
RAIRO. INFORMATIQUE THÉORIQUE

PHILIPPE FLAJOLET

THOMAS OTTMANN

DERICK WOOD
Search trees and bubble memories
RAIRO. Informatique théorique, tome 19, no 2 (1985), p. 137-164
<http://www.numdam.org/item?id=ITA_1985__19_2_137_0>

© AFCET, 1985, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1985__19_2_137_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


R.A.I.R.O. Informatique théorique/Theoretical Informaties
(vol. 19, n° 2, 1985, p. 137 à 164)

SEARCH TREES AND BUBBLE MEMORIES (*)

by Philippe FLAJOLET (*), Thomas OTTMANN (2) and Derick WOOD (3)

Communicated by J. BERSTEL

Abstract. — We consider the storage of binary search trees in major-minor loop configurations
of bubble memories. This leads, under reasonable assumptions, to the investigation of two cost
measures for binary search trees, free search cost FCOST, and root-reset search cost RCOST.
We analyze the average case behaviour of both cost measures and characterize their associated
minimal cost trees. The average case average case analyses are themselves of interest since they
are examples of the application of a recently developed methodology.

Resumé. — Nous considérons le stockage d'arbres binaires de recherche dans des configurations
boucle principale-boucle secondaire de mémoires à bulles. Ceci conduit, sous des hypothèses
raisonnables, à fétude de deux mesures de coût d'arbres binaires de recherche, à savoir le coût de
recherche libre, noté FCOST, et le coût de recherche avec repositionnement à la racine, ou RCOST.
Nous étudions le comportement en moyenne de ces deux mesures et nous caractérisons les arbres
de coût minimal associés. Les analyses en moyenne sont intéressantes en elles-mêmes parce qu'elles
constituent des exemples d'application d'une méthodologie récente.

1. INTRODUCTION

Because bubble memory devices are now a practical proposition, the mathe-
matical analysis of their properties is a useful and fruitful exercise, for
example see Chandra and Wong (1979), Chung, Luccio and Wong (1980 a,
1980 b), and Bongiovanni and Wong (1981). A recent book by Wong (1983)
briefly explains the technology involved in building bubble memory devices
and discusses in detail various structures for sorting, searching, and rearrange-
ment.

(*) Received in November 1983, revised in Septembre 1984.
This reserch was partially carried out under a Natural Sciences and Engineering Research

Council of Canada Grant No. A-5692 and partially under N.A.T.O. Grant No. RG 155.81.
C1) I.N.R.I.A., Domaine de Voluceau, Rocquencourt, F-78150 Le Chesnay, France.
(2) Institut fur Angewandte Informatik und Formale Beschreibungsverfahren, Universitât

Karlsruhe, D-7500 Karlsruhe, West Germany.
(3) Data Structuring Group, Department of Computer Science, University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
0399-0540/85/02137 28/$ 4,80/ © AFCET-Gauthier-Villars



138 PH. FLAJOLET, T. OTTMANN AND D. WOOD

One area of concern is the représentation of standard data structures in
various bubble memory configurations. This représentation or encoding pro-
blem has been much studied for standard memory configurations, for example
see Rosenberg (1978), Rosenberg and Snyder (1978) and Standish (1980).
Recently Bongiovanni and Wong (1981) have considered the représentation
of tree search in bubble memories. Their concern is related to yet different
from ours; related because they consider the (implicit) représentation of trees,
and different because they are concerned with fixed or static trees, whereas
our concern is the dynamic behaviour of explicit représentations of trees.

We study the représentation of binary search trees in a major-minor loop
bubble memory configuration. Abstracting this, in Section 2, we are led to
the problem of representing a binary search tree in a two-way circular list,
see Vaishnavi and Wood (1982). We then make the reasonable assumption
that comparison time f ar outweighs bubble movement time (or entry point
movement time in our abstraction), which leads naturally to the concepts of
root-reset search cost and free search cost for binary search trees whose
analyses we then undertake.

We first dérive in Section 3 some basic properties of both cost measures
including the characterization of their associated minimal cost trees. Second
we dérive the average distance between two nodes in a binary tree and in a
binary search tree of n nodes, often called shape or static analysis and search
or dynamic analysis, respectively, giving the corresponding average free search
costs. The technique used for these dérivations are those introduced in Flajolet
(1981), which we explain in some detail. Then in Section 5 we analyse the
average behaviour of root-reset search cost. Fairley (1973), analyzed the
average behaviour for complete binary trees under this cost measure, which
he called random entry search cost.

Finally in Section 6 we compare our results with those for the usual cost
measure on binary search trees.

2. BINARY SEARCH TREES IN BUBBLE MEMORIES

The basic technology in bubble memory devices consists in storing informa-
tion as magnetic "bubbles" in a thin magnetic film that can be made to
rotate at high speeds (by a rotating magnetic field) and can be read or
uptated by special access ports, see Wong (1983). The basic device thus
behaves as a sort of large cyclic shift register.

In order to reduce access time, a major-minor loop organization has been
proposed. The typical major-minor loop configuration for bubble memories
is shown in Figure 2.1.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES

O ) " ^ major toop

139

o o
minor loops

Figure 2.1 - Major-Minor Loop

The bubbles in the minor loops are simultaneously rotated in either a
clockwise or anti-clockwise direction. One position in each minor loop is
designated as a transfer position. At any time the values in these designated
positions can either be transmitted to or changed by their corresponding
bubbles in the major loop. The major loop also has a designated transfer
position or "window" to the "outside world".

