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DATA TYPES AS ALGORITHMS (*)

by M. A, N A Î T ABDALLAH (*)

Communicated by J.-F. PERROT

Abstract. — This paper présents a simplified construction of an algorithm space. The intuitive
notion ofan algorithm collection goes back to Nolin 1974. Our goal is her e to formalize and simplify
this présentation of algorithm theory. The introduction of a computability notion was induced by the
utilization of bundie theory. We build an enumerable algorithm space where ever y object is
computable.

Résumé. — Le présent mémoire décrit une construction simplifiée d'un espace d'algorithmes. La
notion intuitive de collection d'algorithmes est due à Nolin (1974). Le but a été ici de formaliser et
simplifier sa présentation dune part, et de l'enrichir de la notion de calculabilité par le biais de
tutilisation des faisceaux d'autre part. On construit un espace d'algorithme dénombrable dans
laquelle tous les objets sont calculables.

INTRODUCTION

This paper présents a simplified construction of an algorithm space [6, 3].
The idea and the terminology (algorithm) go back to Nolin 1974 [6], who
wanted a semantics for a programming language with type déclarations. (It
must be pointed out hère that Nolin's "algorithms" are not algorithms in the
usual sensé, i. e. a step-by-step description of a computation. They are in fact
much closer to generalized types, or algebraic sorts.)

However, a proof of the conceptual reasonableness of the idea of an
algorithm space, or in other words, a mathematical proof of the existence of
such a space, was missing. Such a proof was first given in a restricted setting
it [2]. It used bundle theory, which, as shown in [3], underlies a significant part
of programming language semantics model theory.
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4 M. A. NAIT ABDALLAH

In [8], which is a shorter version of [7], Nolin and Le Berre present a
simplified version of this proof, where they use "solely elementary set theory
properties" [7]. Technically, this amounts to abandon the upper bundie
structure used in [3]. Unfortunately, we discovered [4, 5] an error in a crucial
step of their argument: the représentation of every normal self-function
ƒ : £ - + £ as an element of the domain £, which makes the entire proof
unsound. The falsèhood of their theorem follows from a careful analysis of the
représentation used for threshold fonctions:

fxy ; z -y ifz^x then y else T,

which turns out to be identical to the représentation used in [2, 3].
In this paper a simplified construction of an algorithm space is presented.

The in tent of this construction is to enrich and simplify Nolin's original
présentation of algorithm theory.

The simplification we propose is a better mastering of algorithm "collections"
cardinality: in fact we describe an enumerable algorithm collection. The
enrichment is the introduction of computability notions: ail our algorithms will
be computable in some sensé. And this makes the whole algorithm space itself
effectively présentable.

1. BUNDLE STRUCTURES OVER

Let f̂J be the set of integers and E=0>(N) be the set of subsets of N. We
have:

V x e £ , x = U ( m } = U an;
m ex an~x

if we define an enumeration a : N -> JE:

a : n - » { n - l } if n#0;

a0 — 0 where 0 is the empty set.

This gives an elementary monic ordered bundle structure over JE [3].

The spectra are defined by:

s:

The éléments an belong to their own spectrum and are therefore called
rationals. They constitute the kernel of the bundle, which means that every

R.A.LR.O. Informatique théorique/Theoretical Informaties



DATA TYPES AS ALGORITHMS 5

xeE can be obtained as the union of some well-chosen rationals [in f act the
éléments of the spectrum of x, s(x)]. The function a : N -• E, n -> an gives an
enumeration of the kernel. The limit function is simply the set-theoretical
union of éléments of E. This bundie structure will be called the lower bundie
structure of E.

On the other hand we also have:

VxeE, x= pi bm9

if we define an enumeration:

b : IM -> E,

where:
m= £

(Thus we use the dyadic expansion of integer m.) Notice that bo = M.
The set of bm's is closed under finite intersection, and each bm vérifies the

following algebraicity property:
For any descending chain { x(-} ,* 6 1 of éléments of E:

The spectrum function:

s: E

x-+s(x)={bm: bm^x},

defines an algebraic monic ordered bundie for the inverse inclusion over E.
Every bm is rational, and the kernel of the bundie is exactly the set of all bm's.

The spectra are obviously closed under finite intersection, and the limit
function is simply the set-theoretical intersection of éléments of E.

