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ALGEBRAIC COMPLEXITY OF PATH PROBLEMS (*)

by Bernd MAHR (*)

Communicated by M. Ni VAT

Abstract. — Algcbraic complexity ofpath problems is studied using straight line programs over
arbitrary semirings as a computational model. In contrast to n3 lower bounds in the literature, graph
sensitive bounds are proven which applyfor any input graph andany semiring. It is shown that these
bounds are tightjor all cycle-free graphs and some cyclic graphs.

Résumé. — On étudie la complexité algébrique des problèmes de cheminement avec des programmes
linéaires sur des semi-anneaux quelconques en guise de modèle de calcul. On donne des bornes dépendant
du graphe, qui s'appliquent à n'importe quel graphe d'entrée et n'importe quel semi-anneau, par
opposition aux bornes en n3 que l'on trouve dans la littérature. Ces bornes sont stricte pour tous les
graphes sans cycles.

1. INTRODUCTION

Finding shortest paths in a graph with labelled edges is a most famous and
important problem in combinatorial optimization. It has been studied now since
at least twentyfive years and much progress has been achieved in efficient
solution of the problem; so it is likely to be true that "for this problem we have
almost reached the theoretical bounds of speed if conventional sériai computers
are to be used" (see introduction of [DP 80]). But, we do not know very well
about these theoretical bounds of this problem and there are still many open
questions about its complexity.

This paper studies algebraic complexity of path problems and proves lower
hounds on the number of opérations to be performed by straight line programs
which solve path problems. These bounds are not restricted to the so called "ail
pair shortest path problem", but apply to path problems over arbitrary
semirings, and in contrast to lower bounds known in the literature, they reflect
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264 B. MAHR

the graph structure andnotjust the number of nodes, (Theorems 5.3, 5.4, 5.7;
Theorems 5.9, 5.10, 5.11). A concise survey on path problems, their solution
techniques, their algebraic generalization and their complexity is given
in [Ma 80]. Recently Deo and Pang [DP 80] have presented an excellent
bibliography on path problems which includes more than 200 selected références
and about 80 annotations. We therefore abstain herefrom giving an overview on
the literature and results and just mention the main Unes which motivate the
subséquent sections.

For the shortest path problem efficient algorithms have been developed which
mainly fall into two catégories: Those which depend on the labelling of the
graph, called "label dependent algorithms", and those which are independent of
the label of the graph and only produce computations depending on the graph or
sofne of its parameters, like number of nodes or number of edges. This class of
algorithms we call "label independent". The most famous algorithms in these
classes are those of Dijkstra and Floyd respectively. They solve the shortest path
problem (all pair version) in O(n3) steps. In the label dependent case Dijkstras
algorithm for the shortest path problem was improved in several respects
(see [Ma 80]) namely by Johnson [Jo 77], Wagner [Wa 76] and Bloniarz [BI 80].
The only known lower bound which addresses this class of algorithms is due to
Spira and Pan [SP 73] and proves n (n — 1 ) "steps" for an algorithm which solves
the single source shortest path problem. This bound however is in no clear
relation to the best algorithms for the all pair problem in the class of label
dependent algorithms.

The class of label independent algorithms instead seems easier to model for
complexity analysis. All lower bounds which address this class of algorithms use
straight line programs and analyse the number of algebraic opérations.
Murchland [Mu68], Iri and Nakamori [IN 72] and Johnson [Jo73] prove that
n (n — 1 ) (n — 2) additions and min-operations are necessary to solve the shortest
path problem. In contrast to this bound Fredman [Fr 76] gives an algorithm
which only uses O(n5/2) additions and min-operations and Romani [Ro80]
shows in a recent paper that the all pair shortest path problem has a complexity
nat greater than matrix-multiplication over a ring and thus is in O(n252). But
Fredmans and Romanis algorithms do not fall in our classification of label
dependent and label independent algorithms (see also [Ma 80]).

From the use of straight line programs it is natural to expand complexity
analysis for the shortest path problem to generalized path problems over
arbitrary semirings. This is one direction of generalization which is emphasized
in this paper. The other direction of generalization is to study graphs instead of
matrices. The main effort of these generalizations is that on one hand other
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ALGEBRAIC COMPLEXITY OF PATH PROBLEMS 265

problems than the shortest path problem are covered in the analysis and on the
other hand that "graph sensitive" algorithms are under considération and so
also décomposition algorithms (see Brucker [Br 74], Tarjan [Ta 75]) and
algorithm for cycle-free graphs are included in the analysis.

In Section 2 of this paper we introducé basic concepts from graph theory,
semirings and the notions of labelled graph and adjacency matrix.

Section 3 defines the computational model of "computation scheme" which is
a useful représentation of straight line programs. In order to analyse complexity
of path problems, one has to specify what kind of function the algorithms in the
computational model have to compute. An appropriate notion is that of a path
function, which is defined in 3.1. Subséquent to this définition we discuss how
pathfunctions are related with solutions of path problems. In order to prove the
claimed lower bounds, the computation schemes for path fonctions are restricted
to so called "adapted schemes" which in a natural way perform opérations
controlled by the input graph. That such a restriction is not just a technical need
but also a meaningful concept, is subject of a discussion at the end of this section.

Section 4 contains the proofs of two lower bounds on the number of additions
and multiplications to be performed by adapted schemes which compute path
functions.

Section 5 discusses the bounds of Section 4 and states the main results of this
paper (Theorems 5.3 and 5.4). It follows a discussion on the necessity of the
assumptions which are made in the statement of Theorems 5.3 and 5.4. Finally
in this section our lower bound results are related with those known in the
literature, namely the bounds of Murchland, Iri and Nakamori, and Johnson,
and of Pratt, Paterson and Mehlhorn. The latter bound for path problems over
the Boolean semiring is then extended to path problems over arbitrary positive
semirings.

The main results of this paper are already in my thesis [Ma 79]. In many
respects, ho wever, this paper is afurther development of the complexity analysis
of path problems in [Ma 79]; first of all sincè in 5.6 an answer to the central open
question in [Ma 79] is given.
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2. BASIC CONCEPTS

In this section we introducé the basic concepts of graph theory and semirings
which are fundamental for the nêxt sections.
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266 B. MAHR

Let [0]: — Ç) and [«]: = { 1, . . . , « } for non-negative integers n. Then we refer to
a #ro/?/z as a subset £<=[#] x W for convenience. By n(E) — n and e(£) = e we
dénote the number of nodes and erfges respectively. Concepts from graph theory
we adopt from Berge [Be 76] if not explicitly defined.

