RAIRO. INFORMATIQUE THÉORIQUE

JÜRGEN AVENHAUS Ronald V. Book Craig C. Squier

On expressing commutativity by finite Church-Rosser presentations : a note on commutative monoids

RAIRO. Informatique théorique, tome 18, nº 1 (1984), p. 47-52 http://www.numdam.org/item?id=ITA_1984__18_1_47_0

© AFCET, 1984, tous droits réservés.

L'accès aux archives de la revue « RAIRO. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON EXPRESSING COMMUTATIVITY BY FINITE CHURCH-ROSSER PRESENTATIONS: A NOTE ON COMMUTATIVE MONOIDS (*)

by Jürgen Avenhaus (1), Ronald V. BOOK (2), and Craig C. SQUIER (2)

Communicated by J. E. PIN

Abstract. — Let M be an infinite commutative monoid. Suppose that M has a Church-Rosser presentation. If M is cancellative or if the presentation is special, then M is either the free cyclic group or the free cyclic monoid.

Résumé. — Soit M un monoide commutatif infini. Supposons que M possède une présentation finie ayant la propriété de « Church-Rosser ». Si M est simplifiable ou si la présentation est spéciale, alors M est soit le groupe cyclique libre soit le monoide cyclique libre.

INTRODUCTION

It is well known that it is undecidable whether the monoid presented by a Thue system is a group. However, if the Thue system is Church-Rosser and special, then this question is decidable. Cochet [3] has shown that if a group has a finite Church-Rosser special presentation, then the group is isomorphic with the free product of finitely may cyclic groups. Of course every countable monoid has a Church-Rosser presentation with infinitely many generators and infinitely many relators. It is challenging to ask which monoids admit a finite Church-Rosser presentation.

We regard a monoid as a quotient of a free monoid and ask for the possibility of expressing commutativity by the presentation. We prove that this is impossible in many cases. Let M be an infinite commutative monoid with a finite Church-Rosser presentation. If M is cancellative or the presentation is special, then M is either the free monoid on one generator or

^(*) Received in October 1982, revised in April 1983.

This research was supported in part by the Fritz Thyssen Stiftung, West Germany, and by the National Science Foundation under Grants MCS80-11979 and MCS81-16327.

⁽¹⁾ Fachbereich Informatik, Universität Kaiserslautern, Postface 3049, 6750 Kaiserslautern, West Germany.

^{(&}lt;sup>2</sup>) Department of Mathematics, University of California, Santa Barbara, California 93106, U.S.A.

the free group on one generator. Thus, any commutative group with a finite Church-Rosser presentation is either finite or free cyclic.

SECTION 1

Thue systems

If Σ is a set of symbols (i. e., an alphabet), then Σ^* is the free monoid with identity 1 generated by Σ . If w is a string, then the length of w is denoted by |w|:

$$|1|=0, |a|=1$$
 for $a \in \Sigma$,

and:

$$|wa| = |w| + 1$$
 for $w \in \Sigma^*$, $a \in \Sigma$.

A Thue system T on an alphabet Σ is a subset of $\Sigma^* \times \Sigma^*$; each pair in T is a rule. The Thue congrence generated by T is the reflexive transitive closure $\stackrel{*}{\leftrightarrow}$ of the relation \leftrightarrow defined as follows: for any u, v such that $(u, v) \in T$ or $(v, u) \in T$ and any x, $y \in \Sigma^*$, $xuy \leftrightarrow xvy$. Two strings w, z are congruent (mod T) if $w \stackrel{*}{\leftrightarrow} z$ and the congruence class of z (mod T) is $[z] = \{w | w \stackrel{*}{\leftrightarrow} z\}$.

If T is a Thue system on alphabet Σ , then the congruence classes of T form a monoid M under the multiplication $[x] \circ [y] = [xy]$ and with identity [1]. This is the monoid presented by T.

