RAIRO. INFORMATIQUE THÉORIQUE

Roman König

Reduction algorithms for some classes of aperiodic monoids

RAIRO. Informatique théorique, tome $19, \mathrm{n}^{\circ} 3$ (1985), p. 233-260
http://www.numdam.org/item?id=ITA_1985__19_3_233_0
© AFCET, 1985, tous droits réservés.
L'accès aux archives de la revue « RAIRO. Informatique théorique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

REDUCTION ALGORITHMS FOR SOME CLASSES OF APERIODIC MONOIDS (*)

by Roman König (${ }^{1}$)

Communicated by J. Berstel

Abstract

A class of finite, noetherian and confluent rewrite systems is constructed, which allows the description of the M-variety \mathbf{R} of all finite \mathscr{R}-trivial monoids and gives a decision procedure for membership in \mathbf{R}. This class with its left-right dual leads to the definition of a new M-variety, which again turns out to be decidable.

Résumé. - On définit une classe de systèmes de réécriture finis, noethériens et confluents, qui donne une description de la M-variété \mathbf{R} des monoïdes finis \mathscr{R}-triviaux et qui fournit un algorithme pour décider l'appartenance à R. La combinaison de cette classe avec son dual mène à la définition d'une nouvelle M-variété, également décidable.

INTRODUCTION

In 1972 [7] and 1975 [8], I. Simon characterized the class of languages which have a finite γ-trivial syntactic monoid. In 1978 [1] and 1976 [2] his ideas have been modified to yield a characterization of those languages with an \mathscr{R}-trivial syntatic monoid.

This way of proceeding seems unnatural in the following sense : in a semigroup S, \mathscr{R} and \mathscr{L} are defined and then \mathscr{H} and \mathscr{D} are derived by forming $\mathscr{H}=\mathscr{R} \cap \mathscr{L}$ and $\mathscr{D}=\mathscr{R} \vee \mathscr{L}$. Since we are considering finite monoids, $\mathcal{F}=\mathscr{D}$. Therefore it seems to be desirable to characterize the languages with finite \mathscr{R}-trivial syntactic monoid and then to derive a characterization for the languages with finite g-trivial monoid. This is done in the first chapter of this paper. As a by-product we get a characterization of the M-variety $\mathbf{R} \vee \mathbf{L}$, generated by finite \mathscr{R}-trivial and \mathscr{L}-trivial monoids.

The second chapter gives an effective construction of a reduction system which allows to decide for a given finite monoid M whether $M \in \mathbf{R}$.

[^0]The construction of the irreducible word associated to a given word can be realized by a sequential transducer.

The Semi-Thue-Systems constructed in chapter two are combined in chapter three to define an M-variety between $\mathbf{R} \vee \mathbf{L}$ and $\mathbf{A p}$, the class of aperiodic monoids, which again turns out to be decidable.

I am indebted to my colleague V. Strehl, to F. Baader and to the referee for useful hints and comments.

1. RIGHT- AND LEFT-TESTABLE LANGUAGES

In this section we present a new description of some congruences which give a characterisation of the class of all \mathscr{R}-trivial, \mathscr{L}-trivial and \mathscr{Z}-trivial monoids respectively. We first recall some definitions and facts :

DÉfinition 1.1 : Let M be a monoid. M is called

$$
\begin{aligned}
& \mathscr{R} \text {-trivial, if } \forall a, b \in M(a M=b M \Rightarrow a=b) \\
& \mathscr{L} \text {-trivial, if } \forall a, b \in M(M a=M b \Rightarrow a=b) \\
& \text { (-trivail, if } \forall a, b \in M(M a M=M b M \Rightarrow a=b) .
\end{aligned}
$$

The classes \mathbf{R}, \mathbf{L} and \mathbf{J} of all finite \mathscr{R}-trivial, \mathscr{L}-trivial and \mathscr{F}-trivial monoids respectively are M-varieties in the sense of Eilenberg [2], that is a class of finite monoids closed under taking submonoids, homomorphic images and finite direct products. \mathbf{R} is ultimately defined by the sequence of equations $(x y)^{k} x=(x y)^{k}(k \in \mathbb{N})$. This means : A finite monoid M belongs to \mathbf{R} iff there is some $k \in \mathbb{N}$ such that $(x y)^{k} x=(x y)^{k}$ holds in M. Similarly \mathbf{L} is ultimately defined by $x(y x)^{k}=(y x)^{k}$ and \mathbf{J} is ultimately defined by $(x y)^{k} x=(x y)^{k}=y(x y)^{k}$. Notice that $\mathbf{J}=\mathbf{R} \cap \mathbf{L}$.

A congruence relation ρ on a monoid M is called fully invariant, if for each endomorphism $f: M \rightarrow M(u, v) \in \rho$ implies $(f(u), f(v)) \in \rho$ i.e. $\rho \subseteq f \circ \rho \circ f^{-1}$, where «०» denotes relational product. The minimal equivalence relation on M is called Δ_{M}, the maximal Ω_{M}. The subscripts are omitted, if the monoid M is clear from the context. For a finite alphabet Σ and a subset L of Σ^{*}, the free monoid generated by Σ, denote by σ_{L} the syntactic congruence of L. This is the largest congruence relation with the property

$$
\sigma_{L} \subseteq \pi_{L}:=(L \times L) \cup\left(\Sigma^{*} \backslash L\right) \times\left(\Sigma^{*} \backslash L\right)
$$

The quotient monoid Σ^{*} / σ_{L} is called the syntactic monoid of L and denoted by $M(L)$.

The length of a word $u \in \Sigma^{*}$ is denoted by $|u|$.

[^1]Definition 1.2: For $w \in \Sigma^{*}$ denote by $\alpha(w)$ the alphabet of w, i.e.

$$
\alpha(w)=\left\{\sigma \in \Sigma \mid \exists u, v \in \Sigma^{*} w=u \sigma v\right\} .
$$

For $k \in \mathbb{N}$ define

$$
\begin{gathered}
R_{k}:=\left\{(u \sigma, u) \mid \exists u_{1}, \ldots, u_{k} \in \Sigma^{*}, \sigma \in \Sigma\right. \text { such that } \\
u=u_{1} \ldots u_{k} \text { and } \\
\left.\alpha\left(u_{1}\right) \supseteq \ldots \supseteq \alpha\left(u_{k}\right) \ni \sigma\right\}
\end{gathered}
$$

$L_{k}:=\left\{(\sigma u, u) \mid\left(u^{r} \sigma, u^{r}\right) \in R_{k}\right\}$, where u^{r} denotes the reversal of a word $u \in \Sigma^{*}$. $\rho_{k}\left(\lambda_{k}\right.$ resp.) denotes the congruence relation on Σ^{*} generated by R_{k} (L_{k} resp.).

A language $L \subseteq \Sigma^{*}$ is called right-testable, (left-testable resp.) if there is some integer k, such that L is a union of some equivalence-classes of $\rho_{k}\left(\lambda_{k}\right.$ resp.) (we say L is ρ_{k}-saturated).

From this definition we can immediately see the following facts and their left-right-duals :

Remark 1.3.
(1) $R_{k+1} \subseteq R_{k}, \rho_{k+1} \subseteq \rho_{k}(k \in \mathbb{N})$.
(2) $(u \sigma, u) \in R_{k} \Rightarrow \forall w \in \Sigma^{*}(w u \sigma, w u) \in R_{k}$.
(3) $\rho_{0}=\lambda_{0}=\Omega$.
(4) For every $u, v \in \Sigma^{*} u \neq v$ there is a maximal $k \in \mathbb{N}$ such that $(u, v) \in \rho_{k}$: Indeed $(u, v) \in \rho_{0}$ but $(u, v) \notin \rho_{m}$ for $m=1+\min (|u|,|v|)$.

The set R_{k} can be considered as a reduction system, which is evidently noetherian.

Lemma $1.4: R_{k}=\left\{(u \sigma, u) \mid u \in \Sigma^{*}, \sigma \in \Sigma,(u \sigma, u) \in \rho_{k}\right\}$.
Proof: The inclusion from left to right is obvious. Let $(u \sigma, u) \in \rho_{k}$ and $u_{1} \ldots . . u_{s}$ the following decomposition of $u \sigma$ as a product of non-empty words : For every $i=1, \ldots, s, u_{i}$ is the shortest prefix of $u_{i} \ldots . . u_{s}$, which contains every letter of $u_{i}, \ldots . u_{s}: \alpha\left(u_{i}\right)=\alpha\left(u_{i} \ldots . . u_{s}\right)$.

If we assume $s<k$, then no relation of R_{k} can be applied to $u \sigma$. But R_{k} generates ρ_{k}, so $s \geqslant k$ follows. If $u_{1} \ldots . . u_{k}$ is not a prefix of u, but $u_{1} \ldots . u_{k}=u \sigma$, then $u \sigma$ is a prefix of every word w, which can be derived from $u \sigma$ by relations contained in R_{k}. Since u is a proper prefix of $u \sigma, u_{1} \ldots . . u_{k}$ has to be a prefix of u and we obtain a decomposition $u=u_{1} \ldots u_{k} w$ with

$$
\alpha\left(u_{1}\right) \supseteq \alpha\left(u_{2}\right) \supseteq \ldots \supseteq \alpha\left(u_{k-1}\right) \supseteq \alpha\left(u_{k} w\right) \ni \sigma \quad \text { and } \quad(u \sigma, u) \in R_{k} \text { follows }
$$

vol. $19, \mathrm{n}^{0} 3,1985$

Lemma $1.5: \rho_{k}$ and λ_{k} are fully invariant congruence relations on Σ^{*} of finite index.

