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SOME PROPERTIES OF DECOMPOSITION ORDERING,
A SIMPLIFICATION ORDERING TO PROVE TERMINATION

OF REWRITING SYSTEMS (*)

by Pierre LESCANNE (1)

Communicated by M. SINTZOFF

Abstract. — Recursive path ordering is an ordering on terms inttoduced by Dershowitz to prove
the termination of rewriting Systems. A new ordering, called décomposition ordering, is defined. It
is proved to be equivalent to the path ordering and, as corollary, a simple proof of the well-
foundedness of recursive path ordering is given.

Résumé. — Vordre récursif sur les chemins a été introduit par Dershowitz pour prouver la
terminaison des systèmes de réécriture. On propose ici un nouvel ordre appelé ordre de décomposition
et Von montre qu'il est équivalent à l'ordre récursif sur les chemins et comme corollaire on donne une
preuve simple de la bonne fondation de ce dernier.

1. INTRODUCTION

This paper introduces a new définition of recursive path ordering when a
total ordering is given on the set of symbols. Décomposition ordering is based
on a preliminary and comprehensive analysis of terms. This préparation called
décomposition arranges relevant information in such an way that ordering
looks like a lexicographical ordering. The recursive path ordering or the
equivalent décomposition ordering is a good tooi to prove the termination of
rewriting Systems [6], and therefore to prove inductive properties by the Knuth
and Bendix method [4,5,8,13].

The second section of this paper is devoted to the définition of the recursive
path ordering on terms on a partially ordered set of symbols, we explain why
it is possible to focus our study only on totally ordered set of symbols if we
want to prove the well-foundedness. Thus, we define properties related to such
a set of symbols, namely left-weighted terms and recursive lexicographie
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332 P, LESCANNE

ordering. In the third section, we give the proofs of the niain theorems in a
particular case where F is a set of symbols of monadic functions. This is an
introduction to the fourth section where the décomposition ordering is defined
and the main theorems are proved, namely équivalence of both ordering and
their well-foundedness. In the conclusion, we sketch a comparative study of
two algorithms which can be deduced from each définition.

2. THE RECURSIVE PATH ORDERING

2.1. Multiset ordering

A multiset on & is a mapping S : @ -> JV. The set of multisets on 3 is
denoted by Jt(@i). For example, {1, 3, 3, 5, 5, 5} = S is a multiset on JV, where
S(l) = l, S(3) = 2, S(5) = 3 and S(x) = 0 for all other xeN. Let <® be an
ordering on £̂ , and < N be the canonical ordering on JV.

DÉFINITION 1: The multiset ordering deduced from <^ is defined as follow:

S < <®T if and only if

<NT(y)])9

i, e., if an element x occurs more frequently in T9 there exists another element
y greater than x that occurs more frequently in S.

Example 1: If @ = {h X X ...} u {a, 6, c, ...} and 1 < 2 < 3 < ... and
a < b < c < ... we have:

{2, 2, 2, 3, 4, o, o, b, c9 c} < <m{2, 3, 3, 4, bt b, d).

LEMMA 1 [18]: If < contains < in the relation sense, then < < contains
< <. In other words:

=> [(VS, TeJf{®)){S< < 7)=>(S <<T)\ •

LEMMA 2: If < is total, then < <is the left to right lexicographie ordering on
the decreasing sorted list of the éléments. •

2.2. Recursive path ordering

The set T(F) of terms on F terms without arity restrictions will be

considered here. Let us consider the congruence s = t recursively defined as
follows:

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SOME PROPERTIES OF DECOMPOSITION ORDERING 533

DÉFINITION 2: ƒ (su ..., sm)=g(tu ..., tm) iff f=g and there exists a
*

permutation oeS„ such that st = ro (0.
Let < be an ordering on the set F of the symbols.

