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FINITENESS RESULTS
ON REWRITING SYSTEMS (*)

by Jean-Claude RAOULT (*)

Comm unica ted by M. Ni VAT

Résumé. — Étant donné un système de récriture de termes du premier ordre noetherien et confluent,
on considère la relation d'équivalence engendrée, et on prouve que le problème de lajinitude d'une classe
(ou de toutes les classes) est indécidable, sauf si l'on se restreint aux termes sans variables. En revanche,
lajinitude du nombre de classes est decidable.

Abstract. — Given a rewriting System on terms ojJirst order which is knoun to be noetherian and
confluent, it is proved that deciding the Jiniteness oj the équivalence classes is impossible, unless we
restrict attention to variable-Jree terms. On the other hand, one can décide whether the number oj'
classes is finite.

I. INTRODUCTION

Term rewriting Systems frequently occur in the operational semantics of
programming languages. They model ALGOL's copy rule, and in this respect, it
is interesting to know whether they satisfy the "Church-Rosser" property. More
generally, they model the computation of a program, represented as a term
written over a given alphabet; in this case, the computation is hoped to terminate
(the rewriting rule is hoped to be noetherian) and this fact is known to be
undecidable (cf. [3]). So let us suppose now the rewriting rule to be noetherian,
and ask if it is decidable that any term computes to a finite number of results only
(cf. also [5]). The answer to this question is no, as is shown below (cf. theorem 1 ).

From another point of view, grammars over the free monoid generated by a
finite alphabet can be generalized into grammars over the free algebra generated
by a finite graded alphabet. Ail questions relevant to the previous case may be
asked again, for instance:

— is it decidable, given the rules and an axiom, that the generated language is
finite ? The answer is yes (cf. theorem 2);

— is it decidable, under the same assumptions that the generated language is
rational ? No gênerai answer has been given as yet (to the knowledge of the
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374 J-C RAOULT

author) but a particular case is more tractable: if the number of équivalence
classes is unité, then each class is rational. That last condition is decidable for a
"Church-Rosser" relation.

II. CONFLUENT AND NŒTHERIAN PRECONGRUENCES

Let F = F0 4-i7! + . . . + Fk -h . . . be a denumerable disjoint union of sets. An
F-algebra is a set D together with a /c-ary function fD : Dk -> D for each k and
jeFk. A subalgebra is a subset closed under the functions/p. The product DxD'
of two F-algebras is again an F-algebra, in which the fonctions/D are applied
component wise:

A relation R^D x D' is compatible when K is a subalgebra of D x D'\

diRd'i for l g îg fc => / o ^ ! , . . . , ^ ) ^ ^ ^ ; , . . . , ^ ) .

A mapping a : D -• D' between two algebras is a morphism when
{(d, da); d e D } is a compatible relation.

Given a set X, the free F-algebra over X is denoted by M(F,X) and its
éléments are called terms. A subterm of f is f itself, or if t=ft1. . .tk then a
subterm of one of the f,-'s. Terms can be considered as labelled trees, and
subterms can be addressed, like subtrees, by occurrences: an occurrence is a word

* and the term t/u is defined by induction on t and u. If w = e then t/u=t,
= ku'(keN)andift=ftl.. .r„and lg/c^nthen t/u = tk/u

f;otherwisQ, t/u
does not exist.

DÉFINITION 1 : A relation -> over M (F, X ) is called a precongruence when it is
reflexive, compatible and invariant under substitution:

(i) r —• r for all r in M(F,X);
(ii) rt -> t | ( l ^ i^ fc ) =>fti--.tk -+ ft[.. ,t'k for all k and ƒ in Fk\

(iii) t -• t' => (t G) -+ (t' a) for ail a : M{F,X) -

It is easy to check that the intersection of a family of precongruences is again a
precongruence, so that.

PROPOSITION 1 : The set oj ail precongruences over M (F,X) is a complete lattice
with respect to set inclusion.

