Algebraic definition of a functional programming language and its semantic models
RAIRO. Informatique théorique, Tome 17 (1983) no. 2, pp. 137-161.
@article{ITA_1983__17_2_137_0,
     author = {Broy, Manfred and Wirsing, Martin},
     title = {Algebraic definition of a functional programming language and its semantic models},
     journal = {RAIRO. Informatique th\'eorique},
     pages = {137--161},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {2},
     year = {1983},
     mrnumber = {713227},
     zbl = {0515.68017},
     language = {en},
     url = {http://archive.numdam.org/item/ITA_1983__17_2_137_0/}
}
TY  - JOUR
AU  - Broy, Manfred
AU  - Wirsing, Martin
TI  - Algebraic definition of a functional programming language and its semantic models
JO  - RAIRO. Informatique théorique
PY  - 1983
SP  - 137
EP  - 161
VL  - 17
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/ITA_1983__17_2_137_0/
LA  - en
ID  - ITA_1983__17_2_137_0
ER  - 
%0 Journal Article
%A Broy, Manfred
%A Wirsing, Martin
%T Algebraic definition of a functional programming language and its semantic models
%J RAIRO. Informatique théorique
%D 1983
%P 137-161
%V 17
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/item/ITA_1983__17_2_137_0/
%G en
%F ITA_1983__17_2_137_0
Broy, Manfred; Wirsing, Martin. Algebraic definition of a functional programming language and its semantic models. RAIRO. Informatique théorique, Tome 17 (1983) no. 2, pp. 137-161. http://archive.numdam.org/item/ITA_1983__17_2_137_0/

Note: L.N.C.S., Lecture Notes in Computer Science; I.C.A.L.P., Int. Colloquium on Automata, Languages and Programming.

1. J. Backus, Can Programming be Liberated from the von Neumann Style? A Functional Style and lts Algebra of Programs, Comm. A.C.M., Vol. 21, No. 8, 1978, pp. 613-641. | MR | Zbl

2. F. L. Bauer and H. Wössner, Algorithmische Sprache und Programmentwicklung, Berlin-Heidelberg-New York, Springer, 1981. | Zbl

3. J. W. De Bakker, Least Fixed Points Revisited. In C. BÖHM, Ed., λ-Calculus and Computer Science Theory, Roma, I.N.C.S., Vol. 37, pp. 27-62, Berlin, Springer, 1975. | MR | Zbl

4. J. A. Bergstra and J. V. Tucker, Algebraic Specification of Computable and Semi-Computable Data Structures, Afdeling Informatica Amsterdam, IW115/79, 1979. | Zbl

5. G. Birkhoff and J. D. Lipson, Heterogeneous Algebras, J. Comb. Theory, Vol. 8, 1970, pp.115-133. | MR | Zbl

6. M. Broy, Transformation Parallel Ablaufender Programme, Dissertation, Technische Universitât München, Fakultät für Mathematik, 1980. | Zbl

7. M. Broy, W. Dosch, H. Partsch, P. Pepper and M. Wirsing, Existential Quantifiers in Abstract Data Types. In H.A. MAURER, Ed., Proc. of the Sixth I.C.A.L.P., Graz, I..N.C.S., Vol. 71, pp. 73-87, Berlin: Springer 1979. | MR | Zbl

8. M. Broy and M. Wirsing, Programming Languages as Abstract Data Types. In M. DAUCHET, Ed., 5e Colloque de Lille sur les arbres en algèbre et en programmation, Lille, February 1980, pp. 160-177, Université de Lille, 1980. | Zbl

9. M. Broy and M. Wirsing, Partial-Recursive Functions and Abstract Data Types, Bulletin of the E.A.T.C.S., Vol. 11, June, 1980, pp. 34-41.

10. M. Broy and M. Wirsing, On the Algebraic Specification of Nondeterministic Programming Languages. In E.ASTESIANO and C.BÖHM, Eds., 6th Colloquium on Trees in Algebra and Programming, Genova, L..N.C.S., Vol. 112, pp. 162-179, Berlin, Springer, 1981. | MR | Zbl

11 M. Broy and M. Wirsing, Partial Abstract Types, Acta Informatica, Vol. 18, 1982, pp. 47-64. | MR | Zbl

12. M. Broy and M. Wirsing, On the Algebraic Specification of Finitary Infinite Communicating Processes. In D. BJORNER, Ed., I.F.LP. Working Conference on Formal Description of Programming Concepts II, Garmisch 1982 (to appear). | Zbl

13 M. Broy, C. Pair and M. Wirsing, A Systematic Study of Models of Abstract Data Types, Centre de Recherche en Informatique de Nancy, Report 81-R-042, 1981.