Proof: Since ρ_{k} is generated by R_{k}, it is sufficient to prove :

$$
(u \sigma, u) \in R_{k}, \quad f \in \operatorname{End}\left(\Sigma^{*}\right) \Rightarrow(f(u \sigma), f(u)) \in \rho_{k} .
$$

Let $f(\sigma) \neq \Lambda$ since otherwise we are done. From $u=u_{1} \ldots u_{k}$ with $\alpha\left(u_{1}\right) \supseteq \ldots \supseteq \alpha\left(u_{k}\right) \ni \sigma$ follows $\alpha\left(f\left(u_{1}\right)\right) \supseteq \ldots \supseteq \alpha\left(f\left(u_{k}\right)\right) \supseteq \alpha(f(\sigma))$.

If $f(\sigma)=\sigma_{1} \ldots \sigma_{s}\left(\sigma_{i} \in \Sigma, i=1, \ldots, s\right)$ then $f(u \sigma)=f\left(u_{1}\right) \ldots f\left(u_{k}\right) . \sigma_{1} \ldots \sigma_{s}$ and from $\alpha\left(f\left(u_{k}\right)\right) \ni \sigma_{i}$ for each $i=1, . ., s$ we obtain $(f(u \sigma), f(u)) \in \rho_{k}$.

Let $A_{k, \Sigma}$ be the set of all irreducible words over Σ relative to R_{k}. Then

$$
\begin{align*}
& A_{0, \Sigma}=\{\Lambda\} \text { for all finite alphabets } \Sigma \tag{I}\\
& A_{k, \phi}=\{\Lambda\} \text { for all } k \in \mathbb{N} \tag{II}
\end{align*}
$$

From (I), (II) and the following proposition we deduce by induction that ρ_{k} has finite index. The left-right-dual proves the lemma for λ_{k}.

PROPOSITION $1.6: A_{k, \Sigma}=\{\Lambda\} \cup \bigcup_{\sigma \in \Sigma} A_{k, \Sigma-\sigma} . \sigma \cdot A_{k-1, \Sigma}$ for all $k>0$, $\Sigma \neq \varnothing$.

Proof: We prove the inclusion from left to right : Let $w \in A_{k, \Sigma} \backslash\{\Lambda\}$ and u the shortest prefix of w, which contains every letter of $w: \alpha(u)=\alpha(w), w=u v$.

Since u is shortest possible, $u=u^{\prime} \sigma$ with $\sigma \notin \alpha\left(u^{\prime}\right)$.
Since w is irreducible, $u^{\prime} \in A_{k, \Sigma \backslash \sigma}$.
If we had $v \notin A_{k-1, \Sigma}$, then v would be reducible.
This means $v=v_{1} v_{2} \ldots v_{k-1} \tau v^{\prime}\left(\tau \in \Sigma, v^{\prime} \in \Sigma^{*}\right)$ and $\alpha\left(v_{1}\right) \supseteq \ldots \supseteq \alpha\left(v_{k-1}\right) \ni \tau$.
Since $\alpha(u)=\alpha(w)$ we have $\alpha(u) \supseteq \alpha\left(v_{1}\right) \supseteq \ldots \supseteq \alpha\left(v_{k-1}\right) \ni \tau$ and w is reducible, contradicting our assumption, thus $v \in A_{k-1, \Sigma}$.

For the opposite inclusion let $u \in A_{k, \Sigma-\sigma}, v \in A_{k-1, \Sigma}$ and suppose $w=u \sigma v \notin A_{k, \Sigma}$.

Since w is reducible, a letter of w can be removed. $\sigma \notin \alpha(u)$, thus this letter either occurs in u or in v. If it occurs in u, then $u \notin A_{k, \Sigma \backslash \sigma}$ contrary to our assumption.

If it occurs in v then we have a decomposition

$$
\begin{gathered}
w=w_{1} w_{2} \ldots w_{k} \tau w^{\prime}, \quad \text { where } \alpha\left(w_{1}\right)=\alpha(w), \\
\alpha\left(w_{1}\right) \supseteq \ldots \supseteq \alpha\left(w_{k}\right) \ni \tau .
\end{gathered}
$$

Since $\alpha\left(w_{1}\right)=\alpha(u), u$ is shorter than w_{1} or $u=w_{1}$.
Now $\left(w_{2} \ldots w_{k} \tau, w_{2} \ldots w_{k}\right) \in R_{k-1}$, hence $v \notin A_{k-1, \Sigma}$.

Proposition 1.7: The following propositions are equivalent for $L \subseteq \Sigma^{*}$:
a) L is right-testable.
b) $M(L) \in \mathbf{R}$.

Proof : Let L be right-testable, i.e. L is ρ_{k}-saturated for some $k \in \mathbb{N}$. Then $\rho_{k} \subseteq \pi_{L}$ and since ρ_{k} is a congruence relation, $\rho_{k} \subseteq \sigma_{L}$. Since ρ_{k} is fully invariant, each relation in Σ^{*} / ρ_{k} is a law in Σ^{*} / ρ_{k}. Obviously for $\sigma, \tau \in \Sigma$ we have $\left((\sigma \tau)^{k} \sigma,(\sigma \tau)^{k}\right) \in \rho_{k}$, and therefore

$$
(x y)^{k} x=(x y)^{k}
$$

holds in Σ^{*} / ρ_{k}. (If Σ consists of one letter σ only then

$$
\Sigma^{*} / \rho_{k} \cong A_{k, \Sigma}=\left\{\Lambda, \sigma, \sigma^{2}, \ldots, \sigma^{k}\right\}
$$

with multiplication $\sigma^{i} \sigma^{j}=\sigma^{\min (k, i+j)}$, which is clearly an \mathscr{R}-trivial monoid). Since $(x y)^{k} x=(x y)^{k}$ ultimately defines $\mathbf{R}, \Sigma^{*} / \rho_{k} \in \mathbf{R}$ and $\rho_{k} \subseteq \sigma_{L}$ implies

$$
M(L) \in \mathbf{R}
$$

Now let $L \subseteq \Sigma^{*}$ and $M(L) \in \mathbf{R}$.
To prove that L is right-testable we have to show : $\rho_{k} \subseteq \pi_{L}$ for some $k \in \mathbb{N}$.
To conclude this, it is sufficient to show :

$$
R_{k} \subseteq \sigma_{L} \text { for some } k \in \mathbb{N}
$$

Let $|M(L)|=k+1$ and $(u \sigma, u) \in R_{k}$. We set $\pi:=\sigma_{L}$ for convenience.

$$
(u \sigma, u) \in R_{k} \text { means }: u=u_{1} \ldots u_{k}, \alpha\left(u_{1}\right) \supseteq \ldots \supseteq \alpha\left(u_{k}\right) \ni \sigma
$$

Consider the sequence of words

$$
w_{0}=\Lambda, w_{1}=u_{1}, w_{2}=u_{1} u_{2}, \ldots, w_{k}=u_{1} \ldots u_{k}, w_{k+1}=u_{1} \ldots u_{k} \sigma
$$

Since $|M(L)|=k+1$ one can find $i, j \in\{0, \ldots, k+1\}$ such that $i<j$ and $\left(w_{i}, w_{j}\right) \in \pi$.

If $i=k$, then $w_{i}=u, w_{j}=u \sigma$ and nothing is to be done.
If $i<k$: it suffices to show :

$$
\left(^{*}\right) \quad \forall \tau \in \alpha\left(u_{i+1}\right) \quad\left(w_{i}, w_{i} \tau\right) \in \pi .
$$

Then we have the conclusion

$$
\begin{array}{rlr}
& \left(w_{i}, w_{i} \sigma\right) \in \pi & \text { for all } \sigma \in \alpha\left(u_{i+1}\right) \\
\Rightarrow & \left(w_{i} \tau, w_{i} \sigma \tau\right) \in \pi & \\
\Rightarrow & \text { (since } \pi \text { is a congruence relation) } \\
\Rightarrow & \left(w_{i}, w_{i} \sigma \tau\right) \in \pi &
\end{array}
$$

vol. $19, \mathrm{n}^{0} 3,1985$

Since $\alpha\left(u_{i+1}\right) \supseteq \alpha\left(u_{i+2}\right) \supseteq \ldots \supseteq \alpha\left(u_{k}\right) \ni \sigma$ we infer

$$
\begin{aligned}
& \left(w_{i}, w_{k}\right) \in \pi \\
& \left(w_{i}, w_{k+1}\right) \in \pi
\end{aligned}
$$

and we obtain $\left(w_{k}, w_{k+1}\right)=(u, u \sigma) \in \pi$.
To show $\left(^{*}\right)$ denote $[w]_{\pi}$ by \bar{w} and $M(L)$ by M and let $\tau \in \alpha\left(u_{i+1}\right)$. Then

$$
w_{i+1}=w_{i} v \tau v^{\prime}\left(v, v^{\prime} \in \Sigma^{*}\right) .
$$

Now

$$
\bar{w}_{i} M \supseteq \overline{w_{i} v} M \supseteq \overline{w_{i} v \tau} M \supseteq \bar{w}_{j} M .
$$

Since $\bar{w}_{i}=\bar{w}_{j}$ we have equality everywhere in the line above. But $M \in \mathbf{R}$ so we get

$$
\bar{w}_{i}=\overline{w_{i} v}=\overline{w_{i} v \tau}
$$

from where we conclude

$$
\bar{w}_{i}=\overline{w_{i}} \tau, \text { i.e. }\left(w_{i}, w_{i} \tau\right) \in \sigma_{L}
$$

Combining theorem 1.7 and its left-right-dual we obtain :
Theorem 1.8: The following propositions are equivalent for $L \subseteq \Sigma^{*}$:
a) L is $\rho_{k} \vee \lambda_{k}$-saturated for some $k \in \mathbb{N}$.
b) $M(L) \in \mathbf{J}$.