Beware that the 1. u. b. is indeed the intersection, and that the g. 1. b. contains
the union, but can be strictly greater.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



FINITENESS RESULTS ON REWRITING SYSTEMS 3 7 5

Hence, given a relation S, one can deûne the precongruence -• (or ->)
s

generated by S, and the precongruence induced by S, respectively as the smallest
precongruence containing S, and the greatest precongruence contained in S.
The congruence generated by S is the (reflexive) symmetrie and transitive closure

of -+ and is denoted by «-> (or <-• ). One can prove by induction on the structure
s s

of the terms (cf. [6]) that t -+ f' is equivalent to:
s

3ceM{F9X)9xl9...9xneX9 gx -> dl9...9gH - dneS,

a l 5 . . . ,a„ substitutions, such that:

and:

Thus t -• f' means that f rewrites in f' in one step of n simultaneous and
s

disjoint applications of the rules of S. When n= 1, we say that t —• f' is a single
s

rewriting. Of course the single rewritings and the whole precongruence have the
same reflexive and transitive closure.

DÉFINITION 2: Given a relation -» over M (F, X) and a subset £ of M (F, X), a

term t of £ is extremal in £ when £ •*• r' Sct'eE imply £' = f.

PROPOSITION 2: The following assertions are equivalent:

(i) every infinité chain t0 -> tx -• . . . -• tn -• . . . is eventually constant;

(ii) every non-empty set E contains an element extremal in E.

A relation satisfying these assertions is called a noetherian relation [1].

Proof (i) => (ii), suppose that the non-empty set E contains no extremal
element, and construct by induction a chain:

r 0 - • t l - • . . . - • t „ - . . .

Indeed, since tn is not extremal, there exists in E an element tn+l^tn such that

tn - • tn+l. The chain got in this way is not eventually constant.

(ii) => (i) is clear.

DÉFINITION 3: A relation -> is said to be confluent when for all fl5 t2, t3:

(tx i t2 and tl^+t3) implies 3 r4, (t2 ^ t4 and t3 i f4).

vol. 15, n°4, 1981



376 J-C RAOULT

PROPOSITION 3: Let S be a relation over M(F,X). If -+ is noetherian, the
s

following assertions are equivalent:

(i) -• is confluent;
s

(ii) V tl9 t2, t39 (t, ^t2&tx^t3)=>3 tA9 (t2 i t 4 &t3±> t4);

(iii) ever y term t reventes into a unique extremal ï called the irreducible (or

normal) form oj t

Proof: (i) => (ii) is clear.

(ii) => (iii): since -* is noetherian, every term admits at least one irreducible
s

form. Let M dénote the set of those which admit more than one, and t an element
of M. Then t admits at least two irreducible forms t1 and t2 and we have:

From (ii), we deduce the existence of u and its irreducible form u .Since t is
extremal in M, tl is not in M, hence tl=u Similarly, t2 is not in M, hence
t2 = u .Thus t admits a unique irreducible form: t is not in M .Hence M = 0

(iii) => (i): take ïx for r4 in définition 3.

See [2] for another proof.

III. THE FINITENESS OF THE CLASSES

DÉFINITION 4: A term s overlaps a term t if there exist substitutions a and T, and
a subterm u of t (u not a variable) such that:

u CJ = S.T.

Given a relation S over M(F,X) one can prove that a sufficient condition

for —• to be confluent is that the left-hand sides of S do not overlap one another
s

(see for instance [4, 2, 6]) but this condition is by no means necessary as is shown
by the simple example:

S = { f a -• b j b -• b,a -> b } .

R.A.I.R.O. Informatique théorique/Theoretical Informaties



FIMTENESS RESLLTS ON REWRITING SYSTEMS 377

THEOREM 1: The problem of determining, given a finite S<^M(F,X)2 and
*

teM(F,X), whether the congruence class [t]s of t modulo <-• is finite is
s

undecidable, even if -± is noetherian and the left-hand sides of S cannot overlap
s

*
(and in particular, -» is confluent). It is also undecidable whether all the classes are

s
finite.