By T(E)^[n] x [n] we dénote the reflexive-transitive closure of £, which is a
graph having an are (i,j)eT(E) if and only if £ has a path/? with initial
endpoint i and terminal endpoint j . For (z, j) e [«] x [«] we dénote by Ptj the set of
(i, jYpaths, i. e. the set of paths with initial endpoint i and terminal endpoint ƒ
For ie[n] we assume XePit, where X dénotes the empty path. By Fi} we dénote
the set ofelementary (iy j)~paths, i. e. of {i, 7')-paths, where no node is encountered
more than once. By P(E) we dénote the set of paths of E and look at P(E) as a
subset of E*, the free monoid generated from E with unit X and concaténation as
the binary opération. Namely for ie[n] we assume FU = {X}.

Given (i,j)eT(E) then a set of nodes A{j^[n] is called an (i,j)-cut, iff every
elementary (f,jf)-path has an internai node which is in Atj. A family
«^(^) = (̂ ij)(i)d,-)er(£) of (z,y)-cuts we call a cw£ sy s tem of E. An (i,j)-cut ^ is
called minimal if all other (z,y)-cuts contain not less nodes than Àtj and a eut
System sé {E) is called minimal if all its cuts are minimal. Note, a minimal (z, z)-
cut is empty for all ie[n].

A semiring S — (S, + , ., 0,1 ) is a set together with binary opérations + and
and two selected éléments (i. e. 0-ary opérations) 0 and 1 (assumed to be not
equal) such that the foliowing équations hold:

(1)

(2)

(3)

c = a.{h.c\ (4)

= l.fl = fl, (5)

= 0.0 = 0, (6)

(7)

(8)

We call a semiring idempotent, if in addition to (l)-(8):

a + a = a. (9)

Idempotent semirings are partially ordered by:

a£b <̂> a + b = b> (10)

R.A.I.R.O. Informatique théorique/Theoretical Informaties



ALGEBRAIC COMPLEXITY OF PATH PROBLEMS 267

and called "path algebras" in Carré [Ca79].
Semirings are called simple, if in addition to (l)-(8):

l+fl = l. (11)

We also use generalized addition £ a t offinite indexedfamilies {a^iel} and
iel

refer to Eilenberg [Ei 74] for a formai characterization of semirings by

generalized addition. Namely if / = (Z>, we define £ a{ : = 0. Eilenberg also defmes
iel

positive semirings, i. e. semirings with:
a + b~0 implies a = 0 and b=0,)

a.b — 0 implies a~Q or b = 0. J

Positive semirings are characterized as follows:
S positive if and only if the mapping h : S -> B into the Boolean semiring

£ = {0, l},definedby:

v ; \ 1 otherwise, v

is a semiring homomorphism.
It is easily seen, that the class of semirings can be embedded into the class of

positive semirings by adjoining to each semiring a new zero-element -Ô-. This
positive extension preserves properties (9) and (11), see [Ma 82], Finally we
closure over semirings and are studied in [Ma 82].

jc=l"+a.jc, (14)

is solvable. Such semirings play an important role in the study of transitive
closure over semirings and are studied in [Ma 82].

Fr om the large list of examples for semirings we only mention:

^Jo=(^o, +> - 0 , 1 ) , (15)

the natura! numbers with addition and multiplication. This semiring is initial in
the variety of semirings.

B = ({0, l} , v , A , 0 , 1 ) , (16)

the Boolean semiring with and and or.

M =([R+ u { oo }, min, +, oo, 0), (17)

vol. 16, n° 3, 1982



268 B. MAHR

the positive real numbers with minimum and addition and zero as an adjoint
''infmity "-element.

E = (2* - ,u ,o ,0 , {X} ) , (18)

the language semiring over E with union and complex product and the empty
string as one.

All these semirings are positive. (16), (17) and (18) are idempotent and (16) and
(17) are simple. (16), (17) and (18) are closed.

Let E <= [n] x [n] be a graph and S be a semiring, then a mapping m:£-^Swe
call a labelling of E. Since P (£)<=£*, we have the unique homomorphic
extension in : £* -» S from the free monoid £* into the semiring S, taken as the
monoid (S, ., 1), to defme a path labelling of E:

Explicitly m(p) = m(e1) m(er) for each path p = et...er, and m(X) = 1. If
m : E -> S is a labelled graph, then its adjacency matrix is defined by
M:[n]x[n]^^ with:

-9- otherwise.

Hère S dénotes the positive extension of S. The nxn-matrices over some
semiring S build themselves a semiring Mn(S) with addition and multiplication
induced from S, the zero matrix as null and unit matrix as one.

3. PATH FUNCTIONS AND ADAPTED COMPUTATION SCHEMES

In this section we defme path functions and show how they are related with
solutions of path problems. As an algorithmic model we introducé adapted
computation schemes. For those schemes the lower bounds in the next section
are valid.

3.1. DÉFINITION (Path Function): Let E^[n] x[n] be a graph and T(E) its
transitive closure. Let S be a semiring, then a function:

T : S E ,

such that for m e SE and (f, j) e T(£):

T(m)(iJ)= ^m(p) (1)

with fmite Btj satisfying F o g B l 7 g P u , is called & path function.
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3.2. REMARK (Uniqueness of Path Functions): If E is cycle-free or S is simple,
then path functions are unique, i. e. they are uniquely specified by giving a
graph E and a semiring 5:

If £ is cycle-free, then all paths are elementary so that for all Btj with
Fij^Bij^Pij already F^B^ holds.

If S is simple, then for all graphs E and all labellings m : E -> S we have: Let p
be a cyclic path andp =p1cp2 be a décomposition of p such that c is a cycle, then
m(p1cp2) + rh(p1p2) = rn(p1p2). This observation can be used to show that for
all Btj with FijCzBij^Pij the équation:

holds. If 5 is idempotent this needs not to be true for all labellings m : E -> S.
Then (•) holds exactly in those cases, where m : E -> S is absorbtive (see [Ca 79])
which assumes that all cycles c in £ satisfy m(c)^ 1.

Path functions are mainly motivated from a study of path problems. They
serve to describe solutions of path problems and to discuss their arithmetic
complexity. Path problems are differently defined in the literature. One version is
to find the values \i (/, j) = £ m (p) for all (ij) e [n] x [n] (see e. g. [Me 77]). Here

infinité sums in a semiring are used which cause some notational problems if not
in advance their existence is assumed for all countable indexed families. This
assumption, however, is quite restrictive (for a discussion of this problem
see [Ma 82]).