This structure will be called the upper bundie structure of E.
Indeed the set of ftm's is exactly the set of all co-finite subsets of M. Every

co-finite set is recursive, thus recursively enumerable. Furthermore the
relations an^am, bn^bm, an^bm, bm = b„C\bp are all recursive in the indices
w, n, p.

vol. 18, n° 1, 1984



6 M. A. NAIT ABDALLAH

2. COMPUTABILITYIN£

2 . 1 . Computable éléments o

We say that an element xeE is inf-computable, i.e., computable when
considered inside the lower bundle structure, if and only if the set { n : a B g x }
is recursively enumerable in the index n. We see at once that:

x e E is inf-computable o x is r. e.

We also define: xeE is sup-computable if and only if the set {m : x g b m } is
recursively enumerable in the index m.

FACT 1 : XGE is sup-computable o jj * is inf-computable <*> [ x is r. e.

Proof:

{m : x g * > m } = { m : x S " C { * o , fei» •••> * P - i } , » » = E 2*'> ^ all d i f f e r e n t } ,

i Cl^o, fei, • •., fep-i} o {feo> ku . . . , fep-i} E Cx'

i. e., we have to enumerate all finite subsets of C x. In fact one can show that
Vyc^N if éPfiniy) is the set of finite subsets of y, then:

y is r.e. o &nn(y) is r.e.

For:
y r.e. =>0>fin(y) r.e.: we take a recursive enumeration of y, and we,

enumerate all finite subsets of y we can construct.
^fin(y) r.e. =>jk r.e.: we take a recursive enumeration of 0*tin(y) and we

evaluate, in an effective manner, the cardinal of each (finite) subset of y. If this
cardinal is one, the subset is added to the enumeration of y9 otherwise we
discard the subset and consider the next one.

Whence the three équivalences. •

DÉFINITION: x € £ is computable if and only if x is inf-computable and x is
sup-computable. •

In a programming language, the availability of a ground data type, say
integer, amounts to the availability of a procedure with one variable, int(x)9

such that, for any input data a, the call int (a) returns the value true ifaeN and
false otherwise. This is exactly realized by the recursive subset of M. More
explicitly:

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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LEMMA 2: VxeE=i
(i) x is inf-compuiable o x is r. e.

(ii) x is sup-computable o ^ x is r. e.
(iii) x is computable o x is recursive. •
As a summary:
1. The computable éléments of E are exactly the recursive subsets of N.
2. E is an elementary monic ordered bundle for g , with 0 and the

singletons as rational éléments and the r. e. sets included in f̂J as inf-
computable éléments. The set of inf-computable (resp. computable) éléments
forms a sub-bundle of E.

3. E is an algebraic bundle for ^ , with the cofinite subsets as rational
éléments, and has as sup-computable éléments (i. e., computable for this
bundle) ail subsets s r̂J whose complementary is r.e. The set of sup-
computable (resp. computable) éléments of E forms an algebraic sub-bundle
of JE.

2.2. Computable séquences

We define computations in £. We call them computable séquences.

DÉFINITION: A séquence {X P } P 6 N of éléments of E is said to be sup-
computable (resp. inf'Computablé) if and only if there exists a recursive
function \|/ : N2 -• N, such that for any pe N, \|/(/>, .) is an enumeration of the
(indices of the) spectrum of xp for the upper bundle (resp. the lower bundle)
structure of £. •

As a conséquence, every term xp of a computable séquence {X P } P G N is
computable according to the bundle structure considered (i. e., xp is inf-
computable if the séquence is inf-computable; and xp is sup-computable if the
séquence is).

There is an important fact about the compatibility of the computability and
bundle notions in £.

LEMMA 3: For any séquence {xp}p€^ in E:
(i) if {xp}reN is inf-computable, then its limit in the lower bundle U xp is

p

inf-computable;
(ii) if {xp}Peu is sup-computable, then its limit in the upper bundle C\xp is

p

sup-computable.

Proof:

(i) We know that inf-computability amounts to recursive enumerability.

vol. 18, n° 1, 1984



8 M. A. NAIT ABDALLAH

Let \|/ : N2 -> 1̂1 be the function associated with the séquence { xp}peN. The
function:

u : N2^»N, (m, H)-»-(n + m)(n + m + l) + m,

is primitive recursive and bijective. Its inverse:

is also primitive recursive and it enumerates M2 along the "little diagonals",
going from left to right:

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), . . .