If T is a Thue system, write $x \leftrightarrow y$ provided $x \leftrightarrow y$ and |x| > |y|, and write * \rightarrow for the reflexive transitive closure of the relation \rightarrow .

Without loss of generality, assume that for any Thue system T, $(u, v) \in T$ implies $|u| \ge |v|$.

A Thue system T is special if $(u, v) \in T$ implies |v| = 0.

A Thue system T is Church-Rosser if for all x, y, $x \leftrightarrow y$ implies that for some z, $x \rightarrow z$ and $y \rightarrow z$.

A string w is irreducible (mod T) if there is no z such that $w \rightarrow z$ in T.

It is useful to note that a Thue system is Church-Rosser if and only if each congruence class has a unique irreducible string [4, 6].

The definition of the Church-Rosser property by means of the reduction $\stackrel{*}{\rightarrow}$ which is defined in terms of length is a very strong restriction. However, the property provides a great deal of power in terms of deciding properties of the monoid so presented. For additional properties of such systems, *see* [2-4, 7].

SECTION 2

The result

In order to establish our results we study the structure of Thue systems that are Church-Rosser. The first two lemmas have elementary proofs that are left as exercices.

LEMMA 1: Let T_1 be a Thue system on that alphabet Σ and let M be the monoid presented by T_1 . Suppose that T_1 is Church-Rosser. Then there exists a Thue system T_2 on the alphabet Σ such that T_2 presents M, T_2 is Church-Rosser, and if $(u, v) \in T_2$, then |u| > |v|.

LEMMA 2: Let T_1 be a Thue system on the alphabet Σ and let M be the monoid presented by T_1 . Suppose that T_1 is Church-Rosser. Then there exists a Thue system T_2 on an alphabet $\Delta \subseteq \Sigma$ such that:

- (i) T_2 has no rules of the form (a, 1) with $a \in \Delta$;
- (ii) T_2 is Church-Rosser;
- (iii) T_2 presents M.

Henceforth we assume that T is a finite Thue system over the alphabet Σ , that T is Church-Rosser, that for every $a \in \Sigma$, $(a, 1) \notin T$, and that $(u, v) \in T$ implies |u| > |v|. Let M be the monoid presented by T.

LEMMA 3: For any $a, b \in \Sigma$ with $a \neq b$, if $ab \leftrightarrow ba$, then either:

(i) there is an i > 0 such that $a^i b \leftrightarrow 1$; or:

(ii) for some i, j with $0 \le i < j$, $a^i b \stackrel{*}{\leftrightarrow} a^j b$.

Proof: We claim that there is a sequence $c_1, c_2, \ldots \in \Sigma \cup \{1\}$ such that $a^i b \stackrel{*}{\leftrightarrow} c_i$ for every *i*. For i=1, this follows from the fact that *T* is Church-Rosser and the hypothesis that $ab \stackrel{*}{\leftrightarrow} ba$. If $a^i b \stackrel{*}{\leftrightarrow} c_i$ for some *i*, then:

$$c_i a \stackrel{*}{\leftrightarrow} a^i b a \stackrel{*}{\leftrightarrow} a^i a b \stackrel{*}{\leftrightarrow} a c_i$$

so that T Church-Rosser implies that for some

 $c_{i+1} \in \Sigma \cup \{1\}, \quad c_i a \xrightarrow{*} c_{i+1} \quad \text{and} \quad ac_i \xrightarrow{*} c_{i+1}$

SO.

$$a^{i+1}b \xrightarrow{*} ac_i \xrightarrow{*} c_{i+1}.$$

vol. 18, n° 1, 1984

The alphabet Σ is finite so $\{c_i | i > 0\} \subseteq \Sigma \cup \{1\}$ implies that either $c_i = 1$ for some *i* so (i) holds, or there exist *i* and *j* with 0 < i < j and $c_i = c_j$ so that (ii) holds. \Box

LEMMA 4: Let M be cancellative. For any $a \in \Sigma$, if a^2 is reducible then a has finite order.