Another version of defming path problems is tofind a solution of the équation
X=l+ AX in the semiring of matrices Mn (S) where A is adjacency matrix of a
labelled graph m:E^S, (see e. g. [Ca79]). This version of a path problem is
most gênerai and avoids to talk about existence of infinité sums. It is an elegant
approach to discuss solvability of path problems over gênerai semirings,
see [Ca 79], [Zi 81] and [Ma 82]. Most useful here is the notion of a stable
matrix:

Let S be a semiring, then a matrix AeMn(S) is called stable of index r, if:

r r+1

j=0 j=0

where A0: = 1, the unit matrix, and Aj: = Aj~* .A is assumed. Let us abbreviate
r

the matrix £ Aj by A<r}, then one immediately dérives:
j = 0

vol. 16, n° 3, iy»2



270 B. MAHR

3.3. FACT (Stable Matrices): If A is stable of index r, then A<r> solves the
équation X = 1 +AX.

The following lemma gives a graph theoretic interprétation of the matrices
A<r> and so relates solutions of équations X=l+AX with the intention
expressed by a path 'problem:

3.4. LEMMA (Graph Theoretic Interprétation): Le? m:E^S be a labelled
graph with adjacency matrix A = A (m). Then for (z, j) e [n] x [n] and r^Owe have:

where Pty dénotes the set of(i,j)-paths of length less or equal to r in E {note, if
p<j-> = Ç) then A<

i
rj> = 0).

Proof: {see e. g. [Zi 81] or [Ma 82]). D
Since by Lemma 3.4 the en tries of a matrix A< r > can be in terpre ted as " sums of

path labels", where all paths bet ween the same endpoints up to length r are
considered, the relation between path functions and algorithms, which solve
path problems, is apparent:

3.5. PROPOSITION (Path Functions and Path Problems): Let E be a graph
and S a semiring. Let:

be a mapping and for meSE and T{m)eST(E) A{m) and A{T{m)) dénote the
adjacency matrices of m and T{m) respectively. Then T is a path function if
A(T{m)) = A{m)<r> for r ^ « ( £ ) - l .

Moreover in thefollowing cases the adjacency matrix A (m)<r> ofT(m) solves the
path problem X — 1 + A (m) X:

(1) E cycle-free;
(2) S simple;

(3) S idempotent and m : E -> S absorbtive, L e. m(c)^ 1 for all cycles c.

Proof: The first par t of 3 .5 follows from Lemma 3.4 since for all

(1) follows from the fact that all paths in a cycle-free graph E have at most
length n (E) — 1, so that for r = n (E) — 1 the matrix A (m) is stable of index r, for
all m:E -> S and all semirings S.

(2) is a special case of (3 ) since in a simple semiring for all éléments a e S a S1
holds, where ^ is the pariai order defmed in 2 (10).

R.A.I.R.O. Informatique théorique/Theoretical Informaties



ALGEBRAIC COMPLEXITY OF PATH PROBLEMS 271

(3) foliows from équation (•) in Remark 3.2, which holds for absorbtive
graphs. Using Lemma 3.4 one shows that A\T

S
 y = A\rj +1 > for all (z, j) e [n] x [n] and

r^«(£)—1, which implies stability of index n — l and thus the assertion (for a
detailed proof see also [Ca 79]). D

Properties (1), (2), (3) in 3.5 all reduce to stability of the adjacency matrices
A (m). There are other sufficient properties for stability discussed in [Zi 81] which
we do not want to discuss here.

In fact most algorithms which solve path problems also compute path
functions so that results about complexity of path functions carry over to the
complexity of solving path problems.

Next we want to introducé a computational model for path functions which is
appropriate to study algebraic complexity of path functions. We use straight line
programs (see [AHU14]), which we describe by computation schemes as
follows:

3.6. DÉFINITION (Computation Scheme): Let A and B be fmite sets and FQ (A)
be the free term algebra generated by A with the opération symbols
Q = { +, ., 0, 1}. Then a computation scheme is a triple (ƒ, C, O) of mappings

i n

such that:

(1) the canonical embedding in satisfies in = Co/;
(2) for allye[r] either C(j)sin{A) u { 0, 1} or there exist juj2 <j such that:

C(j) = C(j\).C(j2) or CU) = CUi) + C{j2).

The éléments je [r] we call steps and distinguish between input steps, where
C(j)em(A), output steps, where jeO(B), addition steps^ where
C(j)-C{j1)

JrC{j2) and multiplication steps, where C(j) = Cij1).C(j2),
Note, we keep Q fixed from now on.
Computation schemes can be looked at as a séquence of terms and are

obviously derived from straight line programs by inductively evaluating the
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272 B. MAHR

program steps in the free Q-algebra Fn(^4). The semantics of compilation
schemes now is declared as follows:

3.7. DÉFINITION (Scheme for a Fimction): Let A and B be finite sets, S an Q-
algebra and T: SA -> SB be a fonction, then a computation scheme (J, C, O) is a
correct scheme for T (or computes T) if for all meSA the équation:

in the following diagram holds:

where êi; (m) is the unique homomorphic extension of m to Fa (A) which describes
the évaluation of terms with respect to m.

We will mainly use computation schemes to compute path functions. Then
we assume that A = E^[n] x[n] and B—T(E)^[n] x[n] the transitive closure
of E and S a semiring.

In order to prove the lower bounds in the next section we have to restrict the
class of computation schemes for path functions to so called "adapted
computation schemes" which in a natural way perform computation steps
controlled by the graph structure. For this purpose we define adapted terms.

3.8. DÉFINITION (Adapted Terms, Adapted Computation Schemes): Let
E g [n] x [n] be a graph and Fn (E) be the free term algebra generated by E and Q.
Then:

(1) the set of nul! terms NULL (E) is inductively defined by:
- OeNULL(£),

if eeNULL(£) or e' e NULL (E),

(2) the set of one terms ONE (E) is inductively defined by:
- I e ONE (E),
- {e.e')eONE(E) ïï e, e'eONE(E),

R.A.I.R.O. Informatique théorique/Theoretical Informaties



ALGEBRAIC COMPLEXITY OF PATH PROBLEMS 273

')eONE(E)\ïe,efeONE(E):

or e e NULL (E) and e'e ON E (E),

or eeONE(E) and e'e NULL (E);

(3) the set of regular terms REG (E) is inductively defined by
REG {E)= U REG (z, j) with;

- (i, j)eE implies (z, 7) e REG (z, 7),
- e e REG (f, /c) and e' e REG (fc, 7) implies e. e'e REG (z, 7),
- e e REG (z, 7) and e' e REG (z, 7) implies (e + e') e REG (z, 7),
- e e REG (2, j) and g' e NULL (E) implies (e + e') e REG (1, j)

and (g'+ e) e REG (i, 7)

- • e e REG (/, j) and e' e ONE (E) implies (e. e') e REG (1,7)

and (e', e) e REG (1,7)

- eeKEG(i, i) and e'& ON E {E) implies (e + e') e REG (z, z)

and (e' + e) e REG (z, i).