Therefore:

is a recursive enumeration of the (indices of the) spectrum of U xp.
p

Hence {n : ang U xp} is r. e., Le., U xp is inf-computable.
p p

(ii) Similarly, we have:

g(p) = * (Pu Pi) = • (Uh (v (p)X Ul (v {p))\

is a recursive enumeration of the spectrum of H xp. Therefore {m : bm^D xp}
p p

is recursively enumerable, i. e., D xp is sup-computable. Dp
P

2.3. C-domains

Let X be a poset. An element ueX is algebraic iff for any decreasing
(computable) chain {x^Jfce^ which has a glb Ylxk m X:

As an example, in the poset E ordered by inclusion, every bm is algebraic.
More generally, in any c. p. o. for the opposite order which has an enumerable
set of compact éléments, every compact element is algebraic.

DÉFINITION: C-domains. A poset X is a c-domain iff:

(i) X has a largest element.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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(ii) Every decreasing computable séquence has a greatest lower bound
i n X

(iii) An enumeration a : N -> Xof the set of algebraic éléments is given, and
this enumeration vérifies:

VxeX, x = n { a „ : a „ ^ x }

and {n : an^x} is recursively enumerable. Q
Examples of odomains included in E are

X={{n};

and

where Y^£?na(N) is any set of finite subsets of Fy which is closed under finite
intersection. However some c-domain inclüded in E plays a special rôle:

LEMMA 4: The set Es of sup-computable éléments ofE is the unique c-domain
such that:

(i) It is included in E = 0*(N) as a poset.
(ii) It has the enumeration b and contains every recursive subset x^N as an

element. •

Proof:
(i) Es is a c-domain by Lemma 3.
(ii) Let Xcz0>(N) be a c-domain containing every computable (recursive)

element of £. Then bmeXfor every m, whence every sup-computable element
is in X Thus ES^X. If x$Es, then {m : bm^x} is not r.e., i.e., x$X.
Therefore X=ES. •

In fact it appears that, once b : f̂J -• E is chosen, Es is, by construction, the
largest c-domain contained in E = ^(N).

3. COMPUTABLE FUNCITONS

3 .1 . Computable functions

A function ƒ: £ - • £ is said to be regular iff it is regular for the lower
bundle Le., iff:

Vxe£, ƒ(*)= U ƒ(«„)- U ƒ({»}).
an ç x nex

A regular function fiE^Eis computable iff the set {(m, n) : ƒ (an) g bm } is
recursively enumerable in the indices m, n.

vol. 18, n° 1, 1984



10 M. A. NAIT ABDALLAH

Since f=H{[an9 bm] : ƒ (an)gèm} [3], the définition of a computable
function amounts to the définition of a recursive enumeration of the set of
threshold functions:

{[an,bm]:f(an)czbm};

approximatif ƒ If we define:

( £ - £ ) = { ƒ : E^E\ ƒ regular};

[£->£]= { ƒ : £ -> £ | ƒ computable };

supplied with the extensional order:

there is a canonical bijection between [E-+E\ [resp. (E -> £)] and the set of
principal lowersets of [E -» £] [resp. of (E -> E)]:

where 4 . /={ge [Ê^£] :^^ / } (resp. . . . ) , defined by:

r(x)= lx— {z : z ^ x } .

Thus the above définition of computability gives a better insight in Nolin's
définition of an algorithm ( = a principal lowerset) through intersections:

iel

where Xt= |xfo Yt= [yu FXiYi= i[xu yî\. Hère what is requested by the
définition is a recursive enumeration of the family {FXi Yt} 16 j i. e.,
{[x» yî\} t e j . This is made précise by the following lemma.

LEMMA 5: The threshold function:

[x9y] = XteE if t^x then y eise M;

is computable if and only if x is inf-computable and y is sup-computable.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Proof:

{(m,n): [x, y](an)gbm}

= {(m, n) : ifangx then y else Ngfem}

= {(m, n) : a„gx and j>gf>m} U {(m, n) : an jx , ^)=fcm}

= {m :j>gbm}x {n: a „ c x } U { « : «M4x}.

Hence {(m, n) : [x, y] (an) g bm } is r. e. iff { m : j g bm } is r. e. and
{n : û ncx} is recursive [1], Whence the lemma by Lemma l. •

It is worthwhile to notice hère that computable functions f:E->E may be
coded, via the bijection (u, v) as r. e. subsets of N, i. e., V ƒ : E -> E computable
we define:

graph*( J O={(m,n) | / (a n )gb r a }={(m,n) | / ({n- l})çb r a } .