DÉFINITION 3: The recursive path ordering [1] over T(F) is recursively defined
as follows:

(3.1) f=g and {sh . . . , sm} < < {tb . . . , *„},

or (3.2) ƒ < g and for all sh st<t9

or (3.3) —i ƒ ^ g and for some tj9 s < tj or s =tj9

this définition can be "less deterministic", changing (3.3) to:

(3.3') for some tj9 s< tj or s = tj,
Example 2: If F is the set S of example 1, the following figure gives two

terms which are compared:

-b b

t= V 1 < 2 b =s

/ \ I / \ A
c a

This inequality can be proved as follows:

t<s iff (by rule 3.1) S = {b (a, a), 1 (c)} < < {2 (a, c), b (a, a)} = T, because
the top operators are the same;
iff (by Définition 1 giving the multiset ordering, hère & is T(F))

[3yeT(F)]l(cf: y and S (y) <NT(y);
iff (choosing y = 2 (a, c) and because S (2 (a, c))=0 and 7\2(a, e)) = 1) :

iff (by rule 3.2, because 1 <2)c <2(a, c);
iff (by rule 3.3' withj = 2) c = c\
ijfjftrue.

vol. 16, n° 4, 1982



334 P. LESCANNE

2.3. Total ordering on F is enough for proving well-foundedness

In this section we give some lemmas showing that it is possible to suppose
the ordering on F to be total when we want only to prove the well-foundedness.

LEMMA 3: Let -< be an ordering containing <, in the relation sensé: Le.,
* * * *

ƒ < g => ƒ < g, then -< contains <. In other words, s <t=>s<t.

Proof: Suppose s < t. The reasoning is by induction on the structure of

terms. If the first or second condition is applied to prove s < t, then trivially

s -< t. Otherwise, the condition (3.3') is used and (s < tj or s = t}) implies
* * *

(5 -< tj or s= tj) thus s -< t. •

LEMMA 4: If -< contains < and if -< is well-founded, then < is well-founded.

Proof: By Lemma 3, if tx > t2 > . . . > * „ > . . . is an infinité <-decreasing

séquence on T(F)9 it is an infinité ^-decreasing séquence. •

By Lemma 3, < is well-founded if < can be embedded in an ordering -<

on F such that -< on T(F) is well-founded. It will be proved constructively,
that a necessary condition is that -< is total and well-founded (Le., well-

ordered). In other words, a resuit of this paper can be: < is well-founded if
< can be embedded in a well-ordering.

LEMMA 5: Every well-founded ordering can be embedded in a well-ordering.

Proof: The proof follows from Zorn's Lemma.

The Lemma 5 allows us to translate, the previous statement into: < is
well-founded if < is well-founded (2). Henceforth, < will be a well-ordering,
therefore a total ordering.

2.4. Left-weighted terms

The following resuit is easily provable.

(2) It will be noted that Zermelo's Theorem is a particular case of Lemma 5 when the well-
founded relation is the empty relation. Therefore, Lemma 5 is equivalent to the axiom of choice.
In most cases, F is finite, so < is well-founded and can be embedded' constructively in a well-
ordering, by topological sort.
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SOME PROPERTIES OF DECOMPOSITION ORDERING 335

LEMMA 6: If F is totally ordered, if s and t are given, one and only one of the
following assertions is always true:

* * *
s <t, s = t, s> t.

DÉFINITION 4: A term ƒ (sh . . . , sm) is called recursively path left-weighted or

more simply <-left-weighted iff for all i, Si is <-left-weighted and for all i and
* * * *

j , i < j implies Si ̂  Sj (where s ^ t means s < t or s = t).

LEMMA 7: (i) Two < -left-weighted terms are = congruent if and only if they
are equal.

(ii) In each class there exists a unique <-left-weighted term.

(iii) Because < is a total ordering, the restriction of the ordering < to the

< -left-weighted terms is a total ordering.

The < -left-weighted terms are the canonical forms of = -classes.

Consequently, to compare two terms, it is only needed to compare their < -
left-weighted terms canonically associated.

2.5. Recursive lexicographie ordering

We give a simpler ordering which is. based on the lexicographie ordering and

which coincides with the recursive path ordering on the < -left-weighted terms.

DÉFINITION 5: The recursive lexicographie ordering is given as follows:

s=f(su . . . , sm)<g(th . . . , tn) = t iff

/ = g and <S/, ..., sm> <iex<t /5 . . . , tn\
a

or ƒ < g and si < t,

or ƒ > g and s < tt or s = th

a. ot

where <ilex is the lexicographie ordering deduced from < .