The set of adapted terms then is defined by:

ADAPT (JE) = NULL (E) u ONE (E) u REG (E),

and a .sc/zeme (/, C, 0) is called adapted if for all (z, 7) e T(E) the terms C o O (z, 7)
are adapted.

Null terms have the value 0 under every évaluation in a semiring and one terms
dénote constants defined as afinite sum of one's. Regular terms reflect the graph
structure, as is seen in the following example:

> o

adapted terms:

not adapted terms are (a + d).c or c.fov l + (c.e).

vol. 16, n° 3, 1982



274 B. MAHR

The following lemma characterizes adapted terms:

3.9 LEMMA (Language of Adapted Terms): Let E g [n] x [n] be a graph and(2E\ u ,
o, 0 , { X } ) be the language semiring generatedby E. there is a unique homomorphic
extension, called language,

L: FQ(E)^2E\

of the mapping 1 : E -> 2E* with 1 (z\ j) = {(z, j)} for ail (z, j)eE, and L satisfies:
(1) L{e) = Ç) iffé?eNULL(£);
(2) L(e)={^} if eeONE{E);
(3) Z,(e)EP„iffeeREG(z,y).
Proof: The unique homomorphic extension L of 1 exists from the universal

properties of the free Q-algebra Fn(E). Thé (if)-directions of (1), (2) and (3) are
directly verifiedfrom the inductive définition of adapted terms in 3.8. The (only
if)-directions are easily derived by induction on the depth of terms in i^ (E).
A full proof is in [Ma 79]. D

From 3.9 we can also conclude that the property "adapted" for terms is
preserved by ail équations 2 (l)-2 (9) which specify idempotent semirings. This
conclusion is closely related to Theorem 5.7 below (since the language semiring
is a free idempotent semiring, generated by E).

We have now introduced adapted computation schemes as an algorithmic
model for path functions. That this is a natural model, might be apparent from
Lemma 3.9. But this is also evident from the large number of algorithms in the
literature, which are designed to solve path problems and which are "based" on
adapted computation schemes for path functions. First of all from the définition
of a path function it is clear that each path function has an adapted computation
scheme.

In [Ma 80] a class of algorithms for path problems is defined by a gênerai
solution scheme which contains almost ail known algorithms for path problems
[Fredmans 0{n3) algorithm is the only exception known to the author]. This
class is devided into the class of label dependent algorithms and that of label
independent algorithms. Label dependent algorithms, like Dijkstras algorithm
which solves path problems over Dijkstra semirings (see [Le 77]) are not "based"
on computation schemes, while the class of label independent algorithms, like
Floyds algorithm which solves path problems if the underlying graph is
absorptive (see [Br 74]), are essentially based on adapted computation schemes.
In this class of label independent algorithms are the algorithms of Roy-Warshall,
Floyd, Dantzig, ail décomposition algorithms in [Br 74], the sensitive algorithms
of Tarjan [Ta 75] and ail known algorithms especially designed for cycle-free
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ALGEBRAIC COMPLEXITY OF PATH PROBLEMS 275

graphs (cf. [Ma 79]), only to mention the most prominent. A further distinction
between matrix oriented (or rigorous) and graph oriented (or sensitive)
algorithms is useful. While matrix oriented algorithms do not reflect the
underlying graph structure, like Floyds algorithm, graph oriented algorithms do
reflect the graph structure. Among those algorithms are Tarjans algorithms and
those for cycle-free graphs.

The lower bounds on the algebraic complexity of path functions, which we
state in Section 5, so apply to all label independent algorithms, while the known
lower bounds in the literature only apply to matrix oriented label independent
algorithms.

4. PROVING LOWER BOUNDS

In this section we give the proofs for the lower bounds on the number of
multiplication — and addition-steps of adapted computation schemes for path
functions. The idea of the proof is shortly sketched as follows: A computation
scheme can be considered as a séquence of terms where input steps dénote input
variables and output steps dénote term définitions of the desired result. To each
term in the séquence we assign a set and discuss the séquence of sets. From the
property of the set of the first step (précondition) and the property of the set of the
last step (postcondition) and the change of the setsfrom one step to the other we
infer the number of steps. As a tooi in the proof we use the following:

4.1. LEMMA (Normal Form Présentation of Terms): Let E<^[n] x[n] be a
graph and E* be the f ree monoid generated by E. Then the set of functions
f : £* -> Mo with finite support sp (ƒ ) = { e e £* | ƒ (e) / 0 } forms a semiring Fin
(E*, No) with respect to the following opérations:

(f.g){a)= E
a — xy

O{a) = 0

1 if a = X,
1 0 otherwise.

Moreover there is an Q-homomorphism N : FQ (E) -> Fin (£*, No) such thatfor
each mapping m : E -> S into a semiring S and for each eeFn(E) the équation:

(1) ev(m)(*)= X S
xesp(N(e)) i=
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holds, where m is the unique homomorphic extension ofmto E*.
Finally, the language L : Fa (E) -• 2E* of Lemma 3.9 satisfiesfor each eeFa (E):

(2) L(e) = sp(N(e)).

Proof: The sum which defines multiplication in Fin (E*, No) isfinite since the
free monoid E* is locally fmite, i.e. for a e E* there is only a finite number of
décompositions a = x. y. Since sp (ƒ+g) = sp (f ) u sp (g) and
SP (ƒ- g) ~ SP (ƒ ) ° sp (g) where o dénotes the complex product, it follows that all
opérations in Fin (E*, No) are well defmed. To check validity of the équations
2(1) to 2(8) in Fin(£*5 No) is straight forward.

We defme a mapping h : E -> Fin (E*, No) by:

0
if € = (i,7),
otherwise,

and obtain, since Fin (E*, No) is semiring, a unique homomorphic extension
ev(A) : FQ(E) -+ Fin(£*, No) which we cali N.

f(x) _
For each ƒ eFin(£*, No) one shows that Km{f)=Yi Z m ( x ) l S semiring

homomorphism for each m \ E -+ S and dérives immediately from the définitions
for each (i,j)eE:

(ij),

in the following diagram:

i n

Fin (E , |N )o

m

Since Km o JV is semiring homomorphism and ev (m) unique with the property
m (/, j) — ev (m) o in (z, y) for (z, j) e E, it follows that:

for all e e Fa (E).

m(x),
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Finally équation 4.1(2) follows from the fact that the support
sp : Fin(£*, f^0)-^2£*isasemiringhomomorphismwhichsatisfiesfor(z,7)eE,
see 3.9,

so that for all eeFa(E) from the uniqueness of the homomorphic extension
L(e) = sp(JV (e)) follows. D

The next lemma is the key-lemma in the lower bound proofs and used to state
the "post condition" for correct computation schemes.