Proof : Let L be $\rho_{k} \vee \lambda_{k}$-saturated, i.e

$$
\rho_{k} \vee \lambda_{k} \subseteq \sigma_{L}
$$

Then $\rho_{k} \subseteq \sigma_{L}, \lambda_{k} \subseteq \sigma_{L}$, and therefore

$$
M(L) \in \mathbf{R} \cap \mathbf{L}=\mathbf{J}
$$

Now let $M(L) \in \mathbf{R} \cap \mathbf{L}$. There are $r, l \in \mathbb{N}$ such that $\rho_{r} \subseteq \sigma_{L}, \lambda_{l} \subseteq \sigma_{L}$.
Then for $k=\max (r, l)$ we have $\rho_{k} \vee \lambda_{k} \subseteq \sigma_{L}$.
Theorem 1.9: The following propositions are equivalent for $L \subseteq \Sigma^{*}$.
a) L is $\rho_{k} \cap \lambda_{k}$-saturated.
b) $M(L) \in \mathbf{R} \vee \mathbf{L}$.

Proof: Let $\rho_{k} \cap \lambda_{k} \subseteq \sigma_{L}$. This means Σ^{*} / σ_{L} is a homomorphic image of a subdirect product of Σ^{*} / ρ_{k} and Σ^{*} / λ_{k}. Since $\Sigma^{*} / \rho_{k} \in \mathbf{R}, \Sigma^{*} / \lambda_{k} \in \mathbf{L}$, we obtain $M(L) \in \mathbf{R} \vee \mathbf{L}$.
R.A.I.R.O. Informatique théorique/Theoretical Informatics

Now let $M(L) \in \mathbf{R} \vee \mathbf{L}$. There are finite alphabets Γ, Θ and congruence relations γ on Γ^{*}, θ on Θ^{*} such that for some $k \in \mathbb{N}$

$$
\begin{aligned}
& \rho_{k, \Gamma} \subseteq \gamma \\
& \lambda_{k, \Theta} \subseteq \theta
\end{aligned}
$$

and

$$
\begin{array}{r}
\Gamma^{*} / \gamma \times \Theta^{*} / \theta \\
\underset{\longrightarrow}{\longrightarrow} M(L)
\end{array}
$$

We can assume $\Gamma \cap \Theta=\varnothing$.
The homomorphism

$$
(\Gamma \cup \Theta)^{*} \xrightarrow{\left(f_{1}, \rho_{2}\right)} \Gamma^{*} / \gamma \times \Theta^{*} / \theta
$$

defined by

$$
\begin{aligned}
& \sigma \xrightarrow{f_{1}}\left\{\begin{array}{lll}
\sigma, & \text { if } & \sigma \in \Gamma \\
\Lambda, & \text { if } & \sigma \in \Theta
\end{array}\right. \\
& \sigma \xrightarrow{f_{2}}\left\{\begin{array}{lll}
\sigma, & \text { if } & \sigma \in \Theta \\
\Lambda, & \text { if } & \sigma \in \Gamma
\end{array}\right.
\end{aligned}
$$

has surjective projections and thus for

$$
\begin{aligned}
& \gamma^{\prime}=f_{1} \circ \gamma \circ f_{1}^{-1} \\
& \theta^{\prime}=f_{2} \circ \theta \circ f_{2}^{-1} \\
& X=\Gamma \cup \Theta
\end{aligned}
$$

we have

$$
X^{*} / \gamma^{\prime} \cap \theta^{\prime} \cong \Gamma^{*} / \gamma \times \Theta^{*} / \theta
$$

and since ρ_{k} and λ_{k} are fully invariant we obtain

$$
\begin{aligned}
& \rho_{k, X} \subseteq f_{1} \circ \rho_{k, \Gamma} \circ f_{1}^{-1} \subseteq f_{1} \circ \gamma \circ f_{1}^{-1} \subseteq \gamma^{\prime} \\
& \dot{\lambda}_{k, X} \subseteq f_{2} \circ \lambda_{k, \Theta} \circ f_{2}^{-1} \subseteq f_{2} \circ \theta \circ f_{2}^{-1} \subseteq \theta^{\prime}
\end{aligned}
$$

and

$$
\rho_{k, X} \cap \lambda_{k, X} \subseteq \gamma^{\prime} \cap \theta^{\prime} \text { follows }
$$

There are a congruence relation β on X^{*} such that $X^{*} / \beta \simeq M(L)$ and $\gamma^{\prime} \cap \theta^{\prime} \subseteq \beta$ and $f: \Sigma^{*} \rightarrow X^{*}$ making

vol. $19, \mathrm{n}^{\mathrm{o}} 3,1985$
commutative. Now

$$
\begin{aligned}
\sigma_{L} & =f \circ \beta \circ f^{-1} \supseteq f \circ\left(\rho_{k, X} \cap \lambda_{k, X}\right) \circ f^{-1} \supseteq \\
& \supseteq f \circ \rho_{k, X^{\prime}} \circ f^{-1} \cap f \circ \lambda_{k, X^{\circ}} \circ f^{-1} \supseteq \rho_{k, \Sigma} \cap \lambda_{k, \Sigma}
\end{aligned}
$$

Corollary $1.10:$ Let $M=\Sigma^{*} / \rho$ be a finite monoid.

$$
\begin{align*}
& M \in \mathbf{R} \Leftrightarrow \exists k \quad \rho_{k} \subseteq \rho \tag{1}\\
& M \in \mathbf{L} \Leftrightarrow \exists k \quad \lambda_{k} \subseteq \rho \tag{2}\\
& M \in \mathbf{J} \Leftrightarrow \exists k \quad \rho_{k} \vee \lambda_{k} \subseteq \rho \tag{3}\\
& M \in \mathbf{R} \vee \mathbf{L} \Leftrightarrow \exists k \rho_{k} \cap \lambda_{k} \subseteq \rho \tag{4}
\end{align*}
$$

2. SOME COMBINATORIAL PROPERTIES OF \boldsymbol{p}_{k} AND $\boldsymbol{\lambda}_{k}$

The congruence relations ρ_{k} and λ_{k} have some nice combinatorial properties, which allow a very detailed description of the monoid Σ^{*} / ρ_{k}. The most important of these is :

Lemma 2.1: Every ρ_{k}-class has a unique shortest representative.
Proof: Two words $u, v \in \Sigma^{*}$ which are reducible to the same R_{k}-irreducible word $w \in \Sigma^{*}$ are obviously ρ_{k}-equivalent.

For the opposite direction we prove by induction on $k: R_{k}$ is a confluent Semi-Thue-System.

For $k=0$ we have $R_{k}=\{(\sigma, \Lambda) \mid \sigma \in \Sigma\}$, which is obviously confluent.
Let $k \geqslant 1, w=u \sigma v=u^{\prime} \tau v^{\prime}$ and $(u \sigma, u) \in R_{k},\left(u^{\prime} \tau, u^{\prime}\right) \in R_{k}$. We may assume that u^{\prime} is a prefix of u and thus we have the following situation.

We want to prove

$$
\left(u v, u^{\prime} z v\right) \in \rho_{k} \quad \text { and } \quad\left(u^{\prime} v^{\prime}, u^{\prime} z v\right) \in \rho_{k}
$$

Since $u=u^{\prime} \tau z$ and $\left(u^{\prime} \tau, u^{\prime}\right) \in R_{k}$ we have

$$
\left(u, u^{\prime} z\right) \in \rho_{k} \quad \text { and } \quad\left(u v, u^{\prime} z v\right) \in \rho_{k}
$$

To see the second relation let u_{0} be the shortest prefix of u which contains every letter of u.

If $u^{\prime} \tau$ is a prefix of u_{0}, then the decomposition $u=u_{1} \ldots u_{k}$ with $(A) \alpha\left(u_{1}\right) \supseteq \ldots \supseteq \alpha\left(u_{k}\right) \ni \sigma$ can be converted into a decomposition of $u^{\prime} . z$ because $u^{\prime}=u_{1}^{\prime} \ldots u_{k}^{\prime}$ with $\alpha\left(u_{1}^{\prime}\right) \supseteq \cdots \supseteq \alpha\left(u_{k}^{\prime}\right) \quad \tau$ and so cancelling this occurrence of τ does not effect the inclusions of (A).