LEMMA 8: If < is total on F, the recursive lexicographie ordering and the

recursive path ordering coïncide on the <-left-weighted terms, therefore the
* at

<-left-weighted terms are also the <-left-weighted terms.
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336 P. LESCANNE

Proof: By induction on the structure of terms. The case f=g cornes from

Lemma 2. For ƒ < g, we have sx < t if and only if by induction sx < t; but for
* * a

ail i, Si £j Si, because the terms s* are < -left-weighted, so Si < t is equivalent

to s,* < t, for ail i. Since F is totally ordered, —i ƒ g g means ƒ > g and the

resuit follows, by induction, from the équivalence between s ^ ti and s ^ ti

and so there exists a j (j'= 1 ) with s S tj. M

3. THE RECURSIVE PATH ORDERING AND THE DECOMPOSITION ORDERING ON
MONADIC TERMS

F is a well-founded set and F* is the set of words on F which can be seen
as terms on a set F of symbols of monadic functions. A décomposition
ordering can be defined on F*. It introduces the décomposition ordering on
terms.

DÉFINITION 6: The recursive path ordering on words [16] is given by:

[i< v iff

\i = e and v 7e e (where e is the empty word),

or \i = a a and v = b p and,

a = b and a < P,

or a < b and a < v,

or —i a ^ b and \i < P or *i= p.

This définition is valid even if F is partially ordered, but the recursive path
ordering on words is total if F is totally ordered; that will be supposed in the
sequel of this paper. Supposing a < b < c, we have (3):

• * *

abbb < abacaaa < abacab < bbcab.

In the case of words or linear terms it would be of no interest to distinguish
between lexicographie and recursive path ordering.

(3) For example, abbb < abacab if bbb < bacab i. e., if bb < acab i. e., if bb^cab i. e.,
if b ^ cab i. e., if e^ cab.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SOME PROPERTIES OF DECOMPOSITION ORDERING 337

DÉFINITION 7: [a; a'; a " ] e F x P x F * is called a décomposition of oteF+ if
a = a"aa / , fc>a=> béoi (i. e. a is a maximal element of oc) and b e ot" => ~n ft ^ a.

If < is total we will say "the" décomposition of ot. Then a is the first
occurrence of the greatest symbol in a.

6

DÉFINITION 8: The décomposition ordering < is defined by:

a < p iff

and P # e,

or a # e and the décomposition of a (resp. P) is [a; a'; ot"] (resp. [b; P'; P"])
and,

a < b,
s

or a = b and ot' < P',

or a = b and ot' = p' and ot" < p".

The décompositions of the terms of the above example are respectively
[b; bb; a\ [c; aaa; aba], [c; ab\ aba]9 [c; ab; bb] and the sorting of these words
is easy; it is the same one as above.

5

THEOREM 1: < is a well-founded ordering, if < is well-founded on F.

Proof: Let us define a >- Pas: ot >- P iff max(ot) > max(P) or
max(ot) = max(P) = a and occ(a, ot) > occ(a, P), where occ(x, a) is the number
of occurrences of x i n a .

CLAIM 1: > is well-founded on F* if > is well-founded on F, therefore a
noetherian induction on > is possible.

CLAIM 2: If [a, ot', ot"] is the décomposition of a then a >• ot' and ot > ot".
8

The induction hypothesis / i ï(P) is: "There exists no <-decreasing séquence
starting at p." Suppose now that:

(B) —i /H(ot)i. e., there exists a <-decreasing séquence ot0 >

5 5 S

> . . . > ot„ > , . . . , w h e r e ot = ot0.
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338 P. LESCANNE

Three cases have to be considered:
1. There exists a,- such that max(a0) ^ max (a,), then max(a0) > max (a,),

8

then a0 > ex,- and a* is the beginning of a < -decreasing séquence which
contradicts (A).

2. For all n, max(a„)=max(a)=a and there exists an infinité séquence
8 Ô s 5 s

iu . . . , ih ..., such that a^ > aî2 > . . . > a^ > a{J+1 > . . . where h=Q and
[a, a*., a^] is the décomposition of â .. Because a^ -< a, this contradicts (A).