To clarify its use, consider a table of m keys each of n bits. This could be
stored in minor loops where the loops contain at least m bubbles. A "row"
of bubbles in the n minor loops represents a single key. A linear search for a
key k of n bits might proceed as follows:

(1) Letï = l.
(2) Transfer key / in the "windows" of the minnor loops to the major

loop.

(3) Do bit by bit comparison of Je, in main memory, with / in the major
loop through its window, rotating one position at a time as long as the
comparison is successful.

(4) If the comparison is successful stop with "SUCCESS".
(5) Increase i by one. If i^m, rotate minor loops by one position and

goto step 2, otherwise stop with "FAILURE".
As is well known the rotate opération is unusually f ast, viz, approximately

106 positions per second. Hence the dominant primitive opérations in the
above algorithm are the major-minor transfer and the comparison opérations.
Since one major-minor transfer is needed for each comparison, henceforth
the comparison opération will be assumed to include the major-minor transfer
opération. This means that we may consider a two-way circular list, see
Figure 2.2, to be the abstraction of a major-minor loop configuration, where

vol. 19, n° 2, 1985



140 PH. FLAJOLET, T. OTTMANN AND D. WOOD

Figure 2.2.

link chasing is inexpensive compared with the examination of a node and a
comparison with its contents.

In this setting each node of the list represents the whole key (collected
across the minor loops).

Let us now turn to the représentation of binary search trees in such a
circular list, and hence in a major-minor loop configuration. Each node of
the binary search tree is assigned to a unique node of the circular list such
that the assigned nodes are contiguous. The left and right links in each node
of the tree are then converted into offset values, that is move clockwise or
anti-clockwise by q nodes. In Figure 2.4 we have represented the tree of
Figure 2.3 in symmetrie order, and since each son appears later then
(clockwise of) its father all of f sets are positive.
The search strategy may now mirror that for binary search trees by assuming
that the circular list is always reset to the root of the tree (position 1 in
Figure 2.4). The offset dénotes the number of nodes to be skipped in either
a clockwise or anti-clockwise direction.

Observe that the offsets are not, and cannot be, of equal value, hence we
may interpret them as different length edges. For example in Figure 2.5 the
tree of Figure 2. 3 is drawn with the offset values of Figure 2.4 as the edge
lengths. Bongiovanni and Wong (1981) consider binary search trees with
variable edge lengths induced by such a storage représentation. It is not clear
whether or not the minimal cost tree in Figure 2.3 is also minimal with
respect to this edge expansion. Vaishnavi and Wood (1982) show that this is
indeed the case and moreover any seven node tree is equally costly under
the new cost measure. However this is not the case when the keys and gaps
have unequal probabilities.

As pointed out above, because of the dominance of the comparison opéra-
tion over the rotation opération, our main interest is not this variable edge

R.A J.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 141

position 1

left offset. • 1

right offset • L

Figure 2.5 — Variable Edge Lengths

length model. But having dismissed the rotation opérations necessary along
the search path there remains the reset rotation, which we would like to
avoid. We avoid it by starting a new search at the node where the previous
search terminated.

To do this effectively a new searching strategy is necessary. At least two
reasonable ones exist, see Section 6 for a further discussion of this issue.

Method 1: Search from the entry node as if it is the root node. If the
search is unsuccessful begin again at the root of the tree. If the second search
is unsuccesful then the search key is not present.

Method 2: Check if the search key is within the interval specified by the
subtree of the entry node. If it is then search in the usual way, otherwise
back-up to the father if one exists and repeat the process. If no father exists
then the search process is at the root and the search key is not in the tree.

Method 1 has been studied previously in a limited way by Fairley (1973):
We call such search trees, root-reset search trees. Method 2 has not, as far
as we are aware, been studied previously: we call such trees, free search trees.

vol. 19, n° 2, 1985



142 PH. FLAJOLET, T. OTTMANN AND D. WOOD

The associated cost measures we call root-reset search cost RCOST, and free
search cost FCOST, respectively. Two reasonable bubble memory représenta-
tions suggest themselves for Method 1. Either each leaf contains its offset
from the root or each node contains its offset from its father; we will assume
the former. For Method 2 the latter représentation is the appropriate one.

Both représentations easily support insertions; deletion is more difficult,
since it leaves gaps in the représentation. Since each node is also "linked" to
its father when using Method 2, the tree has bi-directed edges, in other words
undirected edges. Moreover although the trees are ordered, since they are
search trees, the way they are accessed is closer to that of unordered,
unoriented trees, that is free trees, Knuth (1968). This is the reason for calling
them free search trees. Such trees are of independent interest, for example
the notion of rivalling of processors is possible on free search trees,
Mühlbacher(1982).

3. PRELIMINARY DEFINITIONS AND RESULTS

In the present section we define the two new search cost measures on
binary search trees and characterize minimal cost serach trees under these
measures.

Let T b e a binary search tree with root p. For each node u in T let T (u)
dénote the subtree of T rooted at w, and let val(ü) dénote the value associated
with u. As is usual we distinguish between internai nodes, which have two
successors and leaf nodes which have none.

Then for any two nodes u and v in T let the distance from u to v, denoted
by dist (u, v\ be defined as the length of the shortest path from u to v in T.
Similarly let the value distance of x from w, denoted by vdist (w, x) dénote the
length of the Standard search path for the value x in T beginning at node w.
If x appears in T (u) at node v then vdist (u, x)~dist (M, V), otherwise it is
the distance from u to the leaf representing an unsuccessful search for x.

