(c1) = ̂ (c 2) ^ ^ (c 3) ^ { 0 , 1}, ji(z) = { O , l , V } ,

In order to better understand the way of operating of such an IPA, a sort of
flow-diagram is reported in the figure.

In such diagram the application of successor and predecessor fonction to an
integer (in binary notation) n is denoted by S(n) and P(n) respectively.

Moreover, the arrow " - > - • " means that the word on its left side is
transformed int o the word present on its right side.

Let us see some step of the computation for J,(10):

11 12 11

12 17 23 27

R.A.I.R.O. Informatique théorique/Theoretical Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 267

28 29 31 15

h . . . h A ï v ï r & 11 a h . . . h A î v o j \ r 11 Q
14 21 23 29

h . . . h AO^r 11 Q h A0 11Q h . . . h A 11 0Q h A11 Qco.
31 30 4 8 8 9

Flow-diagram oi application ot /

vol 15>n°3, 1981

268 G. AGUZZÏ

Vice versa, let us apply J'1 to 11:

A l l Q œ H A 1 1 0 Q | - . . . h A O x r i l Q
9 8 4

30 31 29

Thus, we exactly obtain the mirror image of the direct computation.
Let us now give some other useful properties of IPA's; namely, those referring

to the various ways IPA algorithms can be composed, still obtaining an IPA
algorithm.

THEOREM 3: Given two IPA's Ia(0u 02 , XuBl9Cl9 a, co, /) and
<M*i> öi> X2> B2, Cn £» 6> J) with P1^X1 and P2^X2 such that Px nP2 = ®,
B1nB2 = Ç), it is possible to define an IPA K^, corresponding to their
composition, i,e, such that:

(3.1) Vwelf, Xt(w) = /a(Jç(w)).

Proof: We define algorithm K^ corresponding to the usual meaning of
function composition. So, let K^ = (IU 02 , X39 B3, C3) ^, co, K) where
B3 = B1KJB2V{Z}, X3=X1VX2, C 3 = C 1 U C 2 and K is the following
(m1+m2 +3)-tuple of rules (/ and J being a mi-tuple and m2-tuple of rules
respectively):

K = (J, (qQd, <?9Q, ç), (zG, 6z, 1), (A9, a A, 1), I),

where the terminal rule in J is {p, qQQ, c) and z is the class-name such that
\i(z) = Ol.

K is an IPA since I and J both satisfy (9.1) and (9.2) and added rules also
satisfy (9.1) and (9.2). Moreover, being Pa disjoint from P2, I and J are
composed by ail mutually disjoint rules and the added ones are also disjoint from
any other since pointer 0 only occurs in the r. h. m. of terminal rule in J but, in
this case it is preceded by délimiter Q, while in the r. h. m. of the added rules it is
preceded by a character different from Q. Pointer a, being the start pointer for ƒ a

never occurs in any r. h. m. Furthermore, applying K^ to any word we ƒ f such
that J^{w) is defined, after the application of part J, we just get J^(w), At this
point the only applicable rule is the (m2 +1)-th and then the (m2 + 2)-th; after a
suitable number of its applications, we surely find the (m2-!-3)-th to be
applicable; its application leads to the start of application of part I, thus exactly
obtaining Ia(J^{w)), hence (3.1) holds.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 269

Theorem 3 can be trivially extended to any finite deepness of IPA algorithm
composition, so we can state:

COROLLARY 1: The class of IPA algorithms is closed under the opération of
algorithm composition.

Proof: Trivial extension of theorem 3.
Another kind of IPA's composition is shown in the following:

THEOREM 4: Given two IPA's:

Aa = (IuO1,XuBuC1,0L,<»1,A)
and:

B^ = {h, O2, X29 B2, C2, p, CÜ2, B\

withPj<=X\andP2aX2such thatPx n P 2 = 0andBx n B 2 = 0 with AuQt and
A2, Q2 left and right delimiters for input words wel* and vel* respectively, the
IPA Ca canbe defined such that, if*£I1KjI2Kj01Kj02\jX1vX2uB1v B2:

(4.1) Vu;e/*, vel*,

Proof: Let:

C = (It u I2 u { • , nu A2}, O, u O 2 u { • , al9 A2}, (X, -

u X2i Bx u B2, C1 u C2, a, co2, C)

with Ax and fl2 as left and right delimiters and C is the following (A and f? being a
mrtuple and m2-tuple of rules respectively) {ml +m2)-tuple of rules C = (Af

9 B).
A' is the m^tuplerA where the stopper rule (pQx, qO,t CÛ1? C) is substituted by

(pui • , « « ! * ? , C).
On account of disjoint pointer sets and Aa, B$ being IPA's, Ca is an IPA too.