If $u^{\prime} \tau$ is not a prefix of u_{0}, then u_{0} is a prefix of $u^{\prime} \tau$ and since $\left(u^{\prime} \tau, u^{\prime}\right) \in R_{k}$, u_{0} is a prefix of u^{\prime}.

$$
\begin{aligned}
u & =u_{0} v_{0} \\
u^{\prime} & =u_{0} v_{0}^{\prime}
\end{aligned}
$$

Now we have $\left(v_{0} \sigma, v_{0}\right) \in R_{k-1},\left(v_{0}^{\prime} \tau, v_{0}^{\prime}\right) \in R_{k-1}$.
By hypothesis we have

$$
\left(v_{0}^{\prime} z \sigma, v_{0}^{\prime} z\right) \in R_{k-1}
$$

from where we get
and

$$
\left(u_{0} v_{0}^{\prime} z \sigma, u_{0} v_{0}^{\prime} z\right) \in R_{k}
$$

Remark 2.2
(1) Since the order, in which the reduction steps of R_{k} are applied, is immaterial, we can do it from left to right by applying the leftmost possible reduction recursively until the resulting word is reduced. This yields an algorithm for the construction of the shortest representative irr (w) of a given $w \in \Sigma^{*}$ and thus a decision procedure for the word problem in Σ^{*} / ρ_{k} :

vol. 19, no 3, 1985
(2) The considerations under (1) show the significance of knowing the set of all irreducible words over Σ relative to R_{k}.
(3) The set $A_{k, \Sigma}$ of all irreducible words over Σ is a tree; every prefix of an irreducible word is irreducible.
(4) From (1) a decision procedure for the word problem in $\Sigma^{*} / \rho_{k} \cap \lambda_{k}$ is easily derived.

Examples 2. $3: k=3$

$$
\begin{aligned}
& w=\frac{a a b_{1} a_{1} a_{1} a b a b b a=a \operatorname{lob} a a_{1} a b_{1} a b_{1} b a}{u_{1} u_{2} u_{3}} \\
& \downarrow \\
& a \operatorname{aba} \frac{a b_{b} a b, b a}{v_{3} \quad v_{2} \quad v_{1}} \\
& \downarrow \\
& \frac{a a b_{1} a a b_{1} a b_{1} b a}{u_{1} \quad u_{2}} \frac{u_{3}}{u_{3}} \quad a a b_{\llcorner } a b_{1} a b_{1} b a_{3} \\
& a a b a a b a b \\
& a b a b b a
\end{aligned}
$$

$w \rho_{3}$-reduces to $a a b a a b a b$ and λ_{3}-reduces to $a b a b b a$. In each step the word $u_{1} u_{2} u_{3}$ is the maximal λ_{3}-reduced prefix and $v_{3} v_{2} v_{1}$ is the maximal $\lambda_{3}-$ reduced suffix.

The set $A_{k, \Sigma}$ of all ρ_{k}-irreducible words over Σ is contained in

$$
\{\Lambda\} \cup \bigcup_{\sigma \in \Sigma} A_{k, \Sigma-\sigma} \cdot \sigma \cdot A_{k-1, \Sigma}
$$

by proposition 1.6. The following lemma gives a recursive construction of $A_{k, \Sigma}$ as a disjoint union of simpler sets.

Lemma 2.4 : For $k \in \mathbb{N}$ and a finite alphabet Σ define

$$
\begin{aligned}
& D_{k, \Sigma}=\left\{u \in A_{k, \Sigma} \mid \alpha(u)=\Sigma\right\}, \\
& \quad \text { R.A.I.R.O. Informatique theorique/Theoretical Informatics }
\end{aligned}
$$

then

$$
D_{k, \phi}=\{\Lambda\}, \quad D_{0, \Sigma}=\varnothing(k \geqslant 0, \Sigma \neq \varnothing)
$$

and

$$
D_{k, \Sigma}=\bigcup_{\sigma \in \Sigma}\left(D_{k, \Sigma-\sigma} \cdot \sigma \cdot \bigcup_{\Sigma^{\prime} \subseteq \Sigma} D_{k-1, \Sigma^{\prime}}\right)(\Sigma \neq \varnothing, k \geqslant 1)
$$

and all unions are disjoint.
Proof:
(1) If $\Sigma \neq \Sigma^{\prime}$, then $D_{k, \Sigma} \cap D_{k, \Sigma^{\prime}}=\varnothing(k \geqslant 0)$.
(2) $A_{k, \Sigma}=\bigcup_{\Sigma^{\prime} \subseteq \Sigma} D_{k, \Sigma^{\prime}}$ is a disjoint union for all $k \geqslant 0$.
(3) Let $w \in D_{k, \Sigma}$ and u the shortest prefix of w with $\alpha(u)=\alpha(w)=\Sigma$. As in the proof of proposition 1.6 we have $w=u v, u=u^{\prime} \sigma$ with

$$
\begin{aligned}
& \sigma \in \Sigma, u^{\prime} \in D_{k, \Sigma-\sigma} \text { and } v \in A_{k-1, \Sigma} \text { and so } \\
& D_{k, \Sigma} \subseteq \bigcup_{\sigma \in \Sigma}\left(D_{k, \Sigma-\sigma} . \sigma . A_{k-1, \Sigma}\right) \text { follows. }
\end{aligned}
$$

The opposite inclusion follows as in proposition 1.6 if one additionally notes that if $u \in D_{k, \Sigma-\sigma}, v \in A_{k-1, \Sigma}$, then $\alpha(u \sigma v)=\Sigma$. From (2) follows the desired formula and from (1) follows the disjointness.

$$
\begin{aligned}
& \text { Let } a_{k, n}:=\left|A_{k, \Sigma}\right| \quad \text { for an } n \text {-letter alphabet } \Sigma, k \geqslant 0 \\
& \text { and } d_{k, n}:=\frac{\left|D_{k, \Sigma}\right|}{n!} \text { for an } n \text {-letter alphabet } \Sigma, k \geqslant 0 .
\end{aligned}
$$

Since permuting the letters of Σ preserves reducedness,
$\left|D_{k, \Sigma}\right|$ is divisible by $n!$ if Σ consists of n letters .
Corollary 2.5:
(1) $d_{1, n}=1=d_{k, 0}(k \geqslant 0, n \geqslant 0), d_{0, n}=0(n>0)$.
(2) $d_{k, n}=d_{k, n-1} \cdot \sum_{r \leqslant n}(n)_{r} d_{k-1, r}(k>0, n>0)$
(3) $a_{k, n}=\frac{d_{k+1, n}}{d_{k+1, n-1}} \quad(k \geqslant 0, n>0)$
where $(n)_{r}$ denotes falling factorials :

$$
(n)_{r}=n \cdot(n-1) \ldots .(n-r+1) .
$$

vol. 19, n° 3, 1985

Proof: To see (1), observe that

$$
D_{k, \phi}=\{\Lambda\}(k \geqslant 0), D_{0, \Sigma}=\varnothing(\Sigma \neq \varnothing)
$$

and if $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$, then

$$
D_{1, \Sigma}=\left\{\sigma_{p(1)} \ldots \sigma_{p(n)} \mid p \in S_{n}\right\}
$$

(2) The lemma implies for $k \geqslant 1, n>0$

$$
n!d_{k, n}=n \cdot(n-1)!d_{k, n-1} \cdot \sum_{r \leqslant n}\binom{n}{r} r!d_{k-1, r}
$$

from which (2) follows.
(3) From the proof of the lemma follows

$$
\begin{aligned}
a_{k, n} & =\sum_{r \leqslant n}\binom{n}{r} r!d_{k, r} \\
& =\sum_{r \leqslant n}(n)_{r} d_{k, r}=\frac{d_{k+1, n}}{d_{k+1, n-1}} .
\end{aligned}
$$

Calculation of the first of these numbers gives the tables:

$a_{k, n}$	0	1	2	3	4	5	6	7
0	1	1	1	1	1	1	1	1
1	1	2	3	4	5	6	7	8
2	1	5	25	157	1265	12661	151945	2127245
3	1	16	1027	462610				
4	1	65	253569					
5	1	326	408105811					
6	1	1957						
7	1	13700						
8	1	109601						
9	1986410							

To give an example, let $k=2, \Sigma=\{a, b\}$. Since $d_{2,2}=10, d_{2,1}=2$, $d_{2,0}=1$
Λ
a, a^{2}
$a b, a a b, a b a, a a b a, a b b, a a b b, a b a b, a a b a b, a b b a, a a b b a$
is a complete list of types of reduced words for $\rho_{2, \Sigma}$. A list for $A_{2, \Sigma}$ is obtained by applying the permutation (a, b) to the letters of each word.

Lemma $2.6:$ Let $l_{k, n}:=\max \left\{|w|: w \in A_{k, \Sigma^{\prime}}|\Sigma|=n\right\}$
and

$$
Q_{k, \Sigma}=\left\{w \in A_{k, \Sigma}: w\left|=l_{k, n}, n=|\Sigma|\right\}\right.
$$

Then

$$
\begin{aligned}
& Q_{0, \Sigma}=\{\Lambda\}, \quad Q_{k, \phi}=\{\Lambda\} \text { and for } k \geqslant 1, \Sigma \neq \varnothing \\
& Q_{k, \Sigma}=\bigcup_{\sigma \in \Sigma} Q_{k, \Sigma-\sigma} \cdot \sigma \cdot Q_{k-1, \Sigma} \\
& Q_{k, \Sigma}=\bigcup_{\left(\sigma_{1}, \ldots, \sigma_{k}\right) \in \Sigma^{k}} Q_{k, \Sigma-\sigma_{1}} \cdot \sigma_{1} \cdot Q_{k-1, \Sigma-\sigma_{2}} \cdot \sigma_{2} \ldots . \cdot Q_{1, \Sigma-\sigma_{k}} \sigma_{k} .
\end{aligned}
$$

Moreover

$$
l_{k, n}=\binom{n+k}{k}-1 \quad(k \geqslant 0, n \geqslant 0) .
$$

Proof: Let $w \in Q_{k, \Sigma}, k \geqslant 1, \Sigma \neq \varnothing$.
Then $w=u \sigma v$ with $u \in D_{k, \Sigma-\sigma}, v \in A_{k-1, \Sigma}$.
If $u \notin Q_{k, \Sigma-\sigma}$, then an arbitrary $u^{\prime} \in Q_{k, \Sigma-\sigma}$ gives a word $w^{\prime}=u^{\prime} \sigma v$ with $\left|w^{\prime}\right|>|w|$. If $v \notin Q_{k-1, \Sigma}$ then each $v^{\prime} \in Q_{k-1, \Sigma}$ gives a word $w^{\prime}=u \sigma v^{\prime}$ with $\left|w^{\prime}\right|>|w|$. Since the opposite inclusion is obvious, the first equation is established.