We can now define the reset distance of v from u in T, denoted by rdist
(u, v), as either dist (u, v) if v is in T (u) or txiist (u, val (u)) + dist (e, v)
otherwise.

These distance measures lead to three associated cost measures for binary
search trees. The usual search cost measure is defined as:

COST(7)= X dist(p,u)
u i n T

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 143

while the free search cost measure is captured by:

FCOST (7) = X dist(u,t>).
u, v in T

and the root-reset search cost measure by:

RCOST(T)= X rdist(u, v).
u,vinT

As with standard binary search trees we may consider the corresponding
extended cost measures. For this purpose trees are assumed to be extended
by the addition of external nodes to all leaves and semi-leaves. Extended
binary trees contain only binary and nullary nodes. The nullary or external
nodes correspond to unsuccessful searches in the tree. We now obtain:

ECOST(T) = £ dist(p, ti),
win T

where u is a leaf,
EFCOST(7)= X dist(K,t>),

u, v in T

where u and v are leaves,
ERCOST (7)= £ rdist(u,v\

u, v in T

where u is an internai node and v is a leaf.

The cost and extended cost measures for the first two measures are closely
related as we summarize in the following:

PROPOSITION 3.1: Let T be a binary search tree with n internai nodes, where
n^O. Then:
(i) ECOST(T) = COST(7)+2 n,
(ii) EFCOST ( T) = FCOST (7) + 4« 2 + 6n + 2.|

Proof: By induction on n, (ii) dépends upon (i), which is, of course, a well-
known result •

The exact nature of the relationship between ERCOST (T„) and RCOST
(T„) continues to elude us; however it is almost certainly of the form

ERCOST (Tn)ERCOST (T„)+/(n),

where ƒ (n) is some function of rc.
Bef ore considering the average case analysis of FCOST and RCOST we

close the present section by stating the characterizations of minimal cost trees
under both FCOST and RCOST and sketching their proofs.

vol 19, n° 2, 1985



144 PH. FLAJOLET, T. OTTMANN AND D. WOOD

Figure 3.1

We first consider FCOST minimal trees.
Let Tbe a binary tree. Then the diameter ofT, denoted diam (t), is defined

as:

diam (T) =max ({dist (w, v): u, u in T}).

A tree T of n nodes has minimal diameter if for all T with n nodes diam
( r ) ^ d i a m (T).

It is not too surprising that trees with minimal FCOST have minimal
diameter. However this is insufficient to provide minimal FCOST. Let T be
a minimal diameter tree, then it can be pictured as in Figure 3.1; where
subtrees a and b have height k, c has height / and l = k— 1, k, or k + 1.
The node u is termed the centroid of T. There can be at most two such
centroids, in which case l = k + l. We cail a tree of height h perfect if it has
minimal height and has 2h + 1 leaves.

We say T is clustered if a and b are perfect, c is minimal height and
moreover if c is not perfect then it only has frontier nodes on at most two
levels, but those at distance / from the root of c are grouped (or clustered)
in the rightmost (or leftmost) positions on that level. See Figure 3.2 for an
example of both cases.

LEMMA 3.2: Let T be as in Figure 3. 3, where Tn dénotes the perfect binary
tree of height n^O, and the root ofTn has distance t + 2 from the root ofTn_li

r^O. Adding a node to Tn_1 in T yields T1 and to Tn in T yields T2. Then
FCOST (T1)-FCOST (T2) = (2n-2) (t+1).

Proof: Since we are only interested in the différence between the FCOST
of T1 and T2 we only need to consider the constitution of the extra node in

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 145

clustered not clustered

Figure 3.2

Figure 3.3

T1 and T2. Now this contribution to FCOST (T1) is twice:

[3 (21 - 1 ) + COST ( TO] + [4 (22 - 1 ) + COST ( T2)] + . . .

+ [n(2"-2-l)+COST(T„_2)]

Similarly the contribution to FCOST (T2) is twice:

[3.(2*-1) + COST(TJ\ +.. . + [ n ( 2 " - 2 - l ) + COST(T„_2)]

Hence

FCOST (T1) - FCOST (T2) = 2 [(n +1 +1) (2n - 1 ) + COST (T„)]

. . . +n + t.

vol. 19, n° 2, 1985



146 PH. FLAJOLET, T. OTTMANN AND D. WOOD

since

COST (T„) = 2" - 2 + 2 COST (T„ _ J. D

THEOREM 3.3: A binary search tree T with n internai nodes, n^O, has
minimal FCOST and EFCOST if and only if it has minimal diameter and is
clustered,

Proof: We will provide proof sketches in both cases.

If. By induction on n. Since T has minimal diameter and is clustered it
has a subtree T of n — 1 nodes which also satisfies these conditions. Hence
by the inductive assumption T has minimal FCOST. Now T can be viewed
as in Figure 3.1. Consider the three cases height (c) = k — 1, k, and fc + 1
separately. We will sketch the case height (c) = k only, the remaining two
cases being left to the interested reader. If c is perfect then the additional
node given to T can be added anywhere. Hence assume c is not perfect. Now
if a node is not added at a clustered position then consider the smallest tree
S enclosing it and a clustered position. Compare the FCOST associated with
these two choices. Since S is in one of the forms displayed in Figure 3.4, in
both cases by invoking Lemma 3.2 we see that the chosen position is less
costly than the clustered position within S. However there are greater than
(2l — 2) nodes in T — S in the first case and greater than a (2'-2) contribution
in the second case to the cost of the chosen position with respect to all of
T. Hence T must have minimal FCOST.