Proof: If a^2 is reducible, then $a^2 \to 1$ or $a^2 \to b$ for some $b \in \Sigma$. If $a^2 \to 1$, then a has finite order. If $a^2 \to b$, then $b \neq a$ since M is cancellative and $a \neq 1$. Now $a^2 \to b$ implies $ab \stackrel{*}{\leftrightarrow} aa^2 \stackrel{*}{\leftrightarrow} ba$. By Lemma 3, either there is an i such that $a^{i+2} \stackrel{*}{\leftrightarrow} a^i b \stackrel{*}{\leftrightarrow} 1$ or for some

i,j with 0 < i < j, $a^i b \stackrel{*}{\leftrightarrow} a^i b$ so $a^{j-i} \stackrel{*}{\leftrightarrow} 1$

since M is cancellative. In either case, a has finite order. \Box

Now we have our result.

THEOREM: Suppose that M is commutative and infinite. If M is cancellative or T is special, then M is either the free cyclic group or the free cyclic monoid.

Proof: Since M is commutative and T is Church-Rosser, any irreducible word has the form a^i where $a \in \Sigma$ and $i \ge 0$. If the cardinality of Σ is one, then M is the free cyclic monoid. Assume the cardinality of Σ is greater than one. We will show that Σ has exactly two elements. Since M is commutative and infinite, there is an element of Σ of infinite order, say a. Let b be any element in $\Sigma - \{a\}$.

Suppose that *M* is cancellative. We claim that $ab \to c$ with $c \in \Sigma$ is impossible. First note that $c \neq a$ and $c \neq b$ for otherwise $b \stackrel{*}{\leftrightarrow} 1$ or $a \stackrel{*}{\leftrightarrow} 1$ by cancellation, contradicting our assumptions on *T*. Now if:

$$ab \to c$$
 and $ac \to d$, $d \in \Sigma \cup \{1\}$,

then.

 $ba \rightarrow c$ and $ca \rightarrow d$

since M is commutative. Thus:

$$c^2 \stackrel{*}{\leftrightarrow} abc \stackrel{*}{\leftrightarrow} bac \stackrel{*}{\leftrightarrow} bd$$
 and so c^2

is reducible. By Lemma 4 this means c has finite order, say $c^k \xrightarrow{*} 1$. Since a has infinite order and M is cancellative, it is not the case that:

$$a^i c \stackrel{\cdot}{\leftrightarrow} a^j c$$
 with $0 < i < j$,

R.A.I.R.O. Informatique théorique/Theoretical Informatics

so by Lemma 3 there is an *i* such that $a^i c \xrightarrow{*} 1$. Thus:

$$a^{ki} \stackrel{*}{\longleftrightarrow} a^{ki} c^k \stackrel{*}{\longleftrightarrow} (a^i c)^k \stackrel{*}{\longleftrightarrow} 1$$

contradicting the fact that a has infinite order. Hence, for all

 $b \in \Sigma - \{a\}, ab \to 1$ and $ba \to 1$.

This means that every element of Σ has infinite order since a has infinite order and if

 $b^j \stackrel{*}{\to} 1$ for $b \in \Sigma$ and j > 0,

then

$$a^{j} \stackrel{*}{\leftrightarrow} a^{j} b^{j} \stackrel{*}{\leftrightarrow} (ab)^{j} \stackrel{*}{\leftrightarrow} 1,$$

since $ab \rightarrow 1 \in T$. Now

 $\Sigma = \{a, b\}, \quad ab \to 1 \in T, \quad ba \to 1 \in T,$

and every element of Σ having infinite order implies M is the free cyclic group. If

 $c \in \Sigma - \{a, b\}$, then $ac \stackrel{*}{\rightarrow} 1$ and $ab \stackrel{*}{\rightarrow} 1$ so $b \stackrel{*}{\leftrightarrow} c$

by cancellation; but $b \neq c$ so this is a contradiction of T being Church-Rosser.