The proof uses the two foliowing lemmas.

LEMMA 1: Let S be a finite relation over M(F,X) with -> noetherian and
s

confluent. Jhen [t]s infinité <=> there exists a co-chain . . . -> tn -• . . . -• tx -• F
with distinct rf's.

<= : clear.

=> : note that:

(1) Since S is finite, only a finite number of terms s satisfy s -» t,
s

(2) se[t] <=> s -• F[from proposition 3 (iii)].

Apply Koenig's lemma to the relation s R t iff t -> s & t # s, and get an infinité

co-chain . . . -> tn -> . . . -> T. No two tt's can be equal because —• is acyclic,
s

hence the result.
Recall that a Turing machine is defined by a finite set Q of states, the position

of a head on an input-output tape, a finite tape alphabet A and a finite set of
quintuples:

(q,a,q',a\e)eQxAxQxAx{-l, +1},

meaning: the machine in state q reading symbolö goes in state q\ overprints a'
and moves its head left or right if e= — 1 or + 1 .

LEMME 2: A 1 uring machine can be simulâted by a rewriting System S such that

-+'1 is noetherian and the right-hand sides of S do not overlap (hence ^ ~1 is
s s

confluent). Furthermore all the terms in S contain at most one occurrence ofeach
variable.

Proof: We begin by coding the machine in much the same way as in [3]. The
tape of the 7M is assumed to be filled with blanks except for a finite portion.

vol. 15, n°4, 1981



378 J-C RAOULT

ai ••• an

q
Figure 1

Take F'o = d, where d£A,F1=Q + A+A + {g} where g é A is meant to be a

left marker, and A = {â; aeA).

The symbol b e A dénotes the blank. A configuration c such as the one pictured
in figure 1 can be represented by the set 7 (c) of terms of the form (parentheses are
omitted for easier reading):

gbb . . . ftflj . . . qat . . . aj> .. .ïd

(the barred symbols indicate that the head is on their left).

Each quintuple is represented by a finite number of rewriting rules according
to the following algorithm. Call R the set of rewriting rules and:

— initialize R to the empty set;

- for d\\(q,a,q\a\ l )add to R the rule qax -» a'q'x and if a = b add also
qd -> a'q'd, extending the workspace on the right;

- f o r jdl {q,a,qr,a',-l) add to R the finite set
{cqax -+ q'ca'x;ceA} + {gqax -> gq'ba'x) that last rule extending the
workspace on the left; if a = b the head of the Turing machine may be
on a square corresponding with d, so add to .R also the set

{cqd -> q' ca' d\ c e A } + {gqd -> g q ' â ' d ) .

Now we define the rewriting System S, by adding one argument to the
function q, which will indicate the rule in S which has just been applied. Let n be
the number of rules of R and set:

F i = { < * , « } , F I = , 4 + 4 + { 0 , 1 , . . . , n } , F i = 6 .

With rule number i of K, of the form uqv -• u' q' v' associate the rule of S,
written in a tree-like form:

u — q — v -> u'— q' — v'.

Notice that the length of the first argument of q is incremented by 1 each time a

rule of S is applied; hence -• ~1 is noetherian. The first argument of q behaves
s

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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like a write-only stack, and the top symbol indicates the last rule which has been
applied. The symbols on the right of q are barred but those on the left are not, so
that no overlapping is possible. Finally, variables x and y occur only once in
each term of S.

With a configuration c is now associated a set of terms of the form:

where seM({0,1,...,«}, 0).

CLAIM: Given a configuration c and a term t in I (c), there is a one-to-one
correspondence between the transitions c —• c' of the 1uring machine and the

single rewritings t -+ t\ with t'el(c').
s

The proof is an easy but tedious argument by cases on the quintuple.

To prove the theorem, consider a Turing machine starting in state q on an
initial configuration c = al...an with its head pointing on the square a,.
Associate with it the rewriting System S as in lemma 2, and the term:

t = g-al-.. . -a^^-q-ai- ... -an-d.