Only if: Again we prove this by induction on n. Clearly a tree with 0 or 1
node(s) satisfies the required conditions. Therefore consider a Twith n nodes
n > l ? having minimal FCOST, but which does not satisfy the required
conditions. Now if T has minimal diameter, then we can obtain a contradic-
tion via Lemma 3.2'and the inductive assumption. Hence assume T does not
have minimal diameter. Again if there is a subtree T of Twith n— 1 nodes
having minimal diameter, we easily obtain a contradiction. Finally if there is
no subtree T of T with minimal diameter, then there exists S with n — 1
nodes and minimal FCOST satisfying:

diam (S)<diam (F) ^ diam (7).

Construct a tree U from S with N nodes and minimal FCOST. On the one
hand if diam (t/)~ diam (7), in which case n = 3 2p + 2 for some p^O, we
obtain a contradiction either to the assumptions on T or to the minimal
FCOST of T. On the other hand if diam (U)<diam (T) we may consider
the largest tree Vo which is a subtree of both U and T having minimal cost
(and hence satisfying both conditions, by the inductive assumption). Then in

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 147

clustured / chosen f
position position

clustured/
position

U there is a séquence of minimal cost subtrees Ul9 . . ., Up such that V0=Ul3

U=Up and the number of nodes in Ui is f— 1 more than in Vo. Then

FCOST ( L/J < FCOST (U2)< . . . <FCOST (Up)

and similarly there are Tl9 . . ., Tp such that Tx = V09 Tp=T,
FCOST (7\)< FCOST (T2)< . . . <FCOST (Tp) and

FCOST (U2)<FCOST (T2),
FCOST (I/3)< FCOST (T3),

since none of T
FCOST (Up)< FCOST (Tp),

2, . . ., Tp satisfy the conditions of the Theorem. That is
FCOST (U)<FCOST (T) yielding a contradiction. •

THEOREM 3.4: A binary search tree T with n internai nodes n^O, has
minimal RCOST and ERCOST iffit has minimal COST.

Proof: By induction on n. Clearly the proposition holds for n = 0 and w= 1.
Assume it holds for all n ̂  k, where k ̂  1, and consider a tree T with n = k -h 1
internai nodes. Let u b e a internai node in T with only leaves as sons. There
must be at least one such node. Let T' be T with u replaced by a leaf.

We first establish the following:

Claim: Adding an internai node u t o a T leads to minimal RCOST if and
only if the resulting tree is also minimal COST.

Proof of Claim: Consider T in Figure 3.5, where dist (p, u) = 1 + dist (p, r).
Replace u by w to give Tu and v by w to given Tv. We prove that ERCOST
(rv)<ERCOST

vol. 19, n° 2, 1985



148 PH. FLAJOLET, T. OTTMANN AND D. WOOD

T'

Figure 3.5.

Now ERCOST (Tu) -ERCOST ( r j = différence in cost with respect to the
two paths p and q in Tu and Tv. The contribution of all others nodes is the
same in each tree. Therefore we obtain:

ERCOST ( r u ) -
(différence bet ween nodes on p and q, where m is the number of internai

nodes on path q)

(ERCOST (TJ-ERCOST (Tv)>2 (m + 1)

+ 2 ( n - 2 m - l ) + 2 m, ^ 2 n>0,

as desired. •

Returning to the proof of the Theorem if T is minimal height then T has
minimal RCOST by the claim. In this case, there is a minimal height T
obtained by deleting an internai node of T, On the other hand, if T has
minimal RCOST then T obtained by deleting a node u in T must also have
minimal RCOST. This follows by a similar argument to the one in the proof
of the claim. •

4. AVERAGE CASE ANALYSIS OF FCOST

In this section, we first recall a gênerai framework from Flajolet (1981)
that may be usèd to analyze a class of parameters inductivçly defined on
trees. Parameters COST and FCOST are shown to belong to that class so that
équations over generating functions of average values can be systematically
determined and later solved leading to Theorem 4.1. Two different statistical

R.AJ.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 149

models are considered here:
the basic tree model where all trees of n internai nodes are equally likely;
the search tree model wheres are built by random insertions, see Knuth

(1973), which for tree parameters is equivalent to the tournament tree model
(see the définition and discussion below).

Most families of trees of use in computer science can be generated by the
itérative application of a set of constructors to trivial trees. Examples include
planar trees, called simply trees by Knuth (1968), labelled non-planar trees,
unlabelled non-planar trees, and tournament trees together with their binary
search tree counterparts.

Following Flajolet (1981) the situation can be informally described as
f ollows: Given a f amily of trees F, we have for each integer r^Oa constructor
Kr\F^2F, that constructs a set of trees (which in some cases consists of a
single element) from an r-tuple of trees by appending a root to them and
possibly reorganizing the labels. The set of trees F then satisfies the équation:

F= X 1^(F, F, . . . , / Ï ) .