4.2. LEMMA: Let E^[n] x [n] be a graph, eeFa(E) be an adapted term and S a
semiring. Suppose there is (i9j)eT(E), i^j and U^.gp^ such that for all
m : E -> S:

ev(m)(e)= £ m(p)y (*)

then Fij^Bij implies Ftj

Proof: From Lemma 4.1 (1) and 4.1 (2) we conclude:

ev(m)(c)= X ! « ( * ) , ( • • )
for all m : £ - • S. xeL& i = 1

Since (/, j) e T(E) and i#7 is assumed, it follows that Ftj ^ 0 and Ftj # { X }.
Thus there ispeF^ withp^X which defines a labelling mp : E -• 5 by:

m , x ^ f 1 if x in ps
m p ' { 0 otherwise.

Then we conclude for all q^Pij with q^p:

mp{q) = 09 (1)

and from (•) also:

ev(mp)(e) = l. (2)

Another labelling m0 : E -> S is defined by m0(x) — 0 for all xeE and we
conclude from (•):

ev(mo)(e) = 0. (3)

1. Suppose L(e) = Ç>; then by ( • • ) for all m : E-+S ev (m) (e) = 0, which
is in contradiction to (2). Thus L
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2. Suppose L(e)—{X}\ then by (••) for all m : E -> S:

ev(m)(e)= £ 1-
i = 1

There are two cases: either cv(m)(e) = 0 or ev(m)(e)^0. The first case is in
contradiction with (2) and the second case in contradiction with (3).

Since e is adapted, it follows from Lemma 3.9 that L(e)<=Pk t for some (k,
l)eT(E). Similar to 1 and 2 one shows with the help of (•) and (••) thatfc = z
and 1 =j and thus L(e)^Ptj. In detail this is done in [Ma791.

3. Suppose Ftj^L{e)\ then there is a path.peFtj which is not in L(e). With
respect to this pathp we conclude from (1) and (••) cv(mp)(e) = 0 which is in
contradiction to (2). Thus Ftj^L{e). •

A closer look to adapted computation schemes shows that there are paths,
which are never taken into considération in the same computation step. Such
paths we call "independent". Thus a system of pairwise independent paths gives
a lower bound on the number of steps. This is the basic idea of lower bound
proofs.

4.3. DÉFINITION (Independent Paths): Let Eg[n] x[n] be a graph, then two
paths/? and q in E are called independent, if for all adapted terms of theform el. e2

withe l s e2£ONE(£):

peL(e1.e2) =>

Two paths are independent if and only if they have no common internai node
or have different endpoints. This we use in the next section.

4.4. PROPOSITION (Lower Bound for Multiplication Steps): Let T : SE -> ST{E)

be a pathfunction and Z g i j Ftj be a set of pairwise independent paths of
(i,J)eT(E)

length ^ 2 , then each adapted computation scheme (7, C, O) for T has at least:

card(Z)
multiplication steps.

Proef: From 3.1 (1) and 3.7 (1) we dérive for all (iJ)eT(E) and for all
m : E^S :

ev(m)o(CoO(W))= E m(p\
peBi}

with Fij^Bij^Pij. From Lemma 4.2 we conclude for {i,j)eT{E) with i^j.

(1)
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Let (ƒ, C, O) have r compilation steps, then with the abbreviation
L(k): = L(C(k)) for ke[r] we have:

Z g U Fij^ U L(k). (2)
(i,j)eT(E) ke[r]

Let a mapping Q : { 0, . . . , r} -* 2£* be defined by:

0(0): =0,
' 0 if L{k)<^Ptj for some (z,y)

otherwise,

and from Q a mapping R : {0, . . ., r} -• 2Z defined by:

Then we have as precondition R(O) = 0 and as postcondition R(r) = Z which
follows from (1), (2), (3) and the définition of g.

We now show that for k= 1, . . . , « :

if A: is a multiplication step and R(k) = R(k—l) otherwise:
1. If k is input step, then from the définition of L we have L(k)= {(*,.ƒ)} for

some (Uj)eE and Q{k)^L(k). Since peZ has length ^ 2 , we dérive

2. If k is nu// jfóp, i. e. C (k) = 0, then from 3.9 (1 ) it follows that L{k) = Ç) and
sR(k) = R(k-l).

3. If k is o«<? 5/ep, i. e. C(k) = 1, then from 3.9 (2) it follows that L(fc)= {A. j

4. If fc is addition step, then L(k) = L(j\)uL(j2) for some yl5 A < ^ - If
^ (*0 E Po-, for some (ij) e r(£), then K (k) = R (k - 1 ). Otherwise from L (k) g Ptj

it follows that L(ji ) g Po- and L (j2) g Po , In this case also Q{k) = Q (ji ) u g 02)
and sincey\ J2^k-1 fmally U 6(7 ) = U 60') and thus K(k) = R(A:- 1 ).

jûk j£k-l

5. If k is multiplication step, then L(k) = L(j\)oL(j2) for somey1,y2<^. If
L(k) = 0 or L (k) g P£j. for some (f, y) e r(£), then R (k) = R (k - 1 ). If L (J1 ) or
L Ui) equals {X }, then L (fc) = L (y2) or L (k) = L (y^) respectively and also in this

Finally if L(k)^Pip L(j\)^Piq ànd L(j2)^Pqj for some node qe[n], then
). Since C(/i) and C(/2) are adapted terms
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not in ONE (£), from the définition of independent paths 4.3 it follows that
Zn L(j1)oL(j2) has at most one element, so that:

As we have shown, the séquence R(k) for & = 0, ..., r grows at most in a
multiplication step by one element. From the precondition R(0) = Ç) and the
postcondition R(r) = Z it follows that (/> C, O) has at least card(Z) many
multiplication steps. D

The next proposition concerns the number of addition steps. The proof is
similar but a bit more complicated. The main idea is that each independent path
which is taken into account has to be used in an addition step in order to obtain a
correct result.

In fact, the next proposition states a lower bound which is independent from
the iower bound for multiplication steps.

4.5. PROPOSITION (Lower Bound for Addition Steps): Let T : SE -> ST{E) be a
pathfunction andfor (ij) e T(E) Z^F^ a set ofpairwise independent paths. Let
sum(ZiJ) : =card(Z0-)- l if card (Z u) > 0 andsum (Ztj) : =0 otherwise. Then
each adapted computation scheme (I, C, O) for T has at least:

£ sum (Zij),
(Uler(É)

addition steps.