Then [t]s is finite if and only if there is no infinité chain:

S S S S

Since -+ "* is noetherian and confluent, Fcan be computed in a finite amount
s

of time, so that deciding whether there exists such an infinité chain is equivalent
to deciding whether the Turing machine halts on input c; this is impossible. This
proves the first assertion of the theorem.

*
As for the second, we shall show that all the équivalence classes un der <-• are

s
finite if and only if the Turing machine halts on every initial configuration c. The
"only if ' part is clear since shall be finite in particular the classes of the terms
representing the initial configurations of the machine. To prove the converse,
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we prove that if there exists one term the class of which is infinité, then the Turing
machine does not halt on some initial configuration. Associate with each term t
the set OC(t) of all occurences of binary symbols q.

LEMMA 3: For tiio terms t and t' such that t -» f', the sets OC(t) and OC(f ' )
s

are isomorphic.

Proof: Either the occurrence u of q has not been rewritten, and M H M; or the
occurrence has been rewritten by a rule simulating a right move of the head, and
I ^ H u 1; or again, the occurrence has been rewritten by a rule simulating a left
move, hence u = u' 1, and u i—• u''.

If we identify the corresponding occurrences and since there is only a finite
number of them, the term t admits an infinité number of rewritings if and only if
one of the occurrences in OC(t) is rewritten an infinité number of times This
occurrence can be associated with a subterm of t of the form:

ax - . . . — a , - - ! —q — üi— . . . —an — x ,

where x and y are subterms of t, and n and m are maximal. Then the term:

g-ax- ... -ai-1 -q-ât- ... -ân-d,

represents a configuration of the Turing machine, and is rewritten infinitely
often. This concludes the proof of theorem 1.

The situation is different if S contains only ground terms, i. e. terms which
contain nó variable, or equivalently if no substitution is allowed.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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LEMMA 4: Given a relation -• withjinite image(i. e. { s; t -> s} isjinitejor all t),

and a term f, there exists an infinité number oj éléments s such that t -> s ij and

only ij there exists an infinité chain:

f - > r , - > . . . - > r , - > . . .

with distinct f/s.

Prooj: Construct the tree of all séquences t -> tx - • . . . - > tm such that the

father of the séquence above is the séquence t -> t\ ->...-> tm .lt The tree is

finitely branching. Prune all subtrees whose root occurs already somewhere in

the tree either less deep or at the same depth but on the left. The remaining tree

contains an infinité number .of distinct nodes, hence has a branch of infinité

length (Koenig's lemma).
Q.E.D.

LEMMA 5: Let -> be a precongruence generated by a jinite system

S={g\ ~* d{,...,gn -> dn] oj ground terms. 7here exists an infinité number oj
*

terms s such that t -> s ij and only ij there exist two terms tx and t2, two

occurrences u, r e N * , t ^ e , and a rule gx - • dt such that:

t - • fj - • t2 and tl/u = dl & t2/uv = gr

Prooj: The sufficiency is clear. The converse is proved by induction on the
cardinality n of S. It is trivially true for n = 0. If n^O, there exists an infinité
séquence of single rewritings:

with distinct r/s.

We shall prove the intermediate result that there exists an occurrence u and a
subsequence of single rewritings such that the image of the subsequence under
the occurrence u is of the for n:

dt -> . . . - th -* . . .

Indeed, either tk=dt lor some k and /, and the result is true lor u = z and the
subsequence starting at f ; or else t=jt{. . . t„ and one r, admits an infinité
séquence of rewritings. By induction on | f | there exists a subsequence of infinité
rewritings, and an occurrence u of tJ such that the image of the subsequence
under the occurrence u is:

vol. 15, n°4, 1981



382 J-C RAOULT

This is also the image of the same subsequence of rewritings of t under the
occurrence ju. So is proved the intermediate result.