More generally, the recursive définition of family F is, in some of the cases
that we consider here (tournament trees and search trees) an équation over
multisets. If we now consider F as a multiset of éléments with multiplicity 1,
there exists a set of constant cor ̂  0 such that:

F - X o ^ C F , F, . ..,F)9

where the équation is now an équation over multisets, and the K, are extended
to multisets by multi-linearity. In practice, œ r=l (for planar trees) or l/r!
(for labelled nonplanar trees). For the classes described above, it so happens
that the recursive définitions can be translated into équations over generating
functions. More precisely, let A9 B, C, D. . . be multisets; let Am Bn, C„,
Dn. . . be the corresponding numbers of éléments of size n, each element being
counted with its multiplicity. For adequately chosen generating functions of
the type:

where the Xn are a référence séquence of real numbers depending on the
classes of trees considered (here A,n = l or l/n!), the constructors IÇ have
images: if:

vol. 19, n° 2, 1985



150 PH. FLAJOLET, T. OTTMANN AND D. WOOD

Kr
A . B C

a a a

Alz) B(z) C(z) E(zî

Figure 4 .1 .

then the corresponding generating functions E (z), A (z), B (z), C (z). . .
satisfy an équation:

E (z) = d>r (A (z), B (z), C (z). . .),

for some functional <I>r. In other words, if a is the morphism that associâtes
to each multiset its corresponding generating function, then the diagram in
Figure 4.1 commutes.

Examples:
(a) Unlabelled planar trees
For each r, K^. (tu t2, . . ., tr) is the unique tree obtained by appending a

root to tly t2, . . ., tr.

tu t2, . . . , tr -»• ti t2 . . . tr.

The family of all planar unlabelled trees then satisfies the équation:

G= 1 ^ ( 0 , G , . . . , G),

valid, as an équation over multisets.
If we take as the size of a tree, the number of nodes in the tree, the

morphism a is simply:

*(a) = A(z)= X Anz»

where again An is the number of trees of size n in A. The relation:

E = Kr (a l s a29 . . . , ar)

translates into:

E(z) = zA1{z)A2{z)...Ar(z).

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 151

Thus the image of the constructor /Ç is nothing other than a variant of
the Cauchy product.

Let G (z) be the generating function associated with the family of unlabelled
planar trees, then G (z) satisfies the équation:

G (z) = z + zG (z) + zG2

that is:

l -G(z)
whence:

and

(b) Binary trees
These are defined by:

KQ and K2 being as above. It is customary to take the number of internai
modes in the tree to be the size of a tree. The image of KQ is less than 1,
and the équation over the corresponding generating function becomes:

B{z)=\+zB2{z\
whence:

and Bn= —
2z n +

(c) Tournament trees
A tournament tree is a binary tree the internai nodes of which are labelled

as consécutive integers starting from 1, in such a way that labels are to be
found in increasing order along each branch. The corresponding defining
équation is:

Here Lo constructs the empty tournament tree and L2 (tu t2), where tl9 t2

are in T, is the set of those trees formed from t1 and t2 by appending a root
with label 1, and by distributing labels from the set [2. . 111 \ + 112 \ +1] in a
manner consistent with the ordering in t1 and t2,

Now for a multiset A, the morphism a is:

-
n!

vol. 19, n° 2, 1985



152 PH. FLAJOLET, T. OTTMANN AND D. WOOD

The relation:
E = L2(AUA2\

translates into

E(z)=\ZA1(z)A2(z)dz,
Jo

and this the image of L2 is the intégral of a Cauchy product. There are
clearly n ! tournaments of size n, and the exponential generating function:

a(T)=T(z)= X n\-
n^o nl

which is equal to 1/(1—z) satisfies the équation:

T(z)=l+ [V(z)dz,
Jo

as in to be expected.
We can, after these preliminaries return to our main thème for which we

need to consider the following three parameters for trees —whether binary
trees or tournaments:

(i) The size of a tree t is the number of its internai nodes and is denoted
by | t | .
(ii) The COST of a tree, which for manipulative convenience we dénote by

pip.
(iii) The FCOST of a tree, which, again for manipulative convenience we
dénote by d (t).

COST has the inductive définition:

o

P Ci \ ) =P Ci) + I h I +P (t2) + 1121,

and similarly for FCOST:

2)+h
Now define the corresponding multisets for binary trees:

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 153

where the t runs over B.
And in the same way:

Z p ( )
DT=YJd(t).t,

where now f runs over T The inductive définitions of COST and FCOST
yield the équations:

PB = K2 (PB + SB, B) + K2 (B, PB + SB),

DB = K2 (DB, B) + K2 (B, DB) + K2 (PB + SB, B + SB)

+ K2 (B + SB, PB + SB),

PT=L2 (PT+ST, T) + L2 (T, PT+ST),

DT=L2 (DT, T) + L2 (T, DT) + L2 (PT+ST, T+ST)

+ L2 (T+ST, PT+ST).

It now remains to translate these équations into équations over generating
functions using the schemes outlined above, and then extract the Taylor
coefficients that give explicit enumeration results.

The équation relative to COST translates into:

PB(z) = 2zB (z). (PB) (z) + SB (z)),

with PB and SB the ordinary generating functions associated to PB and SB,
namely:

PB(z)= X PBnz
n and SB(z)= £ SBnz

n.