The second equation follows by recursive application of the first.
The third formula is true for $k=0$ and all n and for $n=0$ and all k. The first equation implies for the lengths :

$$
l_{k, n}=l_{k, n-1}+1+l_{k-1, n} .
$$

Assuming the formula to be true for all indices with sum $\leqslant k+n-1$ we get

$$
l_{k, n}=\binom{n+k-1}{k}+\binom{n+k-1}{k-1}-1=\binom{n+k}{k}-1 .
$$

The number $l_{k, n}$ is the depth of the tree of minimal representatives of $\rho_{k, \Sigma}$ $\left(\left|\Sigma_{\mid}\right|=n\right)$. It also allows to give an upper bound for a finite generating system for ρ_{k} :

Corollary 2.7 : There is a generating system for $\rho_{k, \Sigma}$ with at most $n^{\binom{n+k}{k}}$ elements if $|\Sigma|=n$.

Proof : Following remark 2.2 shows that

$$
\left\{(u \sigma, u) \mid u \in A_{k, \Sigma}, u \sigma \notin A_{k, \Sigma}, \sigma \in \Sigma\right\}
$$

is a generating system for ρ_{k}. Since $A_{k, \Sigma}$ is a tree, the cardinality of the set

$$
\left\{u \in A_{k, \Sigma} \mid u \sigma \notin A_{k, \Sigma}\right\}
$$

is at most $n^{l_{k, n}}$. Since there are n choices for $\sigma \in \Sigma$ one has at most

$$
n^{l_{k, n}+1}=n^{\binom{n+k}{k}} \text { pairs in the generating system }
$$

Next we study the set of idempotents in Σ^{*} / ρ_{k}.
Lemma 2.8: A word $w \in \Sigma^{*}$ is idempotent, i.e. $\left(w^{2}, w\right) \in \rho_{k, \Sigma}$ iff

$$
w=u_{1} \ldots u_{k} \quad \text { with } \quad \alpha\left(u_{1}\right)=\cdots=\alpha\left(u_{k}\right)
$$

Proof: If $w=u_{1} \ldots u_{k}$ with $\alpha\left(u_{1}\right)=\cdots=\alpha\left(u_{k}\right)$ then for each $\sigma \in \alpha(w)$ one has

$$
\alpha\left(u_{1}\right) \supseteq \ldots \supseteq \alpha\left(u_{k}\right) \ni \sigma
$$

and $(w \sigma, w) \in \rho_{k}$ follows, which implies

$$
(w w, w) \in \rho_{k} .
$$

On the other hand let $(w w, w) \in \rho_{k}$. Decompose $w=w_{1} \ldots w_{k}$, where w_{i} is the shortest prefix of $w_{i} \ldots w_{k}$, which contains all the letters of $w_{i} \ldots w_{k}$. Since $\left(w^{2}, w\right) \in \rho_{k}$, we have $\alpha\left(w_{1}\right) \supseteq \ldots \supseteq \alpha\left(w_{k}\right) \supseteq \alpha\left(w_{1}\right)$, from where the desired equality follows.

Corollary 2.9 : Let $w \in \Sigma^{*}$. Then

$$
\left(w^{2}, w\right) \in \rho_{k} \Leftrightarrow\left(w^{2}, w\right) \in \lambda_{k} \Leftrightarrow\left(w^{2}, w\right) \in \rho_{k} \cap \lambda_{k} .
$$

R.A.I.R.O. Informatique théorique/Theoretical Informatics

Remark and Example 2.10:

a) Denote by $F_{r, \Sigma}^{\prime}, F_{r, \Sigma}$ resp. the set

$$
\begin{aligned}
& F_{r, \Sigma}^{\prime}=\left\{w \in \Sigma^{*} \mid\left(w^{2}, w\right) \in \rho_{r}\right\} \\
& F_{r, \Sigma}=\left\{w \in \Sigma^{*} \mid\left(w^{2}, w\right) \in \rho_{r}, \alpha(w)=\Sigma\right\} \text { resp. }
\end{aligned}
$$

Then obviously $F_{r, \Sigma}^{\prime}=\bigcup_{r \subseteq \subseteq \Sigma} F_{r, \mathrm{~F}}$ (disjoint) and

$$
\Gamma \subseteq \Sigma \Rightarrow F_{r, \Gamma}^{\prime} \subseteq F_{r, \Sigma}^{\prime}
$$

The lemma says :

$$
F_{s, \Sigma} \cdot F_{t, \Sigma}=F_{s+t, \Sigma}
$$

b) For each word $w \in \Sigma^{*} \backslash\{\Lambda\}$ there is a maximal number $k \in \mathbb{N}$, such that $\left(w^{2}, w\right) \in \rho_{k} \cap \lambda_{k}$. k is obtained by the following algorithm :

Let $E_{k, \Sigma}=\left\{w \in D_{k, \Sigma} \mid\left(w^{2}, w\right) \in \rho_{k}\right\}=D_{k, \Sigma} \cap F_{k, \Sigma}$ the set of ρ_{k}-reduced idempotents with $\alpha(w)=\Sigma$.

Lemma $2.11: E_{k, \phi}=D_{k, \phi}=\{\Lambda\}(k \geqslant 0)$

$$
\begin{aligned}
& E_{0, \Sigma}=D_{0, \Sigma}=\varnothing \quad(\Sigma \neq \varnothing) \\
& E_{k, \Sigma}=\bigcup_{\sigma \in \Sigma} D_{k, \Sigma-\sigma \cdot} \sigma \cdot E_{k-1, \Sigma} \quad(k \geqslant 1, \Sigma \neq \varnothing)
\end{aligned}
$$

Let $e_{k, n}:=\frac{\left|E_{k, \Sigma}\right|}{n!}$ for some Σ with $|\Sigma|=n$.
Then

$$
\begin{gathered}
e_{k, 0}=1 \quad(k \geqslant 0) \\
e_{0, n}=0 \quad(n \geqslant 1) \\
e_{k, n}=n!d_{k, n-1} e_{k-1, n} \quad(k \geqslant 1, n \geqslant 1) .
\end{gathered}
$$

Proof: Obviously $E_{k, \phi}=\{\Lambda\}$ for $k \geqslant 0$ and $E_{0, \Sigma}=\varnothing$ for all $\Sigma \neq \varnothing$.
Let $w \in E_{k, \Sigma}(k \geqslant 1, \Sigma \neq \varnothing)$ and u the shortest prefix of w with $\alpha(u)=\alpha(w)$.
Then $w=u v, u=u^{\prime} \sigma$ with $u^{\prime} \in D_{k, \Sigma-\sigma}$ and $v \in E_{k-1, \Sigma}$, since

$$
v=v_{1} \ldots v_{k-1} \quad \text { with } \quad \alpha\left(v_{1}\right)=\cdots=\alpha\left(v_{k-1}\right)
$$

For the other inclusion take $u \in D_{k, \Sigma-\sigma}, v \in E_{k-1, \Sigma}$.
Since $E_{k, \Sigma} \subseteq D_{k, \Sigma}$ for all k, Σ, we have $u \sigma v \in D_{k, \Sigma}$. Moreover v has a factorisation $v=v_{1} \ldots v_{k-1}$ with $\alpha\left(v_{1}\right)=\cdots=\alpha\left(v_{k-1}\right)=\Sigma$; since $\alpha(u \sigma)=\Sigma$, $u \sigma v \in E_{k, \Sigma}$.

Since evidently the union above is disjoint, we get

$$
n!e_{k, n}=n \cdot(n-1)!d_{k, n-1} \cdot n!e_{k-1, n}
$$

from where the formula follows.
The first values of $e_{k, n}$ are listed in the following table :

		$k \rightarrow$					
$e_{k, n}$	0	1	2	3	4	5	
n	0	1	1	1	1	1	1
\downarrow	1	0	1	1	1	1	1
	2	0	1	4	24	192	1920
	3	0	1	60	25308		
	4	0	1	3840			
	5	0	1				

R.A.I.R.O. Informatique théorique/Theoretical Informatics

Remark 2.12
(1) $Q_{k, \Sigma} \subseteq E_{k, \Sigma}$ for all $k \in \mathbb{N}$.
(2) The monoid Σ^{*} / ρ_{k} is isomorphic to the set $A_{k, \Sigma}$ together with the operation $u . v=\operatorname{irr}(u v)$, where $\operatorname{irr}(u v)$ is the unique word $x \operatorname{in} A_{k, \Sigma}$ with $(x, u v) \in \rho_{k}$. The algorithm of remark 2.2 does this efficiently.
(3) Each of the subsets $D_{k, \Sigma}(\Gamma \subseteq \Sigma)$ constitutes a subsemigroup of $A_{k, \Sigma}$.
(4) Each of the subsets $E_{k, \Gamma}(\Gamma \subseteq \Sigma)$ is an idempotent subsemigroup. Moreover, $E_{k, \Sigma}$ is a two-sided ideal in $A_{k, \Sigma}$.
(5) $E_{k, \Sigma}$ and $Q_{k, \Sigma}$ are subsemigroups of left-zeroes of $A_{k, \Sigma}$.