The corresponding définition in P co [8] is:

g r a p h ( / ) = { ( m , n | { m } £ / ( O } , e„=C*V

Any element wePcû opérâtes as a continuous function by:

fun(u)(x)= {m\3en^x : (n, m)eu}.

The corresponding définition for our functions is for any

fun*(u)(x)= L

One easily vérifies that:

(i) for any regular f:E^>E, ƒ=fun*(graph*(/));
(ii) for any «e£, M^graph*(fun*(u)), where the equality holds iff:

>, q) : n{bm: (p+1, m)eu} czbq} cM;

(iii) Any computable ƒ : £ - • £ yields, by définition, a recursively
enumerable graph*(/). Conversely, a r.e. set ueE defines a computable
function fun* (u) : E -• E iff the set:

= {(p,q):3m 0 + 1,
is recursively enumerable.

The relation eq<=^em is recursive, therefore the set is recursively enumerable;
i. e. every r. e. set ueE defines a computable function fun*(M) : £ - > £ .

vol 18, n° 1, 1984



12 M. A. NAIT ABDALLAH

However, this analogy between P© and our construction will become
fuzzier at higher levels of functionality, due to our use of Wadsworth scheme
(cf infra).

Actually we can define Fab = j [a, b]:

Obviously V ƒ e [E -» E]:

or:

The relation:

£) , f=Tl{[an

gives a bundle structure over the set of regular functions (E -• E); more
precisely this makes (£ - •£ ) an elementary monic ordered bundle, with:

as a spectrum function. This structure may be made algebraic by taking the
closure of the spectra for finite greatest lower bounds. The set [E-> E\ forms
a subbundle for this structure.

An enumeration of the kernel is given by:

with:
m= £ 2ki fco<fci<.. .

where function v, hère applied to kh is the inverse of function u (recursive
enumeration of f̂ 2, cf. supra).

The set of pm's is closed under finite II and every pm vérifies the foUowing
algebraicity property:

Moreover, for the computability aspect, we have.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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LEMMA 6: The relations pm^pw , [am &m]èPP, Pm = Pnn pp are ail recursive in
the indices m, n, p.

Proof: We consider the proof for pm^pn. First notice that:

[a, b]^[c, d] o (cgaA&gd) or d=N.

Thus:

[a«, bm] ̂  [an>, bm>] o an> g an (recursive) A bm g bm< (recursive);

or:

bm< = N (recursive).

Therefore the relation [am bm]<^[an>, bm] is recursive in the indices
w, m, n\ m'. Now consider pm^P„. We have:

eko I I . . . II ekp_ l9 tn=

Thus:

o (simplifying the notations)

[ako, bkQ]U...

: fli^Ok,} E Pi{&i, : « i ^ ^ } ;

and H

Each of these inequalities is decidable. Thus the inequality pm^P„ is
decidable (recursive) in the indices m, n.

vol. 18, n° 1, 1984



14 M. A. NAIT ABDALLAH

We have a similar argument for the other relations. Whence the lemma. •

LEMMA 7: The set of computablefunctions f:E-+E which have thefollowing
simplicity property:

Van, 3m, /(an) = am;

is closed under composition.

f g
Proof: Let £ - • £ - • £ be two computable functions.

ƒ computable o {(m, n) : [am bm]^f} is r.e.;
g computable o {(/?, q) : [api bq]^g} is r.e..
The spectrum of g o f s which is a monotone function, is given by:

sfe° ƒ)= {[a„, bs] : 3m[fl„, bm]e5(/); 3/?, ap^bm and [ap, b jes

> f(x)^bm and g(fcm) = U {g(ap) : ap^bm}.

The relation ap^bm is recursive, thus it is enough to transform through g
the éléments ap<=bm in order to find out s (go f), lf bm= \JaPi, then we have

the diagram:

This gives [a„, U è4i] as approximating g o ƒ, i. e., (g o f) (a„) <= U bq..

The set ftm=UaPi is recursive, thus the séquence {bq.} is recursively

enumerable since {(/>, q) : [ap, b g ]^g} is recursively enumerable.