The function B (z) = £ Bn z
n is already known; as to SB (z) we have:

(B())B())z ^ z ( z B ( z ) ) B
dz dz

The above équation can be solved for PB giving:

2zB(z)SB(z) 2zB(z)SB(z)
PB(z) =

\-2zB(z)

which makes it possible to obtain the explicit expression for PBn. See Knuth
(1968) for a different dérivation.

vol. 19, n° % 1985



154 PH. FLAJOLET, T. OTTMANN AND D. WOOD

The équation relative to FCOST reads:

DB(z) = 2zB (z)DB (z) + 4 z (B (z) + SB (z)) (PB (z) + SB (z))5

which again can be solved for DB (z):

DB (z) = JZ (B (z) + SB (z)) (PB (z) + SB (z)).
^ ( 1 - 4 2 )

It is no be noticed first that:

then:

Putting everything together, we obtain:

+
( l - 4 z ) 2 ( l -4z ) 3 / 2

Hence with the value of the Taylor coefficients:

[zn]—^—r =n4n,J ( l - 4 z ) 2

[zn] ? =2.4",
( l 4 )

the final closed form expression:

is obtained.

Now the average FCOST, assuming all Bn are equally likely, is simply:

We have seen that the same équations apply to tournament trees with the
labelling constructor L2 replacing K2. Translating into generating functions,

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 155

we have:

PT(z) = 2 (PT(z) + S T(z)) T(z) dz.
Jo

Here, PT, ST and DTare now exponential generating functions:

-;,etc.,
n!

and:

v ' 1-z
whence:

zST(z) =
(1-z)2

The équation for PT (z) can be solved by differentiating in z, sol ving the
differential équation without the second term then applying the variation of
constant method. We obtain:

whose coefficients can be compared to the expression given by Knuth (1973).
We now consider the équation for DT(z):

DT(z) = 2 \ DT(z)T(z)dz + 4 \
Jo Jo

Differentiating again, and substituting values:

dDT(z
dz

_2DTto _4_r ln_l_ \
1-z (l-z)4V 1-z /

The équation without the second term has solution 1/(1—z)2 so that we set
DT (z) = u (z)/(l — z)2 and substitute in the équation:

du{z) 8 , 1 4z
— -ln-dz ( 1 - z ) 2 1 -z ( 1 - z ) 2

This can be integrated directly and one finds:

8 , 1 ,, 1 12z
u (z) = In h 4 In n

\—z 1—z 1—z 1—z
vol. 19, n° 2, 1985



156 PH. FLAJOLET, T. OTTMANN AND D. WOOD

so that:

_5_In_L + _ i_ 1 1 1 _L-_ £ _,
{l-zf 1-z (1-z)2 1-z (1-z)3

The simplest way to obtain the coefficients PT„ is to introducé the series
H(z)= XH^J-ln-J-^,

n^o 1—2 1—z

whose coefficients are the harmonie numbers:

H'-1+ï+\+-+i-
and express PT (z) as a linear combination of:

Hto<™ and * ™ .
dz dz2

One easily finds:

H 4 ^ + 4 ^ .
rfz2 dz (1-z)3

Extracting coefficients we obtain the closed form expression:

PT
—»=4(n + l)(n + 3)jFJ„-4rt(3n + 5).
n!

that is the average FCOST in a tournament.

We now make use of the following équivalence principle in order to carry
these results over to binary search trees, see Françon (1979) or Yuillemin
(1980).

The équivalence principle: For any binary tree p,

Let fx (P) be the frequency of appearance of P as the "shape" of binary
search trees when all n ! séquences of insertions of keys 1, 2, . . . n are
performed;

let fT (p) be the number of turnament trees that have p as their "shape".

Then the following equality holds:

Thus all parameters over binary trees that are only a function of the shape
of the tree can be evaluated by looking at the corresponding values for

R.A.LR.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 157

tournament trees. We have just proved:

THEOREM 4.1:

(i) For binary trees, the average FCOST for trees of size n is:

(n + 2)(4«/(n
2rt))-2(n+l)(2n+l)).

(ii) For binary search trees the average FCOST of trees of size n is:

5. AVERAGE CASE ANALYSIS OF RCOST

We consider here the problem of analyzing the expected value of the
RCOST parameter, and for reasons of conciseness we restrict our attention
to the more relevant search tree model. This first requires obtaining inductive
définitions for the RCOST measure from which équations over generating
functions are obtained and solved as bef ore.

Again for manipulative convenience we dénote RCOST (t) by v (t) so that:

v(t)= S d(q,x,t)9 (5.1)
q, x in t

where d (q, x, t) dénotes rdist (q, s) in £, where val (s) = x.
We are interested in the quantities:

V:= Z E d(q,x9t), (5.2)
I f | — n q , x i n t

K= E I.d(q,x3t),
\t\~nqint

where in this last summation (5.2), x ranges over all leaves of t. These
quantities are such that:

1 V+ 1 V~
±1 a n d i J ^a n d

n2 n! n(n+l) n!

represent the average costs of a search with a random entry point, with a
resuit either positive (5.2) or négative (5.3). We shall deal only with (5.2),
which corresponds to définition (5.1), hence we will write Vn for Fn

+ in the
following.

vol. 19, n° 2, 1985



158 PH. FLAJOLET, T. OTTMANN AND D. WOOD

We need to give for an inductive définition for v. As usual let t be
decomposed into:

A
t2 with | *! | = Ui and 112 | = n2;

we say that an internai node of t is of type 1 if it belongs to tu of type 2 if
it belongs to t2 and of type 0 if it coincides with the root, and similarly for
values x.