Moreover, property (4.1) is proved considering that whenever the ex-stopper
rule in A' is applied, the word Aa{w)* PA2 vQ2 is obtained. At this point, the
unique rule to be applied is just the first in B, so starting the computation for the
word A2vQ2. It is clear now that during this computation the only part of the
string which can be transformed is A2v£l2>

 s o finally getting the word

One more property is given, reflecting the way a new IPA may be defmed
starting from a given one.

THEOREM 5: Given anIPA, Aa = (I, /, X, N, C, a, a>ls A)andacharacterael,
an IPA J3p can be defined such that:

(5.1) Vwel*, Bp(w) = ifaëw then w else

vol. 15, n°3, 1981

270 G. AGUZZI

provided the process terminâtes.

77ms, JBp represents a recursive function and B^(w) is thefirst of the words:

sych thaï " a " does not occur in it.

Proof: Let define:

Bp = (/,I,Xu{p,a, p,ffl2},ATu{c,x},Cu{c1},P,©2,B),

where ct =(w" = 2 lw0), B is the following (A being a m-tuple of rules) (m + 9)-
tuple:

B = ((P A, Aa, C l) , (oc, ca, 1), (oö, Q(Û2, 1),

(aa, pa, 1), (cp, pc, 1), (Ap, aA, 1),

A9 {qQ(ùu qtüiQ, 1), (XG>19 <ÙXX9 1), (Aœls Aa, notcj),

where c and x are class-names such that \i(c)~I— {a} , |x(x) = /; furthermore
pointers (3, a, p, (Ù2£X, and (pQ, ̂ Qcûi, t) is the stopper rule in A.

Algorithm B^ is an IPA since Au is an IPA and, the new pointers not belonging
to X, new rules are disjoint from those in A, satisfy (9.1) and are mutually
disjoint each other (remark the disjunction between the first and last rule
resulting by the présence of c1 in the first and its négation in the last one).
Equality (5.1) is proved considering that by means of the first six rules in B, the
control is made onto the object word whether character a does or does not occur
in it. If it does not occur, the computation stops by means of the third rule.
Otherwise, by means of rules 4,5 and 6 we get the start of the application of Aa to
the present word. After its exécution, by means of the last three rules a jump to
the second one is performed, so having a new test for the occurrence of character
a into the result word.

In order to show the main property of IPA's, namely that for any bijective
function, with recursive domain, it is possible to build up an equivalent IPA, let
us give the following définition.

DÉFINITION 10: Given any RCPA J o = (/, O, X, E, C, o, co, J) , with P e l ,

we call LR^K, Left and Right context of rule i the set of all the string pairs, the
first and second element of which are any possible left and right context of pt (and
hence of qt in the ï-th rule) in any label in the computation of J o (w) for any word
we J*.

For what concerns sets LRk the following nice property can be given.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 271

LEMMA 1 : Given any RCPA JG as above, whose domain D e / * is a recursive set,
with À, QeX Ieft and right délimiter s for every input word, for 1 ̂ / c ^ m , the set
LRk is recursive and is defined by means ofsuitable context-free grammars G'k, Gk

derivedfrom Jc.

Proof: The proof is constructive. Let us associate to any k, 1 S k S m, the set Ik

composed by the order numbers, d, of any rule whose r.h.m., gd ,is not disjoint
from thel .h.m. of rule fc, pfc,i.e. such that not(pkdqd). This set constitutes the
set of order numbers of admissible rules which could have been applied just
before rule k is applied. For fc= 1, ^ = 0 . Let :

|p;|=fc', \p'k'\=kf'
and:

where n is the common pointer. Define, for each d in Ik, 1 ̂ k ^ m, the derived Ieft
context wk(d) of pk as:

(L. l) w/
k{d) = iflJ[pkp

t
i; = A thenXelse ifk' = d'

then w'd else ifk'>d'

then {d' -k') lw'd else w'd{df -kf)î qd,

where w'd is the class-name (i. e. non terminal symbol) for the set of all possible Ieft
contexts of pd, and operator t41 " is trivially extended to each éléments of the
set referred by w'd, so n[w'd still represents the appropriate derived set.
Analogously, defme, for each d in Ik the derived right context wk(d) of pk as:

(R.l) < (d) = i/ - l î p i p i ' = fl then X else ifk" = d"

then wd else ifk">d"

then {k"- d") iw'J else (f c " - d ") î ^ < ,

where wd is the class-name for the set of all possible right coatexts of pd, Strings
w'k(d) and wk (d) are defined having in mind the semantics of PA's. In fact, rule k
is applicable if the pointer present in its 1. h. m. and its Ieft and right contexts are
those occurring in the first label of the computation or have been generated by
the application of a certain rule, whose r .h.m. must be not disjoint fromk/?fcî

otherwise rule k would not be applicable; so we got set Ik. Moreover, the Ieft and
right contexts of pd, when rule d has been applied, did not change when rule k is
going to be applied. Then, the four cases expressed into (L . l) and (R . l) reflect
the actual state of both wk(d) and wk{d): in fact, the first case being trivial, if
k' = df

3 then w'k(d) exactly is the Ieft context of pd9 i.e. wf
d; if k'>d\ we are

vol. 15, n0^, 1981

272 G. AGUZZI

probably describing in pk the rightmost part of the left context when rule d was
applied, so w'k{d) is wd leaving its last (k' — d') éléments; the fourth case, k'<d\
means that in pk we are not describing those rightmost characters which do exist
in its left context, so they are to be appended to wd in order to get the exact w'k (d).
Similar considérations can be carried on for what concerns (R. 1).

Now, the probable left and right context for pk, for any k, can be-defmed as:

u>i=X and / i = 0 ,

by définition and
(L.2)

w'k::=wk(dl)\...\w'k(dn),

and

(R.2)

where îk^ {dl9 d29 . . . , dn} ,

w being the class-name for D, recursive domain of J a , by définition and

w'k

Now, we have to check for each k, l</c^m, whether set lk has been well
established, by means of controlling for each d in Ik whether pk is or is not disjoint
from wd qd wd , where all alternatives for wd and wd have to be taken as ordered
pairs {w'd(i), wd(i)), Remember, in fact, that pk or pk could be longer than the
corresponding q'd and q'J ; hence, even if not (pk âqd) is true, the necessity to check
whether rule k is actually applicable after rule d has been applied. Then, for each
d in I k, such that (pk dw'd qd wd) is true, discard d from I k and hence, delete w'k (d)
and wk(d) from (L.2) and (R.2) respectively.

We remark that if some set Ifc, k> 1, after this deletion, results empty, rule k
results never applicable and hence, can be deleted from the algorithm. After this
control, and possible deîetions, have been performed for every /c, the set LRk can
be defined as the set of pairs:

LR1=(k, w'{) and for l</c^m,
LRk= {(w'k(dl), <'(dl)), « (d 2) , <'(d2)), . . . , (w'k(dn), w'{{dn))\

i = (i4, N',P',iüi),wherey4 = Ju0uX'uJB,JV' is the
set of class-names for left contexts of any rule, P' is the set of involved
productions starting from (L.2) and w'k is the distinct symbol, is the suitable
context-free grammar defining any possible left context of pk.

Analogously, Gk=(A, N", P", wk)is the context-free grammar defining any
possible string belonging to wk, where wk is the distinct symbol, A is as before,
N " is the set of class-names for right contexts of any rule, P " is the set of involved

R.A.I.R.O, Informatique théorique/Theoretical Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 273

productions starting from (R.2). We remark ajso, that any element in B
occurring in any production is still interpreted as the occurrence of any one
element of the class of characters it refers to.

Note that if rule n is a terminal one, then the set {w'qnw"} with
(wf, wn)e LRn, is just the set of resulting words when the terminal rule n has been
applied.

Thus, Ut {w'qtw" } , where t ranges over the order number of every terminal
rule of a given RCPA is just the range of the algorithm.

For an example referring to the above lemma 1, see next example 4.
We can now state the announced équivalence between the class of bijective

functions over recursive domains and the class of IPA's over recursive domains,
which follows from theorem 5 and the following:

THEOREM 6: For any given bijective junction j : D -> R, with recursive domain
D g / * and hence range D^=O*, there always exists an equivalent IPAFa

impiementing it.

Proof: We shall prove this theorem by defining the suitable F c .
Let F'a = (I, 0, X\ B\ {1}, er, co, F') be the RCPA, where each condition

appended to each rule in F" is the constant predicate 1, implementing the given
function ƒ. Note that F' is simply derived, by means of theorem 1, from the
existing, on account of the main thesis of computability theory, NMA
implementing function ƒ.