Suppose that T is special. Then for every $b \in \Sigma$ with $b \neq a$, $ab \rightarrow l \in T$. Thus, as above, every element of Σ has infinite order, and if $\Sigma = \{a, b\}, b \neq a$, then M is the free cyclic group. If

 $c \in \Sigma - \{a, b\}$, then $ab \stackrel{*}{\leftrightarrow} ba$, $ac \stackrel{*}{\leftrightarrow} ca$, and $bc \stackrel{*}{\leftrightarrow} cb$,

so T being Church-Rosser and special implies

 $\{(ab, 1), (ba, 1), (ac, 1), (ca, 1), (bc, 1), (cb, 1)\} \subseteq T.$

Hence:

$$a \stackrel{*}{\leftrightarrow} abc \stackrel{*}{\leftrightarrow} c \text{ so } a \stackrel{*}{\leftrightarrow} c;$$

but $a \neq c$ so this is a contradiction of T being Church-Rosser. \Box

If the requirement that M be cancellative or T be special is omitted, then the result no longer holds. For example, let:

$$\Sigma = \{a, b\}$$
 and $T = \{(ab, b), (ba, b), (bb, b)\};$

the monoid M presented by T is commutative (since $ab \leftrightarrow b \leftrightarrow ba$) and infinite (since for all n, $[a^n] \neq [a^{n+1}]$) but not free (since for all n, $[a^n] [b] = [b]$).

vol. 18, n° 1, 1984

SECTION 3

Remarks

As the referee has pointed out, in the literature on commutative monoid the monoid is often regarded as a quotient of a free commutative monoid [5, 8, 9]. In this case the commutativity must not be expressed by the presentation. Hence, our results do not hold in such a setting as seen by the following example. Let $M = (\Sigma, T)$ be the commutative monoid with:

$$\Sigma = \{a, a, b, b\}$$
 and $T = \{(aa, 1), (bb, 1))\}$

Then T is Church-Rosser and special but M is the free abelian group on two generators.

Even in this case there are commutative monoid with no finite Church-Rosser presentations, e. g., $M = (\{a, b\}; a^2 = b^2)$. Ballantyne and Lankford [1] use another notion of Church-Rosser presentation where reduction is not based on the length of strings and show that any commutative monoid with a finite presentation admits a finite presentation which is Church-Rosser in their sense. This gives a uniform method for solving the word problem in finitely presented commutative monoids.

REFERENCES

- 1. A. M. BALLANTYNE and D. S. LANKFORD, New Decision Algorithms for Finitely Presented Commutative Semigroups, Computation and Mathematics with Applications, Vol. 7, 1981, pp. 159-165.
- 2. R. BOOK, Decidable Sentences of Church-Rosser Congruences, Theoret. Comput. Sc., Vol. 24, 1983, pp. 301-312.
- 3. Y. COCHET, Church-Rosser Congruences on Free Semigroups, Colloquia Math. Soc. Janos Bolyai, Vol. 20, 1976, pp. 51-60.
- 4. Y. COCHET and M. NIVAT, Une generalisation des ensembles de Dyck, Israel J. Math., Vol. 9, 1971, pp. 389-395.
- 5. S. EILENBERG and M. P. SCHUTZENBERGER, Rational Sets in Commutative Monoids, J. Algebra, Vol. 13, 1969, pp. 173-191.
- 6. G. HUET, Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems, J. Assoc. Comput. Mach., Vol. 27, 1980, pp. 797-821.
- 7. C. O'DUNLAING, Finite and Infinite Regular Thue Systems, Ph. D. dissertation, University of California at Santa Barbara, 1981.
- 8. L. REDEI, The Theory of Finitely Generated Commutative Semigroups, Pergamon Press, 1965.
- 9. J. SAKAROVITCH, Sur les monoides commutatifs, Seminaire d'Informatique Theorique, Institut de Programmation, n° 1, 1978, pp. 78-01.

R.A.I.R.O. Informatique théorique/Theoretical Informatics