Therefore Ubq. is r.e., i.e., inf-computable. What we need is the sup-

computability of U b9i in order to have a r. e. décomposition:

from which we would deduce a r. e. spectrum for go f. Buf if we impose that
go ƒ be simple, i. e., f(a„) = am for some meN, then, since:

g = U{[ap)bt]:g(ap)^bq},

then:
{ b }

R.A.LR.O. Informatique théorique/Theoretical Informaties



DATA TYPES AS ALGORITHMS 15

which is a sup-computable element of E, whence an r. e. spectrum for go f:

s(g°f)= {[«* K] : f(an) = ap9 g(ap)^bs}. Q

LEMMA 8: There is a canonical bijection between the simple computable
functions 'f:E-*E and the recursive functions from N to N.

Proof: Obvious. D

LEMMA 9: Let f:E-+Ebea computable fonction and {xp}pem be an inf-
computable séquence ofrational éléments of E. Then the image {f(xp)}pe^ of
the séquence is a sup-computable séquence ofE.

Proof: (Xp)peN inf-computable séquence o 3 \|/ : N2 -*• N recursive such that
y\f(p9 .) enumerates s(xp). f computabieo{(m> n) : f(an)^bm} is r. e. Since
every xp is rational, / (x p )= H{bm : xp^an, f(an)^bm} the relation xp^an

is recursive, the relation f(an)^bm is recursively enumerable, thus the set
{m : xp^an, f (an)^bm} is r.e. which implies that {m : bm=>f(xp)} is r.e.
Whence a recursive function \|/ : N2 -• M such that \|/(/>, .) enumerates the
spectrum of ƒ (x )̂ for the upper bundie:

> 4) = [enumeration of {m :

Thus { f(xp)}pew is sup-computable. •

3.2. Computable séquences of functions

DÉFINITION: A séquence {fp}peM of regular functions from £ to £ is a
computable séquence iff 3\|/ : N2 -• N recursive such that V/?eN, v|/(/?, .) is
an enumeration of the spectrum of fp. •

In particular every fp will be a computable function. We have an analogous
of Lemma 3 (i) for computable séquences of functions:

LEMMA 10: If { fp } p 6 ̂  is a computable séquence offunctionsy then its greatest
lower bound Y[fp*sa computable function.

p

Proof: The function f ] fp is regular since (Y\fP)(an)= f\ f M for every
p P P

rational am and we take the least regular extension of this to non rational
éléments:

vol. 18, n° 1, 1984



16 M. A. NAIT ABDALLAH

Now we just have to glue the spectra together:

By means of the indices, the séquence { 5 (fp) } p e N defines an inf-computable
séquence of £. Hence U s (fp) is inf-computable, therefore recursively

p

enumerable. •
Let us define for any regular ƒ € ( £ - • £ ) , ƒ is fînitely computable if f the set

{(m, n) : ƒ (an) g bn } is recursive. Then we have the analogous of Lemma 4:

LEMMA 11: Given the enumeration P of the algebraic éléments, the set of
computable fonctions [ £ - • £ ] is the unique c-domain such that:

(i) it is included in (£ -* E) as a poset;
(ii) it contains every finitely computable function.

Proof:

(i) [E -»- £] is a c-domain: The largest element of [ £ - • £ ] is the constant
function x -* N. Every decreasing computable séquence has a glb in [ £ - * £ ] by
Lemma 10. The other requirements are trivially fulfilled.

(ii) Let Xg; ( £ - • £ ) be a c-domain containing the finitely computable
functions. Then every pm is in X, therefore Es which is the closure of
{ pm : m G N } for the glb's of decreasing computable séquence is included in X.
Thus [E^E] g X and one easily sees that [£-*£]=X. D

We obtain similar results by replacing £ by £s, and there is a canonical
bijection between [ £ - • £ ] and [Es -» £J.

4. WADSWORTH SCHEME

We have a c-domain structure over [£ -• £ ]=Ai . We can define the partial
computable function spaces [£ -• AJ, [AA -» £], [Ai -> Ai]:

[ £ ^ A x ] = { / : / ( x ) = U M ) and {(m, n) : ƒ (a n )^p m } is r.e.};

[Ai - • £ ] — { ƒ : ƒ ( H xk) = f ] ƒ (xfc) for every decreasing computable
k k • .

séquence (xfc) and {(m, n) : ƒ ( PB) g bm} is r. e. } ;

[AA -> AJ = { ƒ : ƒ ( f f xfc) s= Y\ f ( ̂ k) f° r every decreasing computable
k k

séquence(xk) and {(m, n) : ƒ ( pn) ^ pm} is r. e . } .