Proof: By Lemma 4.1 there is a step r^fov each (ij) e T(E) with z*#j such that
Fij^HCir^y^Piji thus ZygL(C(*•;_,•)). W e s n o w t n a t e a c n adapted
computation scheme for T perforais at least sum (Ztj) addition steps k, each of
which satisfies C(k)e REG (i, j). Since this is truefor all (z, j) e T(E) with / *j and
sum(Ziï) = 0 for ail ie[n], the assertion follows.

Let a mapping Q : { 0, . . . , r^} -> 2E* be defined by:

0(0) : =

Q(k) : -
0 if L(k)^Pijy

L(k) otherwise,

and from Q a mapping JR : { 0, . . . , rtj} ->• 2Zij defined by:

).: =ZiJnUQU).

Then we have R(0) = Q and R(ro.) = Zl7 like in 4.4. The mapping R is
appropriate to count multiplication steps. We use itfor counting addition steps.
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But we need some kind of book keeping for all "partial sums", available in a
computation step. For this purpose we defme a mapping:

K:{0, ...,rtJ}^2**9

by:

K ( 0 ) : = { 0 } ,

K(k): =A(k)\D(k),

where the set A (k) collects all sets Q (1 ) n Z(ji for 1 ^k and D (k) collects all such
sets, which are contained in other such sets, so that:

A(k): =

D(k): ={XeA{k)\X*q)^ YeA{k) :X<£Y}.

The set D{k) serves to avoid book keeping of "partial sums" of "partial
sums".

Then we have as precondition K (0) = { 0 } and as postcondition K (rij) = { Ç),

ZIJ}-
If we discuss the behavior of the sets R (k) and K (k) for all computation steps

k = 1, . . . , rij9 the following situation results:
In each step k the set R(k) grows at most by one element. Whenever R(k)

grows by one element, also K (k) grows by one element. Only if k is addition step
with C(fc)eREG(/,j)> K(k) can decrease; and then only by one element. The
proof then complètes as follows:

There have to be card (Zfj-) steps where R(k) and thus K(k) increases by one
element, since R(rij) = Zij. Since by the precondition K(0)= { 0 } and by the
postcondition K {rtj) = { 0 , Ztj}, there must be card (Zf</)-l addition steps k with
C {k) e REG (f, 7) if card (ZfJ-) > 0 and none otherwise, which proves the assertion.
A formai discussion of the behavior of the sets .R {k) and K (k) for all k =4, . . . , rtj

is in [Ma 79] and immédiate from'the previous définitions, yet lengthy and
technical. D

5. ALGEBRAIC COMPLEXITY OF PATH FUNCTIONS

In this section we study the algebraic complexity of pathfünctions. Namely we
investigate how many multiplication and addition steps are necessary and
sufficient to be performed by correct computation schemes for path functions. In
order to apply the lower bounds from the last section we refer to the notion of
independent paths and state (for a proof see [Ma 79]).
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5.1. LEMMA (Characterizing Independent Paths): Let E g [n] x [n] be a graph,
then two pathsp and q in E are independent ifand only ifp and q have no common
internai point or have different endpoints. D

Given a graph E and let t(E) dénote the number of nodes in a minimal eut
System of £, i. e.:

with ttj denoting the cardinality of a minimal (z, j )-cut, then we call t (E) the eut
index of E.

Derived from t (E) we defme the parallel index of E, denoted by t* (E), to be the
number:

with tfj =tij$ (i, j ) G E or i =j and tfj = ttj -1 otherwise.

5.2. FACTS: Let E^[n]x [n] be a graph, then:

(1) t*{E)=t(E)-(e(T(E))-e(E));
(2) t*{È)£t(E)£n(E).e(E)-9

(3) if E is complete, i. e. E = [ri\ x[n], then:

t* (E) = t(E) = n(E).(n(E)-l).(n(E)-2).

Cut index and parallel index of a graph teil about the complexity of path
functions:

5.3. THEOREM (Lower Bounds, Adapted Computations): LetEbeagraph, S a
semiring and T: SE -> ST{E) a path function. Then every adapted computation
schemefor Tperforms at least

t (E) multiplication steps,

f* (E) addition steps,

where t (E) is the eut index and ** (E) is the parallel index of E.

Proof: To show that t (E) multiplication steps are necessary, we use
proposition 4.4 and show that there is a set of pairwise independent paths of
length ^ 2 which has cardinality t(E). From Lemma 5.1 we conclude, that the
maximum number of paths of length ^ 2 in E which are independent and with
common endpoints i and 7 equals the number of (i, j )-paths with no common
internai point. Menger's theorem (see [Be 76]) shows that this number equals ttji
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the cardinality of a minimum (i, j )-cut. Thus it follows that one can find a System
Z of pairwise independent paths of length ^ 2 with:

card(Z)- £ ttj=t(E).
(i,j)eT{E)

Necessity of t* (E) addition steps now follows immediately from
proposition 4.5. •

For cycle-free graphs and idempotent semirings we can show that the bounds
of Theorem 5.3 are tight:

5.4. THEOREM (Tightness for Cycle-Free Graphs and Idempotent Semirings):
Let E be a cycle-free graph, S an idempotent semiring and T: SE -> ST{E) a path
function. Then there is an adapted computation scheme for T which performs
exactly:

t (E) multiplication steps,

t* (E) addition steps.

Proof: Let a minimal eut System je (E) = (Aij\iJ)snE) be given, then we define
recursively a family:

of terms etj in FQ (E), Q = { + , . , 0 , 1 } , as follows:

Let with simplified notat ion Ati = { 1, . . . , ttj}, then:

?n - e i j+ • • • 'Jre'iij'
e'iii otherwise,

where brackets are neglected without affecting correetness.
Since E is cycle-free, there exists an ordering h : T(E) -+ No such that for ail

(iJ)eT(E) and a

h (eik) < h (etj) and h (ekj) < h (eu)9

which proves that %>{E) is well-defmed by (•). One easily dérives from #(£) a
computation scheme (/, C, 0) such that Col {ij) = (ij) for ail (iJ)eE and
CoO {ij) = etj for ail (i9j)eT(E). Actually the set of steps {C{k)\k^r}
{seel>.2) is defined to be the set of all sub terms of the set of terms
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For this computation scheme one can show:
(1) for all (i,j)eT(E) is etj an adapted term, i. e. (ƒ, C, O) is an adapted

scheme;
(2) for all idempotent semirings S and all labellings m : E -» S and all

(Uj)eT{E) we have:

&v(m)(eij)= £ m(p)>

i. e. (I, C, O) is a correct scheme for the path function T which is uniquely
specified by S and E;

(3) (I, C, O) performs exactly / (E) multiplication steps and t*(E) addition
steps.