Two cases are now to be considered:

(a) F ; is an IPA, i. e. F ' satisfy both conditions (9.1) and (9.2), then F ; is the
requested algorithm and the proof is trivially complete, Fa = F'G;

(b) F' does not satisfy (9.1) or (9.2) or both. Let us construct the desired IPA
in this case too.

First of all, rewrite any rule in F', for which (9.1) does not hold, into its
corresponding elementary rules; i. e. any rule of type (p' cp'\ q), with class-name
céq and |a(c)= {cl9 c2, . . . , cn) , is substituted by the ' n rules
(pfciP"> #)> (pf c2p'\ q), • - -, {p'cnP"> ̂); thus, repeating the above procedure
as many times as necessary, we get a set of rules, equivalent to the original one,
satisfying condition (9.1). Let us still call F'a this RCPA with such possible
expanded set of rules and accordingly decreased set B'. Now, since V wt, WjSD,
Wi^Wj9F' (Wj) ̂ F ' (Wj), f being bijective, the computations for wt and Wj never
have common labels; namely let:

wk
i=wf

i
kpew

f
i
fk the /c-th label in the computation for wt, and, analogously;

wtjl = w/
j
mpnw

/
j
fm the m-th label in the computation for wj9

vol. 15, n°3, 1981

274 G. AGUZZI

with /c, m ^ l and l^e, n^t(F' being a f-tuple of rules). Then, w\^w™ and still

w)+ J = wf qe w'.'k/ w'j» qn w**™ = w™ +1. This is true for ail fe-th and m-th label as
well as for ail e-th and n-th rule.

Let us consider the following cases:
(i) e = n, then the following predicate holds:

(i . l) (w'ï^w'j* or wïk^wfj/m);

(ii) e 7̂ n and (qe dqn) holds, then inequality of the two labels at least follows
from disjunction of qe and qn;

(iii) e^n and not {qedqn) holds, then, being qe = qf
enq'J and qn = q'nnq'â, we

have nine different subcases (recall définition 7) to consider, according to the
various combinations over the lengths of q'e, q'J, q'n and q'J. Let us consider only
two of such cases, advising that the other seven can be treated in an analogous
way. Let e '= \q'e\9 e"= \qfj\, nf=\q'n\ and n " = | q'J | , then it may be:

(a) e' = nf and e" = n"s it follows that (i . l) still holds, or
(b) ef = n' and e"<nr\ it follows that:

(iii.l) (wf^w'f1 or (e"-nf')]q'^w'^ïw'^) holds.

And so on.

The only point we are interested with is point (iii). In this case, in fact, we do
not have the desired disjunction, but it can be still obtained by means of the
following arguments. If two rules fall in case (a) of (iii) then (i . l) holds, that
means that if (w/, w")eLRe(see\emm& l)never can happen that (u/, w")eLRn

and vice versa, i.e. LRenLRn = Ç). Then:

and {{w1', w")eLRn)^(w', wn)éLRe

holds, which is just the disjunction condition for predicates ce = (w', w")eLRe

and cn = {w', w")eLRn, whpn e' = n' and e" = n'\ as given in (7.1).

Furthermore, when two rules fall in case (b) of point (iii), (iii. 1) holds. This
means that whenever a pair (w',w")eLRe then the pair
(iü's {ri'-ë')lw")iLRn, and, vice versa, if (w\ w")eLRn then
(w', (e" — nu)J\qt^wn)tLRe. Hence, if ce and cn are as above, we have:

((u;', w")eLRe) => not cn (w', (n" ~ e") î w")

and

which is jûst the disjunction condition for predicates ùe, cn when ë — n' and
e"<n" as given in (7.2).

R.A.LR.O. Informatique théorique/Theoreticai Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 275

So, in both cases (a) and (b), disjoint rules are obtained by appending ce and cn

as condition part to rules e and n respectively.

Thus, carrying on such procedure for every /crtuple of non disjoint rules in F ' a
set F of disjoint rules (i. e. with disjoint patterns) is obtained. Finally, the desired
IPA Fa = (I, O, X, E, C, a , » , F) is obtained where: B = Bf, X = X\
C= {c a , ci2, . . . , cir}, with each ctj found as above described,ö
r = klxk2x . . . xks,s being the number of fertuple of non disjoint rules in F ',
and F is derived from F' by inserting the appropriate conditions into the
interested rules, so satisfying both (9.1) and (9.2).

An example of application of both lemma 1 and theorem 6 is in order.