Example 2.13 : Let again $k=2, \Sigma=\{a, b\}$. Then

$$
\begin{gathered}
l_{2,2}=\binom{2+2}{2}-1=5 \\
Q_{k, \Sigma}=\{a a b a b, a a b b a, b b a b a, b b a a b\} \\
E_{k, \Sigma}=Q_{k, \Sigma} \cup\{a b a b, a b b a, b a b a, b a a b\}
\end{gathered}
$$

Remark 2.14
(1) The word-problem in Σ^{*} / ρ_{k} can now be solved by the following algorithm :
(a) Generate $A_{k, \Sigma}$
(b) Consider $A_{k, \Sigma}$ as a Σ-automaton with state-set $A_{k, \Sigma}$ and operations

$$
u \cdot \sigma=\left\{\begin{array}{lll}
u \sigma, & \text { if } & u \sigma \in A_{k, \Sigma} \\
u & \text { if } & u \sigma \notin A_{k, \Sigma}
\end{array}\right.
$$

where $u \in A_{k, \Sigma}, \sigma \in \Sigma$
(c) Two words $v, w \in \Sigma^{*}$ are ρ_{k}-equivalent, iff $\Lambda . v=\Lambda . w$ in this automaton.
(2) This automaton also gives a possibility to describe the equivalence class of a word w by a regular expression : Consider again the case $\Sigma=\{a, b\}$, $k=2$. Then Σ^{*} / ρ_{k} is the following graph :

(3) If we add the following output function to this automaton

$$
u * \sigma=\left\{\begin{array}{lll}
\Lambda, & \text { if } \quad u \cdot \sigma=u \\
\sigma, & \text { if } & u \cdot \sigma=u \sigma
\end{array}\right.
$$

we obtain a sequential transducer which realizes the function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ which associates to every word $u \in \Sigma^{*}$ its shortest representative $\operatorname{irr}(u)$. This shows that f is a sequential function.
(4) Analogously Σ^{*} / λ_{k} is presented by the following graph :

descending arrows : $\underset{b}{ }$

Note that $A_{k, \Sigma}$ and $B_{k, \Sigma}$ are anti-isomorphic by the mapping $w \mapsto w^{r}$.
The previous considerations allow to give a decision procedure for membership in \mathbf{R}

TheOrem 2.16 : Let M be a monoid of cardinality m with generating system $\Sigma \subseteq M$. The following properties are equivalent :
(1) $M \in \mathbf{R}$
(2) $u \in A_{m . \Sigma}, u \sigma \notin A_{m, \Sigma}(\sigma \in \Sigma) \Rightarrow u \sigma=u$ in M
(3) For $k:=\left\lceil\frac{m-1}{2}\right\rceil$ and every $x, y \in M \quad\{1\}(x y)^{k} x=(x y)^{k}$ or $(y x)^{k} y=$ $(y x)^{k}$ in M.

Proof: (1) $\Leftrightarrow(2)$ follows from corollary 1.10, since ρ_{m} is generated by $\left\{(u \sigma, u) \mid u \in A_{m, \Sigma}, u \sigma \notin A_{m, \Sigma}, \sigma \in \Sigma\right\}$ (Remark 2.2).
(3) \Rightarrow (1) : Let $a, b \in M,(a, b) \in \mathscr{R}$. There are $x, y \in M$ such that $a x=b$, $b y=a$. If $x=1$ or $y=1$ then $a=b$. Hence let $x, y \in M\{1\}$. If $(x y)^{k} x=(x y)^{k}$ then $b=b y x=b(y x)^{k+1}=b y(x y)^{k} x=b(y x)^{k} y=b y=a$. Similarly if $(y x)^{k} y=(y x)^{k}$ we obtain $a=b$; hence $M \in \mathbf{R}$.
$(1) \Rightarrow(3):$ Choose x and y arbitrarily in $M \backslash\{1\}$ and consider the sequence

$$
1, x, x y, x y x,(x y)^{2},(x y)^{2} x, \ldots,(x y)^{k} x
$$

This sequence of $2 k+2$ elements in M must contain two members, which are identical.

Case 1: $\exists s, t \leqslant k, s<t$

Now

$$
\begin{aligned}
(x y)^{s} x & =(x y)^{t} x \\
(x y)^{t} x & =(x y)^{t} \cdot x \\
(x y)^{t} & =(x y)^{s} x \cdot y(x y)^{t-s-1}
\end{aligned}
$$

and
and

$$
\left((x y)^{t} x,(x y)^{t}\right) \in \mathscr{R} . \quad \text { Since } \quad M \in \mathbf{R}, \quad(x y)^{t} x=(x y)^{t}
$$

$$
(x y)^{k} x=(x y)^{k} \text { follows }
$$

Case 2: $\exists s, t \leqslant k, s<t$

$$
(x y)^{s}=(x y)^{t}
$$

Right-multiplication with x gives case 1 .
Case 3: $\exists s, t \leqslant k, s \leqslant t$

$$
(x y)^{s}=(x y)^{t} x
$$

if $s=t$, we are done. Otherwise

$$
\begin{aligned}
(x y)^{t} x & =(x y)^{t} \cdot x \\
(x y)^{t} & =(x y)^{s}(x y)^{t-s} \\
& =(x y)^{t} x \cdot(x y)^{t-s}
\end{aligned}
$$

R.A.I.R.O. Informatique théorique/Theoretical Informatics
and we obtain $\left((x y)^{t} x,(x y)^{t}\right) \in \mathscr{R}$. The rest follows as in case 1 .
Case $4: \exists s, t \leqslant k, s<t$

$$
(x y)^{s} x=(x y)^{t}
$$

Left multiplication by y gives, similarly as in case $3,\left((y x)^{t} y,(y x)^{t}\right) \in \mathscr{R}$. To decide membership in \mathbf{R}, we have now two possibilities :

- Generate $A_{k, \Sigma}$ and test property (2)
- Test property (3).

Example 2.17 : Let the monoid M be given by

It is obvious, that $u \in A_{3, \Sigma}, u \sigma \notin A_{3, \Sigma} \Rightarrow u \sigma=u$ in M for $\sigma \in \Sigma=\{a, b\}$. If, however, the monoid M is given by a multiplication table, it may be more efficient to test property (3).

We call an M-Variety \mathbf{W} decidable, if for every finite monoid M it is decidable whether $M \in \mathbf{W}$. It is clear, that $\mathbf{V} \cap \mathbf{W}$ is decidable, if \mathbf{V} and \mathbf{W} are decidable.

In view of corollary 1.10 (3) we see that a finite monoid M belongs to J iff there are a natural k and an alphabet Σ such that $M \simeq \Sigma^{*} / \rho$ for some congruence relation ρ and $R_{k} \cup L_{k} \subseteq \rho$.

Unfortunately the union of the reduction systems for ρ_{k} and λ_{k} does not give a confluent Semi-Thue-System :

$$
\text { Let } \Sigma=\{a, b\}, \quad k=2, \quad w=a b a b a .
$$

$a b a b$ and $b a b a$ are both $\rho_{2} \vee \lambda_{2}$-equivalent to w and irreducible.
On the other hand the word problem for $\rho_{k} \cap \lambda_{k}$ is decidable. Note that by corollary 1.10 (4) the sequence $\rho_{k} \cap \lambda_{k}$ defines $\mathbf{R} \vee \mathbf{L}$.

In [1], the M-variety \mathbf{R} is characterized by the sequence ${ }_{n} \sim_{R}$ of congruence relations on Σ^{*} defined in the following way : Put

$$
{ }_{n} \sim:=\left\{(u, v) \mid \forall w \in \Sigma^{n} u \in w \downharpoonright \Sigma^{*} \Leftrightarrow v \in w \downharpoonright \Sigma^{*}\right\} .
$$

and
${ }_{n} \sim_{R}:=\left\{(u, v) \mid\right.$ for every prefix a of u there is a prefix b of v such that $a_{n} \sim b$ and for every prefix b of v there is a prefix a of u such that $\left.a_{n} \sim b\right\}$

Although $\sim_{n} \sim_{R}$ and ρ_{n} are defined in completely different ways, we can prove : ${ }_{n} \sim_{R}=\rho_{n}$ for every natural n.

For this purpose consider the algorithm which produces for every word $w \in \Sigma^{*}$ the shortest representative $\chi_{n}(w)$ of its ${ }_{n} \sim_{R}$-class, described in [1], p. 11.

It is clear from this algorithm that ${ }_{n} \sim_{R}$ is generated by the set

$$
\left\{(u \sigma, u) \mid u \in \Sigma^{*}, \sigma \in \Sigma, u \sigma_{n} \sim u\right\}={ }_{n}-_{R} .
$$

Lemma 3 of [8] states that $u \sigma_{n}-_{R} u$ iff $(u \sigma, u) \in R_{n}$ and ${ }_{n} \sim_{R}=\rho_{n}$ follows.