R.A.I.R.O. Infonnatique théorique/Theoretical Informaties



DATA TYPES AS ALGORITHMS 17

We must be careful hère, we are dealing with partial functions in the set-
theoretical sensé.

LEMMA 12: The spaces [E -*> Ai], [Ai -• £], [Ai -* Ai], when supplied with the

extensional order, all have a c-domain structure.

Proof: Analogous to Lemma 11. Only the rational éléments change, and we
use the same enumeration technique as for [E -* £].

Then we can define:

where:

with:

f+ g being defined as the canonical extension of ƒ and g, if { Dom (ƒ),
Dom (g)} is a partition of £. (Hère, as has been said earlier, we use
partial functions.) The space [At -• £] + [Ax -• A] is defined in a similar way.

This defines the partial séquence of spaces:

(1)

As may be seen from the construction, A2 has a c-domain structure by using
Lemma 12. We also have the foUowing property: if { fp } p e N is a computable
séquence of Ax and if G : Ax -^E-\-A1 is a computable function, then
{ G (fp)} p e N is a computable séquence, by an argument similar to the one used
for Lemma 9.

The finite séquence of (1) can be extended by:

Ao = £s;

>ln+i = £ s+An+1 = £ s

vol. 18, n° 1, 1984



18 M. A. NAIT ABDALLAH

where for any n e N, A„+A = [An -• An] has a c-domain structure by construction,
and An+i is supplied with a bundle structure obtained by gluing together the
Es structure and the An + 1 structure as follows:

T
/ \ =AH+U

Es An+1

Every An is a c-domain. Now the threshold function:

[x, y] : 2 -• ifz%x t/ien y else T

is computable iff x is finitely computable and j> is sup-computable. If xeE,
this can be checked at once (finite computability = recursiveness). If
x e An U { r}> we use the définition.

We now make the above séquence a diagram, by defining, following
Wadsworth 71:

VneN;

i0 : Ao -> A,, x-^x;

in : i4n-^i4II+1, x ^ x if xeEs\J{T}\

j 0 : Ai-+4» y-*y if

N if yeAt;

jn:An+1->A„ y^y if yeEs;

Jni°yoi»-i i f

This diagram will be called Wadsworth scheme. Notice that, for every n:

jnoin=idAn;

in and jn are distributive with respect to II and U.

An element x = (xn)neNe )( An belonging to the cartesian product of the

An s will be called computable if and only if there exists \(f : H2 -• N recursive
such that for every neN \|/ (n, .) is an enumeration of (the indices of) the
spectrum of x„. If x„ e E, then we consider the spectrum of x„ for the upper
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bundle. Computable séquences of éléments of )( An are defined in the usual
neH

way. Notice that )( An has a c-domain structure. Its kernel is the cartesian

product of the kernels. Consider now the projective limit:
Aao = { (X„)„ 6 N G X ^n | *n =jn (*„+ l) } •

n

Then for any { (xn)n e N G Aœ } , we have:

— either xn belongs to the E-part of Aœ and xn = xB+1;

— or xn belongs to the functional part of A w and xn =jn -1 o x„+1 o i„ _ !.

Therefore we have the equality of sets:

xo = N9 xn=jn(xn + l)}.

Thus ôo = £5 -f À,», where A^ is the functional part of ^4^.

Now both notions of computability and projective limit are put together in
order to define the set of computable projective séquences:

A* = {(xn)„ e N G An I (x,,),, e N is computable } .

One easily sees that Am — Es + A .̂ The closure of Am for decreasing computable
séquences will be called an "algorithm space". Here again, we disregard the
lower bundle structure of Aa, as far as functional éléments are concerned,
because of the triviality of this bundle structure. Thus computability here
means computability for the upper bundle structure.