3. For ail n, max (oc„) = max (oc) = a and there exists k such that
8

i^k=> oc; = oc£, then there exists an infinité < -decreasing séquence
S S «

a*' >(Xfc+i > vik+2 > • • • and because a^ does not contain any occurrence of
a then a^ -< a, this also contradicts (A). •

. 8 5

LEMMA 9 (Monotonicity Lemma): /ƒ P < y then a P < a y.
Proof: Let jx = aP with décomposition [m; n'; |x"] and v = ay with

décomposition [n; v'; v"]. The décomposition of \i is related to the one of P and
two cases are possible:

(1) a < b, where the décomposition of P by [b; p'; P"], then m = b, n' = P'
and ji" = a P";

(2) a ^ b then m = a, n' = P and ^ = 6.
The same properties hold between v and y, where the décomposition of y is

[c; Y, y"].
By hypothesis b ^ c, then three cases have to be considered.

s
(1) a<b^c if ft = c and p' = y' then P" < y" (by hypothesis), therefore

5 S

m = n and (i/ = v/ and |x" < v" (by induction); if b < c or b = c and P' < y', it
is straightforward.

(2) b ^ a < c then a = m < n=c and \i < v.
S 8

(3) b ^ c ^ a then |i < v is equivalent to p < y. •

8

LEMMA 10 (Subterm Lemma): P < a p.
Proof: This proof is similar to that of the Monotonicity Lemma and will be

omitted. •

THEOREM 2: Décomposition ordering and recursive path ordering are equivalent
on monadic terms.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Proof: Let be |i < v with décomposition as in the Monotonicity Lemma. If
* s

H = e then v # e and^i < v is equivalent to \i< v. If |x==d p and v = cy, let us
suppose by induction that if Ç is a word extracted from \i and r| a word

* Ô

extracted from v then Ç < r\ is equivalent to Ç < r| and on the other
* S * 8

hand P < v is equivalent to P < v and \i < y is equivalent to |i < y. Three cases
have to be considered.

(1) d = e. It is straightforward from the Monotonicity Lemma.

(2) d < e. Then \i < v is equivalent (by Définition 6.2) to P < v and P < v
s

is equivalent (by the induction hypothesis) to P < v. Let the décomposition of
p = [fe; P'; p"]:

6 S

— if b S à then m = d and m < e ^ n thus P < v is equivalent to n < v;
- if d < b then m = b and n' = p' and n" = dp";

• if b = n and P' = v/ and P" < v" which is P" < v", by induction, we have

e ^ v" = e y" and, since d < e, n"< v" i. e., \i" < v" by induction hypothesis,
S 6

thereforé P < v is equivalent to \i < v;
5

• ifb = m < n o r m = n and \\ï = P' < v7 the result is obvious.

• *
(3) e < d. Then \x < v is equivalent, by Définition 6.3, to î < y, which is

s
equivalent, by the induction hypothesis, to \i < y, which is equivalent, by the

5

Subterm Lemma and by transitivity, to n < v. •

4. THE DECOMPOSITION ORDERING ON POLYADIC TERMS AND THE MAIN
THEOREMS

In this section, we give a définition of the recursive path ordenng, on left-
weighted terms similar to the décomposition ordering on the words. Here, the
décomposition of a left-weighted term s is the unique triple [fs; s

7; s"(D)]
where fs is the first occurrence of the maximal operator in s on its most left
branch, s' = <si, . . . , s'p} is a séquence of terms and s"(D) is a term with a
unique constant subterm denoted by the symbol • ; the set of such terms will
be written by T(F; • ) . s = s"(fs(s'h . . . , s'p)) where s"(t) is the terms given by
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3 4 0 P. LESCANNE

substituting t in place of • • The following term:

b b

A I
a a

has the décomposition [b; <è, a>; a(D, b(a))], described by the following
figure.

fs

s' — <b a> a

This décomposition looks like the décomposition of a word, the one différence
is that the second component is replaced by a séquence. It will be supposed
that the term • is less than any other term. Then it must be noted that

s"(D) is n o* <-left-weighted. Except the first immédiate subterm, the term

is <-left-weighted and so on recursively for each first subterm of this term.

Such terms will be called almost < -left-weighted.