3. COMMON GENERALIZATION OF \boldsymbol{p}_{k} AND $\boldsymbol{\lambda}_{k}$

In the definition of ρ_{k} a letter within a word w may be removed, if some condition for the part of w, occurring to the left of this letter, is true. Since λ_{k} is just the left-right-dual of ρ_{k}, a corresponding property holds for λ_{k}. Therefore the following generalization is very natural :

Definition 3.1: For $r, l \in \mathbb{N}$ and a finite alphabet Σ define

$$
M_{r, l}=\left\{(u \sigma v, u v) \mid(u \sigma, u) \in R_{r},(\sigma v, v) \in L_{1}\right\}
$$

$\mu_{r, l}=\overline{M_{r, l}}$, the congruence relation on Σ^{*} generated by $M_{r, l}$.
Facts 3.2 :
(1) $\mu_{r, 0}=\rho_{r}$

$$
\mu_{0, l}=\lambda_{l}
$$

(2) $M_{r+1, l} \subseteq M_{r, l} ; \mu_{r+1, l} \subseteq \mu_{r, l}$

$$
M_{r, l+1} \subseteq M_{r, l} ; \mu_{r, l+1} \subseteq \mu_{r, l}
$$

(3) $\mu_{r, l} \subseteq \rho_{r} \cap \lambda_{l}$.
(4) $(u \sigma v, u v) \in M_{r, l}$

$$
\Rightarrow(x u \sigma v y, x u v y) \in M_{r, l} \text { for all } x, y \in \Sigma^{*} .
$$

Lemma 3.3 : $\mu_{r, l}$ is a fully invariant congruence relation with finite index.
Proof : An argument very similar as in the proof of lemma 1.5 shows that $\mu_{r, l}$ is fully invariant. Let $A_{r}\left(B_{l}, C_{r, l}\right.$ resp.) be the set of irreducible words over Σ relative to $\rho_{r}\left(\lambda_{l}, \mu_{r, l}\right.$ resp.) and $w \in C_{r, l}$. Thus for each $\sigma \in \alpha(w)$, we have

$$
w=u_{0} \sigma v_{0} \Rightarrow\left(u_{0} \sigma, u_{0}\right) \notin R_{r} \quad \text { or } \quad\left(\sigma v_{0}, v_{0}\right) \notin L_{l} .
$$

Let $\sigma_{1}, \ldots, \sigma_{s}$ be the sequence of letters of w, for which $w=u_{i} \sigma_{i} v_{i}$ and
$\left(u_{i} \sigma_{i}, u_{i}\right) \notin R_{r}(i=1, \ldots, s)$ and $\tau_{1}, \ldots, \tau_{t}$ the sequence of letters of w, for which

$$
w=u_{i}^{\prime} \tau_{i} v_{i}^{\prime} \quad \text { and } \quad\left(\tau_{i} v_{i}^{\prime}, v_{i}^{\prime}\right) \notin L_{l}
$$

Now we have $\sigma_{1} \ldots . \sigma_{s} \in A_{r}$ since $(u \tau, u) \in R_{r}$ and $(u \tau \sigma, u \tau) \notin R_{r}$ imply $(u \sigma, u) \notin R_{r}$. A similar argument shows $\tau_{1} \ldots . . \tau_{t} \in B_{l}$.

Let $A, B \subseteq \Sigma^{*}, \Sigma^{\prime}=\left\{\sigma^{\prime} \mid \sigma \in \Sigma\right\}, \Sigma^{\prime \prime}=\left\{\sigma^{\prime \prime} \mid \sigma \in \Sigma\right\}$

$$
B^{\prime}=\left\{\sigma_{1}^{\prime} \ldots \sigma_{n}^{\prime} \mid b=\sigma_{1} \ldots \sigma_{n} \in B\right\}
$$

$\left(\Sigma \cup \Sigma^{\prime}\right)^{*} \xrightarrow{g} \Sigma^{*} g: \begin{gathered}\sigma \mapsto \sigma \\ \sigma^{\prime} \mapsto \sigma\end{gathered}, \quad f$ the natural epimorphism, then the shuffle of A and B is
$\left(\Sigma \cup \Sigma^{\prime}\right)^{*} / \sigma \tau^{\prime}=\tau^{\prime} \sigma$

$$
A \bigsqcup B:=g\left(f^{-1} f\left(A . B^{\prime}\right)\right) \quad \text { 2] }
$$

and for
$\left(\Sigma \cup \Sigma^{\prime} \cup \Sigma^{\prime \prime}\right)^{*} \xrightarrow{\sigma} \mapsto \sigma \begin{aligned} & \rightarrow \\ & \Sigma^{*} \\ & k: \sigma^{\prime} \mapsto \sigma \quad h \text { the natural epimorphism, we define }\end{aligned}$ $\downarrow^{h} \quad \sigma^{\prime \prime} \mapsto \sigma$ $\left(\Sigma \cup \Sigma^{\prime} \cup \Sigma^{\prime \prime}\right)^{*} / \sigma \tau^{\prime}=\tau^{\prime} \sigma$
the amalgamated shuffle

$$
A \text { نلـ } B:=k\left(h^{-1} h\left(A \cdot B^{\prime}\right)\right)
$$

The amalgamated shuffle is also known as the infiltration product [5] or simply as shuffle [6].

From the consideration above we conclude that $C_{r, l} \subseteq A_{r} \cup B_{l}$ and since A_{r}, B_{l} are finite, this shows that $\mu_{r, l}$ has finite index.

That $A_{r} \downharpoonright B_{l}$ is not sufficient to contain $C_{r, l}$ is shown by the following example, which is due to F . Baader (personal communication).

Let $\Sigma=\{a, b\}, r=l=2$. Then aaabaaa $\in C_{2,2}$, but for all $x, y \in \Sigma^{*}$ such that aaabaaa $\in x \sqcup y$ we have $x \notin A_{2}$ or $y \notin B_{2}$.

The next theorem shows that $C_{r, l}$ in fact is a system of shortest representatives for $\mu_{r, l}$.

Theorem 3.4 : Each $\mu_{r, l}$-class has a unique shortest representative.
Proof: We show that again $M_{r, l}$ is a confluent Semi-Thue-System.
Let $w \in \Sigma^{*}$ be arbitrary, $w=u \sigma v=u^{\prime} \tau v^{\prime}$ and

$$
(u \sigma, u) \in R_{r},(\sigma v, v) \in L_{l},\left(u^{\prime} \tau, u^{\prime}\right) \in R_{r}\left(\tau v^{\prime}, v^{\prime}\right) \in L_{l}
$$

vol. $19, \mathrm{n}^{\circ} 3,1985$

This means : $(u \sigma v, u v) \in M_{r, l}$ and $\left(u^{\prime} \tau v^{\prime}, u^{\prime} v^{\prime}\right) \in M_{r, l}$.
We have to show : $u v$ and $u^{\prime} v^{\prime}$ have a common descendent.
Let us suppose u^{\prime} is a prefix of u :

$$
\begin{aligned}
& u v=u^{\prime} \tau u^{\prime \prime} v \\
& u^{\prime} v^{\prime}=u^{\prime} u^{\prime \prime} \sigma v
\end{aligned}
$$

From $\left(u^{\prime} \tau, u^{\prime}\right) \in \rho_{r}$ we derive

$$
\begin{aligned}
& \left(u^{\prime} \tau u^{\prime \prime}, u^{\prime} u^{\prime \prime}\right) \in \rho_{r}, \\
& \left(u^{\prime} u^{\prime \prime} \sigma, u^{\prime} \tau u^{\prime \prime} \sigma\right) \in \rho_{r} \\
& u^{\prime} u^{\prime \prime} \sigma=u \sigma \\
& (u \sigma, u) \in \rho_{r} \\
& u=u^{\prime} \tau u^{\prime \prime} \\
& \left(u^{\prime} \tau u^{\prime \prime}, u^{\prime} u^{\prime \prime}\right) \in \rho_{r} .
\end{aligned}
$$

The chain implies $\left(u^{\prime} u^{\prime \prime} \sigma, u^{\prime} u^{\prime \prime}\right) \in \rho_{r}$. Since $(\sigma v, v) \in \lambda_{l}$, together with lemma 1.4 we obtain $\left(u^{\prime} u^{\prime \prime} \sigma v, u^{\prime} u^{\prime \prime} v\right) \in M_{r, l}$.

Similarly from $(\sigma v, v) \in \lambda_{l}$ we derive $\left(u^{\prime \prime} \sigma v, u^{\prime \prime} v\right) \in \lambda_{l}$,

$$
\begin{gathered}
\left(\tau u^{\prime \prime} v, \tau u^{\prime \prime} \sigma v\right) \in \lambda_{l} \\
\tau u^{\prime \prime} \sigma v=\tau v^{\prime} \\
\left(\tau v^{\prime}, v^{\prime}\right) \in \lambda_{l} \\
v^{\prime}=u^{\prime \prime} \sigma v \\
\left(u^{\prime \prime} \sigma v, u^{\prime \prime} v\right) \in \lambda_{l}
\end{gathered}
$$

and obtain $\left(\tau u^{\prime \prime} v, u^{\prime \prime} v\right) \in L_{l}$. Since $\left(u^{\prime} \tau, u^{\prime}\right) \in R_{r}$ we also have $\left(u^{\prime} \tau u^{\prime \prime} v, u^{\prime} u^{\prime \prime} v\right) \in M_{r, l}$ and $u^{\prime} u^{\prime \prime} v$ is a common descendent of $u v$ and $u^{\prime} v^{\prime}$.