The properties (1), (2), (3) of (ƒ, C, 0) prove the assertion. A complete proof is
in [Ma 79]. D

The Theorems 5.3 and 5.4 form the main resuit of this article.
For a better understanding of this result we continue with a discussion about

the assumptions made in the statement of the theorems.
Concerning the assumption, that semirings in Theorem 5.4 have to be

idempotent we make the following remark:

5.5. REMARK (Idempotent Semirings in 5.4): From the définition of <ë(E) in
the proof of 5.4 one can show that for all (z, j)eT(E) and all m : E -> S :

m(p)

(see Lemma 4.1). Since the following example of a cycle-free graph E the unique

(i, j )-cut décomposes the set of paths Pu not disjointly, it follows that N (etj) in
this case is not equal to 1 for all pathsp e PtJ. In order to prove (I, C, O) in 5.4
correct, we have to assume idempotency of S. In fact for this graph E a different
adapted scheme can be constructed which is correct for all path-functions and all
semirings and which performs only t(E) multiplications and t* (E) additions. It
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is open if this is true for all cycle-free graphs £, which would show that the
assumption "5 idempotent" can be dropped.

Concerning the assumption that graphs in 5.4 have to be cycle-free, we make
the foliowing remark:

5.6. REMARK (Cycle-free Graphs in 5.4): (1) There are cyclic graphs E such
thatfor all simple semirings S the unique pathfunction Tcan be computed by an
adapted scheme (ƒ, C, O) which performs t(E) multiplications and £*(£)
additions, i. e. the bounds of Theorem 5.3 are tightfor some cyclic graphs and
simple semirings. The following graph is an example:

(2) There are cyclic graphs E such that for all simple semirings S the unique
path function T can not be computed by an adapted scheme (I, C, O) which
performs t{E) multiplications and £*(£) additions, i. e. the bounds of
Theorem 5.3 are not tightfor some cyclic graphs and simple semirings. The
following graph is an example:

In the first case (1 ) one easily finds a scheme with t {E) multiplication and t* (E)
addition steps. In the second case one observes that E has a unique eut System
and shows that any adapted scheme with t (E) multiplication [and t* (E) addition
steps] is incorrect. More details concerning this remark can be found in [LM 80].

Next we discuss the assumption that computation schemes have to be adapted
in Theorem 3.3. A stronger correetness condition as in 5.3 leads to the
following:
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5.7. THEOREM (Lower Bounds, Arbitrary Computations): Let E be a graph,
then every computation scheme whichfor every semiring S is correct for some path

function T : SE -• ST{E\ performs at least:

t (E) multiplication steps,

t* (E) addition steps.

Proof: We show that there is a semiring So such that every path function
T : Si -> SQ(£) n a s only adapted computation schemes which are correct. Then
the assertion follows from 5.3. Let S0 = (2E\ u, o s 0 , {A,} ) be the language
semiring; then any path function T : S^ -> SQ(£) satisfies for the argument m0 :
£ -> So, defined by:

for all (i,j)eE, the following équation by 3.1:

for all (f,7 )eT(E) and some 50- with Ftj^^B-^gPi;. In So the équation has the
form:

Now let etj be a term with ev (m0) (e-;) = T(m0) (/, y ), then by Lemma 3.5 we
have ev (m0) (etj) = L (eij) = Bij which implies that etj is a regular (z',7)-term.
Consequently every scheme which is correct for T : S% -> Sj(£), has to be
adapted. D

The stronger correctness condition in 5.7 for example is satisfied by the
scheme constructed in the proof of 5.4 and is a quite realistic assumption.
Concerning the weaker correctness condition of Theorem 5.3 we make the
following remark:

5.8. REMARK (Adapted Schemes in 5.3): It is open if the assumption of
adapted schemes in 5.3 can be replaced by some weaker condition without
affecting the statement of the lower bounds. Infact some assumption is necessary
as the following example shows where additional opérations are used (see also
[AHU74]).

Let S = Z, the ring of integers, and E be the following (cycle-free) graph:
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a * /-> e

Then any scheme which computes the matrix product A.B with:

-CO-
can trivially (without use of additional opérations) be extended to be correct for
the unique path function:

T : IE -> ZT{E).

Using Strassens method to multiply 2x2 matrices with only 7 multiplications
instead of 8 (see e. g. [AHU 74]) we obtain, with the help of subtraction in Z, 7
multiplication steps instead of t(E) = i.

This example however employs a computation scheme which is not covered by
the Définition 3.6 since it uses a larger operator domain Q. But it shows a limit
of our results. That there are non adapted schemes over the operator domain
Q = { + , .,0,1} with less opérations than t(E) and t*(E) respectively, is not
disproved yet.

Finally in this section we want to relate our lower bound results with those
known in the literature. The lower bound for path problems, stated by Spira and
Pan [SP 73] sta tes 1/2 (n-1) (n-2) steps for the single source shortest path
problem and applies to label dependent algorithms. The computational model is
that of an analytic tree program and is not comparable with computation
schemes.

Lower bounds on the algebraic complexity of path problems trace back to
Murchland [Mu68] who informally argues that n(n — l)(n — 2) triple opérations
are necessary to solve the shortest path problem by a label independent
algorithm. The same bound is claimed by Iri and Nakamori [IN 71]. Algorithms
which use "triple opérations" follow the gênerai solution scheme, mentioned in
Section 3 (see [Ma 80]), and are therefore based on adapted computation
schemes. Johnson [Jo73] proves that n(n — 1) (n — 2) (min, + )-operations are
necessary (not just triple opérations), following a similar resuit by Kerr [Ke 70].

Expressed in our terminology, we have:
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5.9. THEOREM (Murchland, Iri and Nakamori, Johnson): Every computation
schemefor the (unique) path function:

T : M[n]x[n] -> M [ w ] x [ " ] ,

performs at least:

e (n — 1) (n — 2) multiplication steps,

n (n — 1 ) (n — 2) addition steps,

+

where M = (IR u { oo }, min,. + , oo, 0). D

Based on a resuit by Pratt [Pr 75] who shows that transitive closure of Boolean
matrices needs C .n3 an<i-gates in monotone (i. e. only and and or using)
networks, Paterson [Pa 74] and Mehlhorn [Me 77] show independently in the
same year that 0 (n3) and- and cr-gates in monotone networks are necessary to
compute transitive closure.