14 M. Broy, P. Pepper and M. Wirsing, On Relations Between Programs. In B. ROBINET, Ed., 4th International Symposium on Programming, Paris, April, 22nd-24th 1980, L.N.C.S., Vol. 83, pp. 59-78, Berlin, Springer. | Zbl

15. C. C. Chang and H. J. Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, Vol. 73, Amsterdam, North-Holland, 1973. | MR | Zbl

16. B. Courcelle and M. Nivat, The Algebraic Semantics of Program Schemas. In J. WINKOWSKI, Ed., Proc. Math. Foundations of Comp. Science, Zakopane, L.N.C.S., Vol. 64, pp. 16-30, Berlin, Springer, 1978. | MR | Zbl

17. M. C. Gaudel, Génération et preuve de compilateurs basées sur une sémantique formelle des langages de programmation, Thèse d'État, Nancy, March, 1980.

18. G. Goguen, J. W. Thatcher and E. G. Wagner, An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types. In R. T. YEH, Ed., Current trends in programming methodology, Vol. 4, Data Structuring, pp. 80-149, N.J., Prentice Hall, 1978.

19. G. Grätzer, Universal Algebra, Princeton, Van Nostrand, 1968. | MR | Zbl

20. J. V. Guttag, The Specification and Application to Progamming of Abstract Data Types, Ph. D. Th., Univ. of Toronto, Dept. of Comp. Sc., Rep. CSRG-59, 1975.

21. P. Hitchcock and D. Park, Induction Rules and Termination Proof. In M. NIVAT, Ed., Proc. of the first I.C.A.L.P., I.R.I.A., pp. 225-251, Amsterdam, North-Holland, 1973. | MR | Zbl

22. S. Mclane, Categories for the Working Mathematician, Berlin: Springer, 1971. | MR | Zbl

23. Z. Manna, Mathematical Theory of Computation,New York, McGram Hill, 1974 | MR | Zbl

24. Z. Manna and A. Shamir, The Theoretical Aspects of the Optimal Fixed Point, S.I.A.M. J. Comp., Vol. 5, No. 3, 1978, pp. 414-426. | MR | Zbl

25. R. Milner, Fully Abstract Models of Types -Calculi, Vol. 4, 1977, pp. 1-22. | MR | Zbl

26. C. Pair, Types abstraits et sémantique algébrique des langages de programmation, Centre de Recherche en Informatique de Nancy, Rapport 80-R-011, 1980.

27. P. Pepper, A Study on Transformational Semantics. In F. L. BAUER and M. BROY, Eds., Proc. International Summer School on Program Construction, Marktoberdorf, 1978, L.N.C.S., Vol. 69, Berlin, Springer, 1979, pp. 322-405. | MR | Zbl

28. W. De Roever, Recursion and Parameter Mechanism: an Axiomatic Approach. In J. LOECKX, Ed., Proc. of the second I.C.A.L.P., Saarbrücken, L.N.C.S., Vol. 14, Berlin, Springer, 1975, pp. 34-65. | MR | Zbl

29. H. Jr. Rogers, Theory of Recursive Functions and Effective Computability, New York, McGraw-Hill Book Company, 1967. | MR | Zbl

30. J. R. Shoenfield, Mathematical Logic, Reading (Massachusetts): Addison-Wesley, 1969. | MR | Zbl

31. E. G. Wagner, J. W. Thatcher and J. B. Wright, Programming Languages as Mathematical Objects. In J. WINKOWSKI, Ed., Proc. Math. Foundations of Computer Science, Zakopane, L.N.C.S., Vol. 64, Berlin, Springer, 1978, pp. 84-101. | MR | Zbl

32. M. Wand, First-Order Identities as a Defining Language, Indiana University, Comp. Science Department, Technical Report No. 29, 1977.

33. M. Wirsing, P. Pepper, H. Partsch, W. Dosch and M. Broy, On Hierarchies of Abstract Types, Acta Informatica (to appear). Preliminary version: Technische Universität München, Institut für Informatik, TUM-I 8007. | MR

34. M. Wirsing and M. Broy, Abstract Data Types as Lattices of Finitely Generated Models. In P. DEMBINSKI, Ed., Proc. Math. Foundations of Computer Science, Rydzyna, L.N.C.S., Vol. 88, Berlin, Springer, 1980, pp. 673-685. | MR | Zbl