Example 4: Consider the successor function for binary numbers equal or
greater than zero. lts domain is clearly recursive and is defined by the following
context-free grammar W=({0, 1} , {c, n, w), g, w) with production set Q
composed by:

(Q.l) c : : = 0 | l

(Q.2) n : :=l\nc

(Q.3) w : : = 0 | n

A possible PA implementing successor function is the following:
S = ({0, 1 } , {0, 1 } , {oc, S, e, o, A, Q}> o, S) where P= {as 6, E, a } and S
is:

a Ac-» Aa c (1)

ac—>ca (2)

aQ^ÔQ (3)

AOÔQ^AleQ (4)

cO8-*c le (5)

1S -> 50 (6)

AÔ^Ale (7)

eO^Oe (8)

EQ^Q with |LX(C)= {0, 1 } . (9)

We point out that at a first glance rules (4) and (5) seem to be repiacable by the
unique rule 0 5 -> 1 e; if one try to do such substitution, the resulting algorithm is
no more bijective. It is, in fact, easily seen that from initial strings v = a A 1 Q and
w = G A 01 Q, with v^w, we would get the same resuit A 10 Q for both.

This algorithm is trivially put in the form of a RCPA, by substituting rule (9)
by (9') eQ->Qco, and setting C= {1} , and X = Z U { G Û } , B= {C} . Such

vol. 15, n°3, 1981

276 G. AGUZZI

RCPA yet satisfies (9.1), but the set S does not satisfies (9.2) because of rules (4)
and (7), the r.h.m.'s of which are not simple disjoint structures.

In order to fmd the appropriate conditions c4 and c7, to get disjoint patterns
and hence disjoint set of rules, let us folio w theorem 6.

Such a theorem tells us that appropriate conditions are c4=(wf, w")eLR4

andc7=(w/, uj'/)eLR7. Then, bymeansof lemma 1, let usdefine JLR4andLR7,
where LR4 is defmed by the context-free grammars with axioms w4 and w4, and
LR-j is defined by the context-free grammars with axioms u>7 and to7 which are
defmed below.

For /c=l, Ix = 0 and wf
x : : =X, wf{ :: =3lw0 where the input word

w0 = <j À w O, w being defmed by grammar W.
For k = 2,12= {15 2} so that:

then:
w2 : : = A | w2 c and w2 : : = w'{ \ 1J, w2.

c = 35 7 3 = {2} so that:

w'oC and uîi'(2) = X,

then:
wf

3 : : ~w2c and

For fc = 4, / 4 = {3} so that:

M;4(3) = X and

then:
wf

4 : : =\ and

For k = 5;/5= {3, 6} so that:

I Ü ; (3) = - 2 | U ^ and

M)s(6)=-2i< and
then:

For k = 6, J6= {3, 6} so that:

wf
6(3)=-llwf

3;

R A.I.R.O. Informatique théonque/Theoretical Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 277

then:
« 4 : : = - U w > 3 l - U < ; < : : = Q | 0 < .

For k = l,I7 = {3, 6} so that:

w'7(3) = X and w'1
f{3) = Q,

\ and w7'(6)= 0 < ,
then:

u>7 : : = X and UJ7 : : =Q| Ow'^

It suffices now to check if the found définitions for the left and right contexts
are correct; we see that 3 e 17 and the control whether not {w'3 q3 w$ dp7) is true or
not, results in controlling whether not (w'2c8QaAd) is true or not, and this is
clearly false. Then, 3 must be discarded from /7 and, correspondent^, w7 (3) and
u?7 (3) have to be deleted from définitions of w7 and w7, maintaining w7 (6) and

J 7 = { 6 } and w7 : : =X; w7 : : =

Thus,wehaveLR4 = {(>-, X)} andLR7 = {{X, 0 <)
and c7^(w\w")eLR7. Equivalent conditions could be cAr^{wtf = X) and

We remark that, in this case, disjunction can be also obtained by modifying
rule (7) as (7') A80->Ale0, without using explicit condition, it is easily seen
that (qAdq7), In any case, by appending c4 and c7 or transforming rule (7), the
new set of rules S satisfies (9.1) and (9.2) so the whole algorithm is an IPA.