DÉFINITION 9: A term s of T(F; • ) is almost <-left~weighted iff s = D or
s=f(sh . . . , sm):

Si is < -left-weighted for all i ^ 2,

and Si is almost < -left-weighted,

and for all i, j , l <i <j ^ m implies s,- ̂  tj.

Note that a term is almost <-left-weighted if it is <-left-weighted; the
définition of the lexicographie ordering can be easily extended to the almost

<-left-weighted terms on T(F; • ) . The décomposition ordering will be given

for almost <-left-weighted terms of T(F; • ) too.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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DÉFINITION 10: The décomposition ordering on almost-<-left-weighted terms
is given by:

5

s < t iff

s = D and t # •>
or/ s</„

or fs=ft and <si, ..., sj> <lex<'i, •-, O>

or ƒ,=ƒ, and <si, ..., ŝ > = <ti, ..., £> and s"

s
THEOREM 3: Décomposition ordering < is a well-founded ordering on T(F; •)>

if < is a well-ordering on F.

Proof: As for Theorem 1, where occ(/, s) counts the number of occurrence
of ƒ on the leftmost branch of s. •

Bef ore we prove the décomposition ordering is actually the recursive path
ordering, we will prove some lemmas showing that the décomposition ordering
works well on the structure of terms.

LEMMA 11 (Monotonicity Lemma): If <s i 5 . . . , sm> <iex<*i, . . . . U then
s

f (su - . . , 5») < f (tu . . . , ta).
Proof: Similar to that of Lemma 9. Let us note u = si and v = tu whose

décompositions are [ƒ„; u'; u" ( • ) ] and [fv; v'; !>"(•)]. As in the case of words
the décompositions of s=f(sh . . . , sm) and u are related:

- i f / < / „ then fs=fm s' = u' and s"(D)=/ ( t t / (D) , s2, . . . , sn);

- itfuû / t h e n / s = / , s / = <s1, . . . , sn> and s"(D) = D.

Hère four cases have to be considered:

(1) u — v then
5

<s2, . . . , s m > < l c x < t 2 ) . . . , O

and

< " " ( • ) , s2i . . . , s m > < < t / ' ( D ) , ti, . . . . O

and by induction

vol. 16, n°4, 1982



342 P. LESCANNE

S

On the other hand fu =fs =ft=fv and u/ = s/ = t/ = v/, and therefore s < t.

(2) M < v and f<fu£fv if ƒ„=ƒ„ and u = v ' then u"(D) < v"(n) thus

ƒ,=ƒ„ s' = t' and / (u"(D) , 52, . . . , 5m) < / ( i / ' (D) , t* . - , O (byinduction)

and s < t; if ƒ„ < ƒ„ or ƒ„ = ƒ„ and u' < \ix v' it is obvious.
5 5

(3) u < v and ƒ„ ̂ f<fv then/=/ s <ft=fu and 5 < £.
s s

(4) M < u and fuèfvèf then fs=f=ft and s< lex t is equivalent
s

to s < t. M

LEMMA 12 (Subterm Lemma):
s

- (Weak form)Si <f(su . . . , sm);
8

- (Strong form) for ail i, 0 ^ î g m sf < ƒ (sl9 . . . , sis . . . , sm).

Proof: (Weak form) Easy by induction. (Strong form) Conséquence of the
a

Subterm Lemma for < and Theorem4 (it will not be used to prove
Theorem 4). •

THEOREM 4: Décomposition ordering and recursive lexicographie ordering
coincide on T(F; • ) .

a g

Proof: If s= D, obviously s < t is equivalent to s < t. If
s=f(su • > sm)=f (s) and t=g(tu ...., tn)=f (t), then as in the Monotonicity
Lemma, let u = Si and 1? = ̂ . By induction, assume s<i e x t is equivalent to

S ot 6 oc 5

s < îex t, u < t is equivalent to u < t and s < v is equivalent to s < D. Three
cases have to be considered.

(1) ƒ— S- Straightforward from the Monotonicity Lemma.