Also let:

tf*(t) = X"pdfo, x, t)= X d(q, x, t). (5.4)
type (q) = ot
type (x) = p

We décompose (5.1) in all possible ways:

where terms have been grouped for later application of symmetries.
By définition we have:

, x, t )=l (5.5)

and we consider separately £ 0 1 , £ 1 0 , J]1 1 and £1 2 .
First for v01, we find:

f01 (0 = "i+/> Ci) (5.6)

where p (t) is the shortland notation for the cost measure COST introduced
in Section 4.

A search of type 01 will first visit the root (which can happen in nt ways
when all nodes of tx are searched), then proceeds as in the conventional
search of tx.

As to v10, we observe that the search for the root starting from an entry
point q in tx will result in following the rightmost branch from q and
ultimately visiting the root. Thus:

vlo(t)= Y rb&tj + n!
q int!

where rb (<?, t) is the length; measured as the number of internai nodes; of
the rightmost branch from q in t. Writing:

w(t)= £ rb(q9t) (5.7)
q in t

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 159

(we shail later return to w), we find:

» l o(0 = w(t1) + n1 (5.8)

The case of v11 is simple: we wish to sum over all pairs of nodes in tx the
cost of a search; this is precisely v ( t j , therefore:

vlx(t) = v(tx). (5.9)

Lastly we deal with v12: a search from an entry point q in tt with an exit
point in t2 will follow the rightmost branch of q in tu then go through the
root of t and ultimately descend in t2.

Thus:

q, tx)+\+âist(root(t2)9 x),
qintl (5.10)

Summarizing the information gathered in (5.5)-(5.10) and using obvious
symmetries we find that:

17(0=1 + [«!

or, re-arranging the terms slightly:

This is a main équation. Recall that the inductive équations for p (i. e.
COST) have been given in Section 4, as well as the corresponding averages;
as to w, équation (5.7) leads to:

w(0 = w(t1) + w(t2) + rft(0, (5.12)

and rb itself satisfies:

rb(t) = rb(t2)+l. (5.13)

vol- 19, n° 2, 1985



160 PH. FLAJOLET, T. OTTMANN AND D. WOOD

We now translate these équations in terms of the exponential generating
functions V (z), W (z), P (z) associated to parameters v (t), w (t) and p (t) so
that for instance V (z) = £ Vn znjn ! etc.; for this we use:

nz —
(1-z)2

and with obvious notation, (5.

V(z)-2 f*
Jo

V{z)

1 - z

2z
nrr 1 1uz \- -\-

(1-z)2

and £ (r

11) becomes:

"Jo(l-z)4d"

+ 2

i +

z

1-

f
Jo

1)

-z

;

(i

z--

?(z)

- 2 )

1
(1-z)2

2dz + 2Jo(T^
whence by differentiating:

dz 1-z (1-z)2 (1-z)3

Similarly (5.12) becomes:

W(z) =

^ l+3z + 2 z - 2 z 3

( 1 ) 3

Jo l - z

or, again by differentiating:

dz 1 — z

and RB (z) can be obtained from (5.13):

dRB(z) RB(z)

dz 1-z (1-2)2

By solving for RB, we first dérive the result:

K £ ( z ) = - L l o g ( l - z ) - \ (5.16)
1—z

which is equivalent to the classical fact that a tournament of size n has an
average of Hn= 1 +(l/2)+ . . . +(l/n) nodes on its rightmost branch.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 161

Next the differential équation (5.15) can be solved by using (5.16). We
find from (5.15) that:

j ^ ^ z ) - \ (5.17)

whence:
W„ = 2n-Hn. (5.18)

Also, from the previous section, the function P (z) [which corresponds to
PT (z) in Section 4] has the explicit expression:

— 2zl .
1 - * J

Thus we can finally solve (5.14): V is the solution of an équation of the
form:

V=-?-V+r(z),

whence, by variation of constants, for some K.

The initial condition V (0) = 0 implies K=0 whence:

r{z)(\-zfdz. (5.19)

o

For polynomials R and S, we can write:

R(z) S(z) t /4 x ,
r(z) = ^—-4- ^ l o g ( l - z ) " 1 .

(\-zf (1-z)4 BK }

So as to avoid tedious calculation, we are content with the first two terms in
the expansion of Vn.

We find from the variation of constant formula:

+ .(1-z)2

vol. 19, n° 2, 1985



162 PH. FLAJOLET, T. OTTMANN AND D. WOOD

The "error" terms (valid around z — 1) only represent effectively computable
functions which we do not wish to evaluate here. We notice that R (1)=4
and S (1)=4. Integrating and simplifying, we find:

Now the n-th Taylor coefficient of V (z) is:

n! ' ' (1 -z ) 3 ' ' \ (1-2)2

and the last term can be seen to be 0 (n log n) (this either follows from the
explicit form available for this gênerai term or from a Darboux-like theorem).
Equivalently:

V d2 T 2 3 ~l
" M ^ I T T 1 ïogü-z)-1-- +O(nlogn)
n\ dz2\_\—z 1—z J

so that finally we have:

THEOREM 5 .1: For binary search trees, the average RCOST of trees of size

is:

There for the average cost of a (random) successful search with a random entry
point is:

2/T-3 + O CT)
It is to be noticed that our method can also provide a closed-form expres-

sion (as a rational combination of Hn and n) if a more précise estimate is
required.