Again expressed in our terminology we have:

5.10. THEOREM (Pratt, Paterson, Mehlhorn): Every computation schemefor
the (unique) pa th f une tion:

T : B M x [n] —>• B [ " ] x [n]

performs at least:

© (n3i) multiplication steps,

0 (n3) addition steps,

where B = ({ 0, 1 }, v, A , 0, 1). D
The proof of this bound is making use of the fact that in closed semirings

matrix multiplication is not harder than transitive closure (see [FM 71]). The
main part of the proof, however, states that matrix multiplication over the
semiring E costs at least n3 multiplication and n2 (n — 1) additions for arbitrary
computations over the operator domain Q = { v, A , 0,1} (see [Me 77]). We use
this result and extend Theorem 5.10 to positive semirings:

5.11. THEOREM (Path Functions with Positive Semirings): Let S be a positive
semiring and T: S[n]x[n] -• S[n]x[n] be a path function. Then every computation
schemefor Tperforms at least:

0 (n3) multiplication steps,

0 (n3) addition steps.
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Proof: First of all the lower bound of n3 multiplications and n2(n — 1)
additions for matrix multiplication over the semiring B is true for positive
semirings in gênerai: Since by the characterization of positive semirings S
through the homomorphism h : S ->• B [see 2(13)] every scheme which performs
matrix multiplication over S also performs it over the semiring B, no positive
semiring can exist over which less than n3 multiplications and n2 (n — 1 ) additions
suffice.

Next we state that multiplying matrices is not harder than computing path
functions, which is a reformulation of the result in [FM 71]; more precisely: Let
for n>0C(n) be a computation scheme which computes a path function
j . £[«]*[«] _> si"]*!*] o v e r s o m e (arbitrary) semiring S in not more
than \i(n) multiplication and oe(«) addition steps, then there are positive real
constants a, b and a computation schemeD{n) which multiplies two nxn
matrices over S in not more than a.\i(n) multiplication and b.a(n) addition
steps, provided that for some positive real constants c, d the relations
\y{2>.n)^c.\i(n) and 0L{3,n)^d.a(n) hold:

Given n x rc-matrices A, B over S and Let T : S[3n]x[3n] -» S[3n] x[3n] be an arbitrary
path function. Consider the argument m of T in matrix form; it has the
value T(m) in matrix form:

/ l A A.B\
T(m)= ( 0 1 B )

\ 0 0 1 /

as can be easily seen from the définition of a path function (see 3.1 and compair
[AHU74]).

Now let C(3n) = (/, C, 0) be a computation scheme for T, then we construct a
new computation scheme D (n) = (ƒ', C", O') which performs matrix
multiplication. Now let V : = / o^ , O' :=Oo/rand C' := ƒ oC, where g and A
are injections marking the matrix blocks corresponding to A, B and A.B in the
above matrices, and ƒ is the unique homomorphic extension of ƒ :
[3 n] x [3 «] -»• FQ ([«] x [w] O [n] x [«]) defined by:

f{i,j) = (/2,/2) if w + 1 ̂  ƒ ̂  2 H, 2 ^ + 1 S7'g 3 «,

0 otherwise,

with(fls j\) and(z2,j2) denoting éléments of thefirst and second "component" of
[n] x [n] u [n] x [n] respectively.
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The scheme D (n) = (ƒ', C', O') correctly multiplies n x n-matrices over S in not
more than \i (3n)^c.\i(n) multiplications and a (3n)i^d.ai(n) additions. Now
suppose there is a computation scheme which computes a path function over
positive semirings in \x(n) multiplication and a{n) addition steps such that ji(«)
or a(n) are not in &(n3). Then only for \i, also |i (3n)£& ((3n)3) and so \i
(3n)$® (n3). Since then matrix multiplication is not as hard as 0(«3), a
contradiction follows from the lower bound of n3 multiplications and n2 (n — 1)
additions for matrix multiplication over positive semirings. •

This bound considers a larger class of computation schemes, as the one in
Theorem 5.3, but it is more restrictive in the underlying semiring and the type of
path function. It is less précise and does not reflect the graph structure.

5.12. CONCLUSION (Algorithmic Complexity of Path Problems): Algebraic
complexity of path problems only considers a certain aspect of algorithms which
solve path problems. Organizational overhead, which is part of any path
algorithm, is excluded in the analysis. The reason is thefollowing: An algorithm
for path problems is usually designed to accept an arbitrary labelled graph G
from some class F of labelled graphs as input and to resuit a solution to the
problem, specified by G. Straight line programs instead only accept a spécifie
"segment" of F, defined by a graph E or its number of nodes^(£). So our
complexity analysis employs a non uniform model of computation for a problem
which, by its nature, asks for a uniform algorithmic model (see [MS 81]). Since we
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have no good tools up to now to analyze "algorithmic complexity" directly we
rely on models that are easier to handle and that admit complexity analysis at all.
But we should know that this leaves a number of questions open. The results
obtained with non uniform models may not always carry over to complexity
bounds for uniform models. We therefore have discussed types of algorithms in
Section 3 and claimed that our lower bounds on the base of straight line
programs carry over to algorithmic complexity of label independent algcrithms.
Upper bounds on the number of algebraic opérations instead may not always be
such for algorithmic complexity as the following results in [Ma 79] show:

Consider the problem of writing ah algorithm which solves path problems
over cycle-free graphs and idempotent semirings such that it performs only t {E)
multiplications and t*(E) additions. By Theorem 5.4 such an algorithm exists.
An easy way is first to compute a minimal eut system of the input graph E and
then to proceed with a recursive procedure which follows the définition of the
term-family <ë (E) in the proof of 5.4. Such an algorithm is described in [Ma 79],
which shows that the number of steps of such an algorithm is already determined
by the problem of finding the minimal eut system. On the other hand it can be
shown that any algorithm which solves path problems over cycle-free graphs and
idempotent semirings with graph adapted computations in only t(E)
multiplications and t* (E) additions can be used to fmd a minimal eut system by
simply letting it run on an other algebraic structure, which extends its number of
steps by at most a factor of n = n{E).

So solving path problems over cycle-free graphs and idempotent semirings by
graph adapted algorithms in a minimum number of opérations is at most a factor
of 1 In ' 'easier" than finding a minimal eut system in a cycle-free graph. While we
can solve the path problem in O (n (E).m (E)) steps, a solution with minimum
number of opérations is probably more expensive. This conjectured trade off
between algebraic and algorithmic complexity can show that algebraic
complexity analysis is not just a tooi to study the algorithmic complexity of path
problems —a tooi that needs to be used carefully — but also a matter in its own
right.
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