If the precongruence generaled by S — {g, -> d,} has a reflexive and transitive
closure of infinité image, the result is true by induction on n. Otherwise, since the
séquence contains an infinité number of distinct terms, the rule gt -• di must be
applied.Ifan all instances tk -> tk+1 of this rule, tk = gh the subsequence contains
only a fini te number of distinct terms. Therefore:

d/c, r, tjv = gl & r ^ e .

THEOREM 2: Given ajinite rewriting System S oj ground terms, and the generated
congruence, one can décide whether the congruence class oj a term t isjinite. lt is
also decidable whether all classes are jinite.

*
Prooj: From lemma 5, the class [t] = { s; t <-» s} is infinité if and only if there

s

exist two terms tx and t2, two occurrences u and r ( r ^ e ) and a rule
gt -• d, e S u S ~J such thaï:

* *
t • tl • r & ti/u = dl & t2/uv = gr

Sur1 sus-'

The algorithm consists of fin ding the terms tx and t2 (if they exist) in the
following way. Generate the tree of single rewritings of t for S u S"1 by
successive depths When a term is encountered which has already been seen, it is
omitted together with the whole subtree of which it is the root. If [t] is finite, the
algorithm terminâtes. With each node of the tree is associated the pair (u, i) of the
occurrence u and the number i of the rule of S which has just been applied, and it
is compared to the pairs which have already been computed on the same branch.
If [t] is infinité, there must exist two pairs (wl5i) and (u2,i) with:

and the algorithm terminâtes also in this case.
To prove the second assertion, notice that if there exists an infinité congruence

class [f], there exist two terms tx and f2, two occurrences u, ce N*(r#e) and a
rule gl -> d.eSu S'1 such that:

* *
t • tx • t2 & tl/u = di & t2/uv = gr

SuS"1 SvS~l

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Applying the same lemma to t\=tl/u = dn t'2 = t2/u, u' = e and v' = v we see
that the class [d] is infinité. Hence it suffices to run the algorithm above on the
terms du . . .,dn.

IV. A REVIEW ON RATIONAL FORESTS

As is the case with languages in a free monoid, the rational forests can be
characterized by accepting devices (finite automata), generating devices (linear
grammars), or by purely algebraic means (finite index congruences). In this
section, these three possibilities are defmed and proved equivalent.

DÉFINITION 4: A finite ascending F-automaton is a finite F-algebra Q of states
together with a subset P^=Q oîjinal states.

Since 7 (F) is a free F-algebra, there exists a unique morphism [i : 7 (F) -> Q.
A term t is accepted by the automaton Q when f p. is a final state.

DÉFINITION 5: Ajinite descending F -automaton is a Imite set Q oi states together
with a relation^ ^Q x Q'1 lor all J e F, where n is the arity ol^

W e s h a l l n o t e ^ ^ j , . . . ^ J i n s t e a d o i l g , ^ , . . .,qh)eJQ lt is alsopossible to
write (ql7 . . ^qj^jçiq), and thenje is considered as a lunction Q -> 2Q .There
may exist several n-tuples (qx, . . .,qh) But il lor all state q there is a unique n-
tuple (#i, . . • ,(/J such that qj (q2> . . - , g j the automaton is deterministic.

11 aeFQ, aQ^Q is merely a subset ol Ç: the domain oi aQ.M qeaQ ones writes
qaQ 1, and says that a erases q. This dehnition is extended inductively: the term
t=Jtl. . Ah erases the state q when there exists q)(qx, • . . ,g#/) and f, erases
qt(\ ^i-^n). A set 7.ol terms is acceptedby the descending automaton startingat
a (finite) subset P ol initial states il and only il L is the set ol terms which erase at
least one state ol P .

DÉFINITION 6: A rational grammar is a finite subset G^X xM(F,X) in
which X is a finite set of nullary constants called non-ter minais.

If a term r contains a non-terminal x, then this term will be rewritten into a
term t' obtained from t by replacing x by one of its corresponding right-hand
sides in G. The relation generated in this way is a left-precongruence, according
to the following définition.