DÉFINITION: The algorithm space $t is the smallest set containing A& and
such that every decreasing computable séquence in A© has a greater lower
bound. Eléments of sé are called algorithms. •

In other words, s/ is the smallest c-domain containing A&. lts kernel is
canonically isomorphic to the union of the kernels of the A„'s:

LEMMA 13: Let ina0 : An~*s$ be the canonical injection of An into $0, and
jn<x> : sf -+An the canonical projection of sé onto An. Then both ina0 andj^n are
computable,

Proof: The regularity comes from the distributivity of functions i and ƒ
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(i) Injection inoo: this set must be r. e.:

) : inao(ap)èbq} =(if bqHbq)ne^){{p9 q) : ap^bn
q in An\ bq = inoo(bq)} .

We know that in A» the relation ap^b^ is recursive, and the set of rational
éléments of An is enumerable (this set contains all the rationals of Es for the
upper bundie, and all the rationals of A„), which complètes the proof.

(ii) Projection jnoo : Similarly this set must be r. e.:

^) = {(/>, q) : ap<,bq} = {(/>, q) : üp^bq} ;

which is r. e. since the relation an
p^bq is recursive in A„ by the same argument

as for Lemma 6. Whence the lemma. •

LEMMA 14: Let fisZ-^s/bea computable function. Then the séquence of
X A„ defined by:

]/[=N;

is projective and computable, and thus an element of A&. D

Proof:

(i) The séquence ( ] / [ P ) P G N is projective since:

Ün - 1 ° Joon) ° ƒ ° O'noo ° h - l )

= ;*oo, n- 1 ° / ° ï i i -1 , «o =]ƒ[«•

(ii) The séquence {\f[p)pBn is computable:
spectrum (] ƒ [ 0) = M,
spectrum (]ƒ[„ + x ) - ; ^ 0 spectrum (f)°inao.

Let \|/ be a function defined as follows:
1. \|f(0, .) = Xq. index of N in the enumerating of the kernel of A&;
2. ty(;p, q)=jao, p-i°s(^)°ïp-i,oo where s : q^>s(q) is a recursive enumer-

ation of the spectrum of ƒ
Thus \|/ : f̂ J2 -> M seen as a function into the indices is recursive and \|/(/>, .)

is an enumeration of the spectrum of ]f[p. Thus (]/[p)pew is a computable
element of X An- Therefore:

D
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LEMMA 15: Any xeAa defines a computable fonction:

[x] : st - • sé\

y-+T\xn + i(yn) if yeAn or y = apeE;
n

\j{[x](ap) : öpgj> e E} otherwise.

Proof: Regularity hère means regularity for the c-domain structure, and is
obvious. The spectrum of [x] is the cartesian product Y\ s CO, which is r. e.

n

since seqfuence x = (xn)n e w is computable. •
More importantly, we have a représentation property, which justifies the

use of the c-domain notion:

LEMMA 16: Let f:s4-+s0bea computable function. Then for any z in the
kernel ofAw or such that z = apeE, thefollowing are equivalent:

(i) ƒ<*)=[]ƒ[](*);

(n) ifz=(zn)nef*=Tiztt ƒ ( z w

Proof: It suffices to see that:

= Y\(f (Z

= U(f (zn))*=(property of n) = FI I K / (z«))*= II f (z»)-

Thus [ ] ƒ[ ] (z) =ƒ (z) is equivalent to f ] ƒ (*») = ƒ (z)»
R

Whence the lemma, D
Lemma 16 characterizes completely the représentation of computable

functions as éléments of A ,̂ because of the définition of the opération
[.] : Ac -* [ J / -> sé\ and since J / is a c-domain.

Thus, basically, we see that our functions must satisfy the following
"continuity" property:

V {xk} k 6 N decreasing computable séquence ƒ ( Y[ **) = I I f (x*)»

which is analogous to Scott-continuity, but for two modifications: the
inversion of the order and the introduction of computability. In the present
setting, the above property is what we need when computing with procedures.

vol. 18, n° 1, 1984



2 2 M. A. NAIT ABDALLAH

THEOREM (existence of enumerable algorithm domains): There exists an
enumerable set s&> calïed algorithm space, such thaï:

(i) s/ = Es + &'9 and every element is computable.

(ii) Every decreasing computable séquence has a greatest lower bound in se.

(iii) if x, y e $$ then any computable threshold function:

[x, y] : z-+ if z ^ x then y else T;

is represented as an element of ^ which is:

(k z e An. U if zP û *p then yn else T„)n+1 e w-
p

Proof: Results from the preceding lemmae.

The enumerability of se cornes from the fact that the set of recursive
functions \|/ : N2 - • f̂  is enumerable, and ail our objects are computable. •
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