Thus, as we have before seen, condition holding for w' and w" when rule (7) is
going to be applied can be merged int o the 1. h. m., and hence into the r. h. m. too,
since this condition can be expressed by means of the string structure of a finite
subword, namely the 1. h. m. of the rule. If you consider, instead, algorithm Jt of
example 3, it could be seen that condition given for rule (15) or (29) cannot be
expressed by means of the occurrence of a given subword of finite and fixed length
into the object string, i. e. it cannot be expressed only by the 1. h. m. of the rule. It
so requires to be explicitely stated and, eventually, implemented by means of a
suitable PA as it has been shown in the complete proof of theorem 1 in [1].

4. CONCLUDING REMARK

The IPA class defined in this paper along with its outlined properties, seems to
be promising both in mathematics and in computer science. Note that for PA's a
method of compilation has been studied and implemented [13] so getting an IPA

vol. 15, n°3, 1981

278 G. AGUZZI

actually exécutable by machine: it suffixes, in fact, by means of theorem 1, to
construct its equivalent PA and it is obviously possible to operate in the same
way to exécute its, directly defïned, inverse algorithm.

Moreover, the concept of IPA's extended to the APS System [5], is under our
investigation. If such resuit will be fully reached, a very powerful both theoretic
and practical device will be available, especially in the area of applications
sketched in the introduction.

ACKNOWLEDGEMENTS

My thanks go to the référée who read the first copy of this paper with great care and suggested
many improvements in the présentation of the final version.

REFERENCES

1. G. AGUZZI , The Theory of Inverîible Algorithms, Sem. Ist. Mat. AppL Fac. Ing.,
Firenze, 1980.

2. G. AGUZZI , F. CESARINI, R. PINZANI, G. SODA and R. SPRUGNOLI, Towards an
Automatic Génération of Interpréter s, in Lecture Notes in Computer Science, vol. 1,
1973, pp. 94-103, Springer-Verlag, Berlin.

3. G. AGUZZI , F. CESARINI, R. PINZANI, G. SODA and R. SPRUGNOLI, An APL
Implementation o f an Interpréter Writing System, in APL Congress 73, 1973, pp. 9-
15, North-Holland Pub. Co., Amsterdam.

4. G. AGUZZI , F. CESARINI, R. PINZANI, G. SODA and R. SPRUGNOLI, Tree Structures
Handling by APS, in Lecture Notes in Computer Science, Vol. 19,1974, pp. 120-129,
Springer-Verlag, Berlin.

5. G. AGUZZI , R. PINZANI and R. SPRUGNOLI, An Algorithmic Approach to the
Semantics of Programming Languages, in Automata, Languages and Programming,
M. NIVAT, Ed., 1973, pp. 147-166, North-Holland Pub. Co., Amsterdam.

6. A. CARACCIOLO DI FORINO, Gêneralized Markov Algorithms ûnd Automata, in
Automata Theory, CAIANIELLO, Ed., Academie Press, New York.

7. A. CARACCIOLO DI FORINO, L. SPANEDDA and N. WOLKENSTEIN, Panon 1 B: a
Programming Language for Symbol Manipulation, Calcolo, 1966, pp. 245-255.

8. V. S. CERNIAVSKII, On a Class of Normal Markov Algorithms, A.M.S. Translations, 2,
Vol. 48, 1965, pp. 1-35.

9. D. J. FARBER, R. E. GRISWOLD and I. P. POLONSKY, Snobol, a String Manipulation
Language, J. Assoc. Comp. Mach., vol. 11, 1964, pp. 21-30.

10. B. A. GALLER and A. J. PERLIS, A view o f Programming Languages, Addison Wesley,
1970.

11. J. Katznelson. The Markox Algonthm as Language Parser; Lmear Bowuh, J. Comp.
System Se, Vol. 6, 1972, pp. 465-478.

12. M. R. LAGANÀ, G. LEONI, R. PINZANI and R. SPRUGNOLI, Improvements in the
Execution of Markov Algorithms, BolL Un. Mat. Italiana, Vol. 11,(4), 1975,pp. 473-
489.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

THE THEORY OF INVERTIBLE ALGORITHMS 279

13. G. LEONI and R. SPRUGNOLI, The Compilation of Pointer Markov Algorithms, in
International Computing Symposium 1975, E. GELENBE and D. POTIER, Eds., 1975,
pp. 129-135, North-Holland Pub. Co., Amsterdam.

14. A. A. MARKOV, The Theory oj Algortthms, Israël Program for Scient ij ie Translat tons,
Jérusalem, 1962.

15. M. PAG ET, Propriétés de Complexité pour une tam die d'Algorithmes de Markov,
R.A.LR.O. informatique théorique, Vol. 12, (1), 1978, pp. 15-32.

vol. 15, n°3, 1981