DÉFINITION 7: A relation -• over M(F,X) is a lejt-precongruence when it is
reflexive and compatible:

(i) t -> t for âll reM(F,X) ;
( i i ) t, - > r ; ( l ^ i ^ w ) ^>jtx...tn - • jt\...t'n, f o r a l l n a n d

vol. 15, n°4 , 1981



384 J-C RAOÜLT

A lejt'Congruence is a left-precongruence which is also an équivalence relation.
Th us if -• dénotes the left-precongruence generated by G over M(F,X), then
the language L(G, Y) generated by G from the set of axioms 1 <=X is the set of

*
terms te M (F) such that x -» f for some xe } (the star dénotes the transitive

G

closure).

One can check, by adding a suitable number of new non-terminals (in fact one
for each sub term of the right-hand sides of G), that one can define a new
grammar G' of the following type:

x->jyi...y„, x,yieX, JeF„,
CJ

. . . , zeX, aeFv,

z-> a

This simpler grammar générâtes nevertheless the same language from the
same set of starting axioms.

Example:

\x^j(g(x,x),y) + b9

y
G'

z,y) + b,

y -» g(u9:

u —> a.

PROPOSITION 4: Let L be a subset oj M (F). Ihe jollowing assertions are
equivalent:

(i) L — L(G, ï)jor some rational grammar G;
(ii) L is acceptée by ajinite descending F-automaton;

(iii) L is accepted by ajinite ascending F-automaton;
(iv) L is a union oj équivalence classes jor a lejt-congruence oj jinite index.
We prove (iv) <̂> (iii) => (ii) => (i) => (iü).
(iv) <=> (iii): let ~ dénote the left-congruence, and:

\i : M (F) -• M ( f ) / -

be the projection onto the finite quotient. In order to define a finite automaton
accepting L, set Q = M(F)/ ~ . The assumption that L is a union of équivalence
classes for ~ implies that there exists a (finite) subset P ü Q such that L = P j i"1 ,
or teL o t [ieP.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Conversely, any finite ascending F-automaton u : M (F) -> Q defines a left-
precongruence over M (F) : t~t' iff t [i = t' u. The accepted set L of terms is

P j i"1 = U q u"1 , i.e. a finite union of équivalence classes.
qeP

(iii) => (ii): simple duality transforms an ascending automaton into a
descending one: the sets of states are isomorphic, the set of initial states of the
descending automaton corresponds to the set of fmal states of the ascending
automaton. For the transitions of the descending automaton, set:

qjQ{qu . . .,q„) iff q=jQ{qu •• -,q„),

in the ascending automaton.

Clearly t erases q in the descending automaton if and only if t is accepted (with
fmal state q) by the ascending automaton.

(ii) => (i) by a classical argument: let X be a set of non-terminals isomorphic
with Q, and xq be the non-terminal associated with q. Define the following
grammar:

for all n-ary symbols j \ and all n>0. If aeF{)* then:

(xq -• a)eG o a erases q in the finite automaton.

It is easily checked by induction on the structure of t that t erases q if and only
if teL(G, xq)\ so that if Y^X is the set of non-terminals associated with the
initial states of g, then:

L = L(G,Y).

(i) => (iii): Let the grammar G be of the simple form:

zeX, Q

-> a.
where X is the finite set of non-terminals.

Define a finite F-algebra Q, the éléments of which are all subsets
endowed with the following opérations:

aQ = {xeX;x -> a is in G} for all
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and:

..,3yneqn, x-+fyx.. .yn is in G}9

for 3ÜfeFn. There exists a unique morphism u : M (F) -> Q. Let us check by

induction on the structure of t that xet\iiïand only if x -* t. In fact, it is the
G

définition of tQ if teF0, and if t=ft1... t„, then:

x e t u o x E/Ç (f j JI, . . ., tn JLL), because \i is a morphism.

