Right and left invertibility in λ-β-calculus
RAIRO. Informatique théorique, Tome 17 (1983) no. 1, pp. 71-88.
@article{ITA_1983__17_1_71_0,
     author = {Margaria, I. and Zacchi, M.},
     title = {Right and left invertibility in $\lambda - \beta $-calculus},
     journal = {RAIRO. Informatique th\'eorique},
     pages = {71--88},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {1},
     year = {1983},
     mrnumber = {701989},
     zbl = {0523.03010},
     language = {en},
     url = {http://archive.numdam.org/item/ITA_1983__17_1_71_0/}
}
TY  - JOUR
AU  - Margaria, I.
AU  - Zacchi, M.
TI  - Right and left invertibility in $\lambda - \beta $-calculus
JO  - RAIRO. Informatique théorique
PY  - 1983
SP  - 71
EP  - 88
VL  - 17
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/ITA_1983__17_1_71_0/
LA  - en
ID  - ITA_1983__17_1_71_0
ER  - 
%0 Journal Article
%A Margaria, I.
%A Zacchi, M.
%T Right and left invertibility in $\lambda - \beta $-calculus
%J RAIRO. Informatique théorique
%D 1983
%P 71-88
%V 17
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/item/ITA_1983__17_1_71_0/
%G en
%F ITA_1983__17_1_71_0
Margaria, I.; Zacchi, M. Right and left invertibility in $\lambda - \beta $-calculus. RAIRO. Informatique théorique, Tome 17 (1983) no. 1, pp. 71-88. http://archive.numdam.org/item/ITA_1983__17_1_71_0/

1. H. P. Barendregt, The Lambda Calculus, its Sintax and Semantics, North-Holland, Amsterdam, 1981. | MR | Zbl

2. J. Bergstra and J. W. Klop, Invertible Terms in the Lambda Calculas, Theor., Comp. Sci., vol 9, 1980, p. 27-38. | MR

3. C. Böhm, Alcune proprietà délie formefi β-η-normalinel λ-k calcolo. Pubblicazioni dell'Istituto per le Applicazioni del Calcolo, n. 696, Roma, 1968.

4. C. Böhm and M. Dezani-Ciancaglini, Combinatorial problems, combinator equations and normal forms, Springer L. N. C. S., n° 14, 1974, p. 185-199. | MR | Zbl

5. A. Church, Combinatory logic as a semigroup (abstract), Bull. Amer. Math. Soc., vol. 43, 1937, p. 333.

6. A. Church, The Calculi of Lambda Conversion, Princeton University Press, Princeton, 1941. | JFM | MR | Zbl

7. H. B. Curry and R. Feys, Combinatory Logic, vol. 1, North-Holland, Amsterdam, 1958. | MR | Zbl

8. M. Dezani-Ciancaglini, Pattern-Matching Problems inside λ-β-η calculus, Proceedings Informatica 76, Bied, 1976.

9. M. Dezani-Ciancaglini, Characterization of normal forms possessing inverse in the ʋ-β-η calculus, Theor. Comput. Sci., vol. 2, 1976, p. 323-337. | MR | Zbl

10. J. J. Lévy, An algebraic interpretation of the λ-β-k-Calculus and an application of a labelled λ-Calculus, Theor. Comput. Sci., vol. 2, 1976, p. 97-114. | MR | Zbl

11. C. P. Wadsworth, The relation between computational and denotational properties for Scott's D√-models of the lambda-calculus, SIAM J. Comput., vol. 5, 1976, p. 488-521. | MR | Zbl