(2) f<g. Then, by Définition 5, s < t is equivalent to u < t and by
a S

induction u < t is equivalent to u < £;
s 5

- if /u S ƒ then /s = ƒ and f<g^ft then M < t is equivalent to s < t;
- i f / < / u t h e n / i = / u a n d s / - u / a n d s / / ( D ) = / ( w / / ( D ) , 52, . . . ,sm);

• if ƒ«=ƒ, and u' = t' and M " ( D ) < H D ) t h e n " " ( • ) < *" ( • ) , by
a

induction, therefore, by Définition 5, s / /(D)<^ / /(D) then, by induction,
s s

s"(D) < *"(•) therefore s < t The converse comes from the weak form of
the Subterm Lemma;

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SOME PROPERTIES OF DECOMPOSITION ORDERING 343

5

• if fu < ft or ƒ„=ƒ, and u' <iext', the result is obvious.

(3) g < f Then s < t is equivalent to 5 ̂  v which is equivalent, by induction,

to s ^ t?, itself equivalent to s < t by the weak form of the Subterm Lemma
and transitivity.

a 6

The proof of the induction hypothesis for <iex and <Ux présents no
difficulty and will be omitted. •

THEOREM 5: If < is well-founded on F the recursive path ordering is well-
founded on T(F).

S ot * a

Proof: From Lemma 8 < is < on <-left-weighted terms, i. e., <: -left-

weighted terms. Therefore, by Theorem 4, < is < on < -left-weighted terms,

but by Lemmas 6 and 7 and Theorem 3, this means < is well-founded on

It is interesting to compare the simple arguments used in this proof with
those used by Dershowitz [1, 2] which are inspired from Nash-William's proof
of Kruskal's theorem [9, 14].

5. CONCLUSION

Décomposition ordering allows us to compare two terms by efficient
algorithms. In this way, it would be interesting to look at the examples of
Section 3 again. The words we have to compare are abbb, abacaaa, abacab,
bbcab. The décompositions [b; bb; a] and [c; aaa\ aba] allow us to answer which
of abbb and abacaa is the greater word in one comparison. To compare abacab
and bbcab, it is necessary to refine this décomposition in what we call
generalized décomposition by replacing each word in the décomposition by its
generalized décomposition. The generalized décomposition of a word will be
more easily represented by a tournament i. e., a labeled binary tree where the
labels are ordered. The tournament associated with the word a where a has
the décomposition [a; a'; a"], has a root labeled by the maximal letter a, its left
subtree is the generalized décomposition of the part a7 and its right subtree is
the generalized décomposition of the part a". In [3], Françon, Viennot and
Vuillemin give a way to associate a binary tournament to a permutation
represented by a word. Hère, the method is quite similar. But it will be noted
that the ordering between the labels is as follows: the label of each node is
greater than or equal to that of its left son, the label of each node is strictly
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greater than that of its right son. So the generalized décompositions are:

generalized décomposition of abbb:

b

generalized décomposition of abacaaa:

C

a

generalized décomposition of abacab:

c

\ A
a a a

generalized décomposition of bbcab:

b

\ /
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To compare two words it is sufficient to traverse the two trees in parallel
in prefix order until we find the first différence. The number of comparisons
of letters will be less than 2 min x (length (oc), length (P)) +1 , and often much
smaller, as given by the following array:

abbb
abacaaa
abacab
bbcab

9
1
1
1

abbb

15
2
2

abacaaa

13
8

abacab

11

bbcab

The following array gives the number of comparisons of letters to perform
the comparison of the same words using the recursive path ordering. This
number is greater than min (length (oc), length(P)) + l.

abbb
abacaa
abacab
abbb

5
6
6
5

abbb

1
1
8

abacaaa

7
8

abacab

6

bbcab

Some other results on these two algorithms can be found in [10].[11] suggests
an implementation for polyadic terms based on the same ideas.

On another hand, Fernand Reinig proposed a generalization of
décomposition ordering to terms with variables on a partially ordered set of
functional symbols; that gives an ordering more gênerai than the recursive
path ordering [17, 19].

A first version of the décomposition ordering took shape during
conversations with Jean-Luc Remy and Fernand Reinig [12]. Then Nachum
Dershowitz suggested a good improvement which gave a nicer définition. I
thank them. I am grateful also to Jean-Herre Jouannaud, Mare Shapiro and
Jeannette Wing for their help at several steps of this work.
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