-«> (x -• / v , . . .yn)eG &yte tt JI for all i, by définition of/c.

(x ^ fyx.. .yn)eG & yt -• th by induction hypothesis.

<=> x - • t .
G

Therefore Q accepts the set L(G, Y) if the set of final states is Y. •

Note that the fmite F-algebra Q defmed above is also a (i7 + X)-algebra in
which:

XQ = {X) for all xeX.

Therefore |i can be extended into a morphism M(F,X) -• Q which is again
denoted by u. The relation t [i = t ' |i is a left-congruence over M (F, X) which has
a fmite index, and L is invariant under its restriction to M (F):

V t,tfehf(F), (teL&t\i=t'\i) => t'eL.

As is the case with monoids, there is a coarsest such left-congruence:

PROPOSITION 5: Let Lbe a subset of M (F). Then L is rational ij and only ij the
following lejt-congruence has a finit e index:

t~t' ijf V ceM{F,X), V xeX, c[t/x]eL o c[t'/x]eL.

Furthermore the quotient M(F)/~ is the smallest F-automaton accepting L.
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Proof: Let S dénote the set of all left-congruence over M (F, X) such that L is
invariant undertheir restriction to M {F). Then ~ e S (take c = x), and any left-
congruence = in S is contained i n ~ : = e S = > = ^ ~ . Thus there is a unique
surjective morphism M{F)/= -• M(F)I ~~ such that the following triangle
commutes:

M (F)

This proves the last assertion of the proposition. The first one follows
immediately since M(F)/~ is finite if M(F)/= is finite. •

If one wishes to consider congruences instead of left-congruences, the situation
is nearly the same.

PROPOSITION 6: Let ~ be a left-congruence over M (F,X), and ~ be the induced
congruence. 7 hen ~ has a finite index if ~ has a finite index. Jhe converse is true
when X is finite.

Proof: Since t~t' => t~tf, the direct assertion is clear. Conversely consider
the mapping:

M(F,X)xM(F,X)x -* M(F,X) -• M(F,X)/~,

(t,a) ^ r a ^ [ t o ] . .

If t~t', then t a~t' a, hence t o~t' a, hence [t a]^ =[t' a ]^ . And if for all
xeX, x G~x a'(shortly o~o') then t o~t o' because ^ is a left congruence.
So that the above mapping factors through:

(M(F,X)/~)x(M(F/x)/~)x

Each class of congruence in M{F,X)/^ thus appears as a function:

[fL : (M(F,X)/~)X -

which is easily checked to be injective. If X is finite, the set of functions
(T(F,X)/~)X -> T(F,X)/~ is finite, hence the result. •

COROLLARY: Let L eM(F,X) where X is a finite set of variables. Then L is
rational if and only if either of the following équivalences has a finite index:
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(i) t~t'ijj VceM(F,X),V xeX, c[t/x]eL o c[t'/x]eL;
(ii) t^t' ijjVceM(F,X)y JCG!,V a substitution,

c[t o/x]eL o c[t' G/X]EL.

The congruence (ii) corresponds, for trees, to the syntactic congruence in the
monoids.

V. THE FINITENESS OF THE NUMBER OF CLASSES

The aim of the present section is to prove the following theorem.

THEOREM 3: Given a finite relation S over M(F,X) such that —• is noetherian
* s

and confluent, one can décide whether the congruence <-• has a finite index, ij in the
s

left-hand sides of 5, each variable occurs at most once.

Proof: Since -> is noetherian and confluent, each class contains a unique
s

extremal term t such that:

s -• t o s -• t (cf. prop. 3).

The problem is now reduced to deciding whether there is a finite number of
extremal terms. Turning things around, a term t is not extremal when there
exists a term c containing a variable x, a substitution a and a left-hand side g
of S such that:

t = c[go/x].

This is the classical problem of recognizing the "pattern" g in the text t, and
can be done with the help of a finite automaton (as in [7]).