Remark 3.5 : The proof of lemma 3.3 shows:

$$
A_{r} . B_{l} \subseteq C_{r, l} \subseteq A_{r} \dot{\sqcup} B_{l}
$$

The inclusions are strict in general.
R.A.I.R.O. Informatique théorique/Theoretical Informatics

For $r=2, l=2$ we have
$a a b a \in A_{2}, a b a b \in B_{2}$, thus
$a a a b a b a b \in A_{2} \dot{\cup} B_{2}$, but
$a a a b a b a b$ is reducible to $a a b a b a b$ in $\mu_{2,2}$

For $r=1, l=1$ we have $A_{1} . B_{1} \neq C_{1,1}$, e.g. $a a b b \in C_{1,1} \quad A_{1} \cdot B_{1}$.
Example 3.6:

$$
\begin{gathered}
C_{11} \subseteq A_{1} \downharpoonright \dot{\perp} B_{1}, \quad \Sigma=\{a, b\} \\
A_{1}=\{\Lambda, a, b, a b, b a\}, \quad B_{1}=\{\Lambda, a, b, a b, b a\}=A_{1}
\end{gathered}
$$

$A_{1} \amalg B_{1}=\left\{\Lambda, a, b, a^{2}, a b, b a, b^{2}, a a b, a b a, b a a, b a b, a b b, b b a, a b a b, a a b b\right.$, $a b b a, b b a a, b a a b, b a b a\}$
$=C_{1,1}$ (in this case).
Thus the monoid Σ^{*} / μ_{11} is isomorphic to

vol. $19, \mathrm{n}^{\circ} 3,1985$

Similarly as in remark 2.14 this monoid also presents an automaton deciding the word problem in Σ^{*} / μ_{11} and describing the equivalence classes by regular expressions.

The function $g: \Sigma^{*} \rightarrow \Sigma^{*}$ associating to every word $u \in \Sigma^{*}$ its shortest representative irr (u) with respect to $\mu_{r, l}$ is realized by the following bimachine (see [0] for the definition of a bimachine) :

Take A_{r} and B_{l} as state sets and next-state functions

$$
u \cdot \sigma=\left\{\begin{array}{ll}
u \sigma, & \text { if } u \sigma \in A_{r} \\
u, & \text { if } u \sigma \notin A_{r}
\end{array} \quad\left(\sigma \in \Sigma, u \in A_{r}\right)\right.
$$

and

$$
\sigma . v=\left\{\begin{array}{lll}
\sigma v, & \text { if } & \sigma v \in B_{l} \\
v, & \text { if } & \sigma v \notin B_{l}
\end{array} \quad\left(\sigma \in \Sigma, v \in B_{l}\right)\right.
$$

The output function γ is defined as

$$
\gamma(u, \sigma, v)= \begin{cases}\sigma, & \text { if } u \sigma \in A_{r} \text { or } \sigma v \in B_{l} \\ \Lambda, & \text { else }\end{cases}
$$

This bimachine produces for every input $u \in \Sigma^{*}$ the output irr $(u)=\gamma(\Lambda, u, \Lambda)$.
Corollary 3.7 : For arbitrary $r, l \geqslant 0$ the monoid $\Sigma^{*} / \mu_{r, l}$ has a decidable word problem.

Let \mathbf{V} denote the following class of monoids :

$$
\begin{aligned}
& M \in \mathbf{V} \Leftrightarrow M \cong \Sigma^{*} / \rho \text { for some finite alphabet } \sum \text { and there is some } \\
& \qquad k \in \mathbb{N} \text { such that } \mu_{k k} \subseteq \rho .
\end{aligned}
$$

Then \mathbf{V} is an M-variety ([4]) and we have :
Proposition 3.8:

$$
\mathbf{R} \vee \mathbf{L} \subseteq \mathbf{V} \subseteq \mathbf{A p}
$$

Proof : $\mathbf{R} \vee \mathbf{L} \subseteq \mathbf{V}$, since $\mu_{k k} \subseteq \rho_{k} \cap \lambda_{k}$.
For $\sigma \in \Sigma$ we have $\left(\sigma^{2 k+1}, \sigma^{2 k}\right) \in \mu_{k k}$.
Since $\mu_{k k}$ is fully invariant, $x^{2 k+1}=x^{2 k}$ is an equation which holds in $\Sigma^{*} / \mu_{k k}$.

This shows $\mathbf{V} \subseteq \mathbf{A p}$.
Theorem 3.9: V is decidable.
Proof: Let $M \simeq \Sigma^{*} / \rho$ and $|M|=r$. We show :

$$
M \in \mathbf{V} \quad \text { iff } \quad \mu_{r, r} \subseteq \rho
$$

R.A.I.R.O. Informatique théorique/Theoretical Informatics

The implication from right to left being trivial, we suppose $M \in \mathbf{V}$, which means $\rho \supseteq \mu_{k, k}$ for some $k \in \mathbb{N}$. We can choose $k \leqslant r$: Let $(u \sigma v, u v) \in M_{r, r}$, i.e. $u=u_{1} \ldots u_{r}, v=v_{r} \ldots v_{1}$ such that
(*) $\alpha\left(u_{1}\right) \supseteq \ldots \supseteq \alpha\left(u_{r}\right) \ni \sigma \in \alpha\left(v_{r}\right) \subseteq \ldots \subseteq \alpha\left(v_{1}\right)$.
Considering the sequences $u_{0}=1, u_{1}, u_{1} u_{2}, \ldots, u_{1} \ldots u_{r}$ and $v_{r} \ldots v_{1}$, $v_{r-1} \ldots v_{1}, \ldots, v_{1}, v_{0}=1$ we can find i, j, h, l such that $0 \leqslant i<j \leqslant r$ and $0 \leqslant h<l \leqslant r$ and $u_{0} u_{1} \ldots u_{i}=u_{0} u_{1} \ldots u_{i} u_{i+1} \ldots u_{j}$ and

$$
v_{h} v_{h-1} \ldots v_{0}=v_{l} v_{l-1} \ldots v_{h+1} v_{h} \ldots v_{0}
$$

The inclusions (${ }^{*}$) imply :

$$
\begin{gathered}
\left(\left(u_{i+1} \ldots u_{j}\right)^{k} u_{j+1} \ldots u_{r} \sigma v_{r} \ldots v_{l+1}\left(v_{l} \ldots v_{h+1}\right)^{k},\right. \\
\left.\left(u_{i+1} \ldots u_{j}\right)^{k} u_{j+1} \ldots u_{r} v_{r} \ldots v_{l+1}\left(v_{l} \ldots v_{h+1}\right)^{k}\right) \in \mu_{k k}
\end{gathered}
$$

and since $\mu_{k k} \subseteq \rho$ we have in M :

$$
\begin{aligned}
u v & =u_{0} \ldots u_{i}\left(u_{i+1} \ldots u_{j}\right) u_{j+1} \ldots u_{r} v_{r} \ldots v_{l+1}\left(v_{l} \ldots v_{h+1}\right) v_{h} \ldots v_{0} \\
& =u_{0} \ldots u_{i}\left(u_{i+1} \ldots u_{j}\right)^{k} u_{j+1} \ldots u_{r} v_{r} \ldots u_{l+1}\left(v_{l} \ldots v_{h+1}\right)^{k} v_{h} \ldots v_{0} \\
& =u_{0} \ldots u_{i}\left(u_{i+1} \ldots u_{j}\right)^{k} u_{j+1} \ldots u_{r} \sigma v_{r} \ldots v_{l+1}\left(v_{l} \ldots v_{h+1}\right)^{k} v_{h} \ldots v_{0} \\
& =u \sigma v
\end{aligned}
$$

Therefore $(u \sigma v, u v) \in \rho$ and we obtain

$$
\mu_{r r} \subseteq \rho
$$

There are some open questions concerning the M-Variety \mathbf{V} :

1) Find a sequence of equations which ultimately defines V.
2) Find other algebraic characterisations of V.
3) Is $\mathbf{R} \vee \mathbf{L} \neq \mathbf{V}$?
4) Characterize those L with $M(L) \in \mathbf{V}$.

REFERENCES

[0] J. Berstel, Transductions and Context-free Languages. Teubner, 1979.
[1] J. A. Brzozowski, F. E. Fich, Languages of \mathscr{R}-trivial Monoids. Res. Rep. CS-7832, Waterloo, 1978.
[2] S. Eilenberg, Automata, Languages and Machines. Vol. B, Academic Press, 1979.
[3] F. E. FICH, Languages of \mathscr{R}-trivial and Related Monoids. Res. Rep. CS-79-18, Waterloo, 1979.
[4] R. König, Beiträge zur algebraischen Theorie der formalen Sprachen. Dissertation, Erlangen, 1983.
[5] M. Lothaire, Combinatorics on words. Addison-Wesley, 1983.
[6] R. C. Lyndon, On Burnside's Problem. Trans. AMS 77, 1954.
[7] I. Simon, Hierarchies of Events with Dot-Depth One. Ph. D. thesis, Waterloo, 1972.
[8] I. Simon, Piecewise testable events. LNCS 33, Springer Berlin 1975, 214-222.

[^0]: ${ }^{*}$) Received in February 1984, revised in September 1984.
 ${ }^{(1)}$ Institut für Mathematische Maschinen und Datenverarbeitung I Martensstraße 3, D-8520 Erlangen, FRG.

[^1]: R.A.I.R.O. Informatique théorique/Theoretical Informatics