6. CONCLUDING REMARKS

The average COST for binary trees of n nodes is:

(n+l)(47(n
2n))-(3n+l) (6.1)

and the average COST for binary search trees of n nodes is:

2(n+l )H n -3n . (6.2)

R.A.I.R.O. Informatique théorique/Theoretical Informaties



SEARCH TREES AND BUBBLE MEMORIES 163

Recall that for COST these values should be divided by n to give the expected
number of nodes visited in one search, and for FCOST and RCOST the
corresponding values should be divided by n2 to give the expected number
of nodes visited in one search.

Comparing (6.1) divided by n with Theorem 4.1 (i) divided by n2 and
comparing leading terms we find that the ratio of the average distance apart
to the average distance from the root is, approximately:

(6.3)

In other words the average distance between nodes in a binary tree of n
nodes differs by only 2/n from the average distance from the root.

A similar comparison of (6.2) with Theorem 4.1 (ii) yields:

(6-4)

that is the average distance between nodes in a binary search tree of n nodes
is approximately twice the average distance from the root.

Finally comparing (6.2) with Theorem 5.1 in a similar manner yields:

(6-5)

once more. That is the extra distance involved in a root-reset serach of a
binary search tree with n nodes is, approximately, 2/n times the average
distance from the root.

Of these comparisons perhaps (6,5) is the most surprising result. It
confirms Fairley's partial results, namely a root-reset search visits at most 2
extra nodes. This follows from the observation that most nodes are within 2
levels of the leaves. Comparison (6.4) similarly reflects the observation that
most nodes are close to the leaf level and, on average, n/2 will be found in
each subtree of the root.

However the expectedness or otherwise of these results is not the focal
point of this paper. Rather it is that the statistics can be systematically
analyzed using the gênerai approach of Flajolet (1981), to provide these
results.

Let us mention some open problems bef ore closing this paper. Two mechani-
cal issues are the évaluation of V~ (see Section 5), and the évaluation of the
average RCOST for binary trees of n nodes [cf. Theorem 4.1 (i)]. A nontrivial

vol. 19, n° 2, 1985



164 PH. FLAJOLET, T. OTTMANN AND D. WOOD

problem is the average case analysis of the diameter of a binary tree and
binary search tree. Only recently, in Flajolet and Odlyzko (1982), has the
average height of a binary tree of n nodes been determined. The average
height of a binary search tree remains a tantalizing open problem. It appears
to us that average diameter is even more difficult to détermine than the
average height.

REFERENCES

W. F. BEAUSOLEIL, D. T. BROWN and B. E. PHELPS, Magnetic Bubble Memory Organiza-
tion, IBM Journal of Research and Development, Vol. 16, 1972, pp. 587-591.

G. BONGIOVANNI and C. K. WONG, Tree Search in Major/Minor Loop Magnetic Bubble
Memories IEEE Transactions on Computers, C-30, 1981, pp. 537-545.

P. I. BONYHARD and T. J. NELSON, Dynamic Data Réallocation in Bubble Memories,
The Bell System Technical Journal, Vol. 52, 1973, pp. 307-317.

A. K. CHANDRA and C. K. WONG, The Movement and Permutation of Columns in
Magnetic Bubble Lattice Files, IEEE Transactions on Computers, C-27, 1979, pp. 8-
15.

K. M. CHUNG, F. LUCCIO and C. K. WONG, A Tree Storage Scheme for Magnetic
Bubble Memories, IEEE Transactions on Computers, C-29, 1980, pp. 553-562.

K. M. CHUNG, F. Luccio and C. K. WONG, A New Permutation Algorithm for Bubble
Memories, Information Processing Letters, Vol. 10, 1980, pp. 226-230.

R. E. FAIRLEY, Random Entry Searching of Binary Trees, University of Colorado,
Boulder, Computer Science Report CU-CS-035-73, 1973.

P. FLAJOLET, Analyse d'Algorithms de Manipulation d'Arbres et de Fichiers, Cahiers
du B.U.R.O., Nos. 34-35, Paris, 1981.

P. FLAJOLET and A. ODLYZKO, The Average Height of Binary Trees and Other Simple
Trees, Journal of Computer and System Sciences, Vol. 25, 1982, pp. 171-213.

J. FRANCON, Combinatoire des Structures de Données, Doctoral dissertation, Université
de Strasbourg, 1979.

D. E. KNUTH, The Art of Computer Programming, Vol. I: Fundamental Algorithms,
Addison-Wesley Publishing Co., Reading, Mass., 1968.

J. MUHLBACHER, Private communication, 1982.
A. L. ROSENBERG, Data Encoding and Their Costs, Acta Informatica, Vol. 9, 1978,

pp. 273-292.
A. L. ROSENBERG and L. SNYDER, Bounds on the Costs ofData Encodings, Mathematical

Systems Theory, Vol. 12, 1978, pp. 9-39.
T. A. STANDISH, Data Structure Techniques, Addison-Wesley Publishing Co., Reading,

Mass., 1980.
V. K. VAISHNAVI and D. WOOD, Encoding Search Trees in Lists, International Journal

of Computer Mathematics, Vol. 10, 1982, pp. 237-246.
J. VUILLEMIN, A Unifying Look at Data Structures, Communications of the ACM, 28,

1980, pp. 229-239.
C. K. WONG, Algorithmic Studies in Mass Storage Systems, Springer-Verlag, Berlin,

Heidelberg, New York, 1983.

R.A.I.R.O. Informatique théorique/Theoretical Informaties