For our purpose we shall use the following (F + Xj-automaton. Define:

E = { teM(F,X); Ms a subterm of a left-hand side of S};

g = 2£, the set of subsets of E.

Since S is fmite, E — hence Q — are also finite. Give Q the structure of a (F + X)-
algebra: for ail ƒ e F + X:

- iifeF0+X,

- dsejQ(qv...,qn)={jt1...t„eE;(Vi) ^
i

where G is the set of all left-hand sides of S.
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PROPOSITION 7: The image t\ioj a term teM(F,X) in the (F + X)-algebra Q
defined above is the set:

;3ç, a, t = c[g a/x]}.

Proof by induction on the structure of f: if teF0 + X, then tQ = { t} or 0
according as f belongs to E or not, and the proposition holds. If t=ftl... tn,
then t \i=fQ(tl | i , . . . , t„ ji) and the définition offQ yields:

't\i={js1...s„EE;(\/i)sieti\LvX}v\Jti\inG.

Thus set \i iï and only if one of the following conditions is met:

(1) seti\xn G for some i. In that case 3 ch ote r, = c,[s a f7x] by induction,
and the variable x may be chosen so that it does not appear in any t} ïorj^i.
Then t = c[s cr ;/x] with c=jt{. . . r,_ xci ti+l. . . r;

(2) s =fsl... sn and for all i, st e tt \i or st e X, i. e.:

V i, 3 Gh ti = Si ot

(if Sj e X, then a, is defined by tt = s, at). Since the term s e E is a subterm of a term
in G, each variable xeX occurs in at most one sr Define the substitution a by:

x G = X a, for all x occurring in s.

x G = X otherwise.

Then t = s o. •

Choose, for final states in P all subsets of £ which do not contain any g€G:

Then t\xeP if, and only if, t is irreducible. The following proposition
concludes the proof of theorem 3.

PROPOSITION 8: A finite automaton with n states accepts an injinity oj terms in
M(F,X) where F and X are finite, ij and only ij it accepts a term the depth d oj
which satisfies:

Proojclassical: If a term t is accepted, of depth d satisfying n^d<2n, then
there exists a chain oj sub term s of lengt h d, that is a séquence:
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where st is a subterm of st _ x and st # st•- x, for 1 ̂  i ̂  d. There are more than n
subterms so that there exist two subterms s^Sj with st \* = Sj u. Intuitively the
subterm Sj can replace st arbitrarily many times without changing t ji. Precisely
define:

Figure 2

- t' such that t=t'[sj/x], and

- 5' such that Sj = s'[Si/x], where x does not occur in t (cï.Jig. 2).
Then:

n times

is accepted by the automaton for all neN.

Conversely suppose an infinité number of terms is accepted, and in particular,
since F + X is finite, a term t of depth at least n. Consider a chain:

t = S „ , 5 , , . . . , S M ,

where st is a subterm of s, _ 1 (1 ̂  / ̂  n), and of no other subterm of st _ j : for some
f e F, sf_ j =ƒ ( . . .s,-. . . ). Since there are only n states, s, |i = 5j ji for some i<j.
Associate with t the term t' obtained by replacing in t the subterm st by Sj, and
write t R t'. Since t' contains less symbols from F than f', JR is noetherian.
Hence there exists a term t with tR* £, such that tRu is impossible. In t, all
chains of subterms have length less than n. Consider the last replacement: sRï.
There exists ceM(F,X) with:

s = c[sjx] &ï=c[sj/x].
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S -
t zz

Figure 3

Define s' as the term such that s^s' [sj/x]. The longest chain of subterms of s
is:

where i + d—j<n since if is the length of a chain of subterms of F, viz the chain:

Inparticularj — i<n.Replacingsy by s, in 7anditerating[(2rc — d)/(j — i)] times
yields a term of depth in [n, 2n[, accepted by Q- •

To prove the theorem, construct the automaton as in proposition 7, and run it
on the terms of depth d satisfying n^d<2n. Since there exists only a fmite
number of such terms, the automaton stops with the answer
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