
RAIRO. INFORMATIQUE THÉORIQUE

ALEX PELIN
A formalism for treating equivalence of
recursive procedures
RAIRO. Informatique théorique, tome 19, no 3 (1985), p. 293-313
<http://www.numdam.org/item?id=ITA_1985__19_3_293_0>

© AFCET, 1985, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1985__19_3_293_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


R.A.I.R.O. Informatique théorique/Theoretical Informaties

(vol 19, n° 3, 1985, p. 293 à 313)

A FORMALISM FOR TREATING
EQUIVALENCE OF RECURSIVE PROCEDURES (*)

by Alex P E L I N ( A )

Communicated by J. GALLIËR

Abstract. — We present a formai System for studying the équivalence of recursive procedures.
The procedures are defined to include assignment statements and such constructs as branching and
recursion. A fair amount of applications is provided to show how this approach can be used inproving
équivalence of procedures. We conclude with results concerning the use of memory variables by the
procedures.

Résumé. — Nous présentons un système formel pour étudier l'équivalence des schémas récursifs.
Les schémas récursifs sont définis de telle sorte qu'ils ont des assignations, des tests et des procédures
récursives. Un certain nombre d''examples sont donnés pour montrer comment cette approche peut
être utilisée pour prouver l'équivalence de procédures. Nous finissons en montrant quelques résultats
au sujet de l'utilisation de variables mémoires par des procédures.

1. INTRODUCTION

The concept of*" procedure " is fondamental in Computer Science. The
solutions to most problems are given by procedures and in a lot of cases, by
recursive procedures. In gênerai, a recursive procedure has fewer instructions
than its itérative version and in most cases it is easier to prove the correctness
of a recursive procedure than the correctness of an equivalent itérative pro-
cedure (see R. S. Bird [2]). Most programming languages today support recur-
sion and there are ways of transforming recursive procedures into equivalent
itérative versions (see E. Horowitz and S. Sahni [4] and R. S. Bird [1]).

An important concept in studying procedures is the notion of equivalent
procedures. Two procedures Px and P2 are said to be equivalent if for any
given input they either both stop and produce the same output or they both
loop forever.

(*) Received and accepted in August 1984.
(*) Computer Science Department Temple University Philadelphia, PA. 19122 U.S.A.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

0399-0540/85/03 293 21/S 4,10/ © AFCET-Gauthier-Villars



294 A. PELIN

In studying the équivalence of recursive procedures it is easier to make
abstraction of the programming language in which the procedures are imple-
mented. The approach taken hère is to see a procedure as a recursive schema
with an interprétation.

In order to make the study of procedures more useful, the language of recur-
sive schemata has to have assignments and such programming constructs as
sequencing, branching and recursion.

Following D. Scott [9, 10, 11] and J. W. De Bakker [3] procedures are inter-
preted as the minimal fixed point of the transformation induced by the body
of the procedure. The formalism presented here is an extension of J. W. De
Bakker's [3].

De Bakker interprets procedures as partial functions from a domain D to D.
In our formalism we make explicit use of memory variables in predicates and
we have assignment statements. We interpret procedures as maps from Dm

to D 'M, whereM? M is a given set of memory locations and D is a non-empty
domain. The predicates are interpreted as total functions in our System while
De Bakker interprets them as partial functions. The first 15 axioms in § 3 are
from De Bakker [3], The other 4 axioms are added to deal with memory varia-
bles. The constructions of while loop, and, or and négation predicates are
De Bakker's. Due to the fact that we interpret predicates as total functions we
are able to establish the commutativity and associativity of the and or pre-
dicates.

The results in § 5 are new.
Our axiom system is similar to the one given for the predicate calculus

with equality (see E. Mendelsohn [7]).
A fair amount of applications are provided to show how this formalism is

used for proving the équivalence of procedures. These include theorems concern-
ing the use of memory.

2. THE LANGUAGE OF THE EXTENDED fi-CALCULUS

The formalism presented here is an extension of J. W. De Bakker's
culus (see J. W. De Bakker [3]). Following the approach used by logicians the
formai symbols will be introduced first, then the terms of the language (which
are recursive schemata) and later on the formulae.

The formai symbols of the language of the Extended ji-Calculus are :

1. A set of memory variables t M = { ml9 m2,..., mk,... }, k e co. An arbi-
trary w-tuple of memory variables will be denoted by < m\t, m}2,..., m\n > ;

2. A set of function constants 1 F = { f (ij) } where ije œ; f (ij) repre-
sents the fth function of arity ƒ;

R.A.I.R.O. Informatique théorique/Theoretical Informaties



EQUIVALENCE OF RECURSIVE PROCEDURES 295

3. A set of procedure variables X = {Xi}, ie œ;
4. A set of predicte constants 1 P = {p(i,j)} where i, j e CÛ; p(UJ) is the

fth predicate of arity j \
5. The set 1 A = {',', ';', '< ' , ' = ', '<-', '-V, 'Q', '£', V, '[', T, '(', 0' }•

Hère co dénotes the set of finite ordinals. The terms of the language are
given by the following définition :

DÉFINITION 1 :

1. Q, E and X G X are terms ;
2. Iff(i, n) G 1 F and < xv x2,..., xn, x > (n + 1) tuple ofmemory variables,

then x <- ƒ(*; n) (xl5 x2,..., JCB) w a /erm;
3. 7JTT1 andx2 are terms, so is(x1 ; x2) ;
4. /ƒ Xi awrf x2 are terms, p{i, n)e\ P and < xt, x2,..., xrt > is an n-tuple of

memory variables, then (p(i, n) (xv ..., xn) -• x19 x2) w a / e rm;
5. Ifx is a term andX a procedure variable then \LX\X\ is a term.

Rule 2 introduces assignments, rule 3 composition, rule 4 branching and
rule 5 recursion.

DÉFINITION 2 :

1. An atomic formula is either an équivalence (xx = x2) or an inclusion
(xi ^ T 2 ) ;

2. A formula is a list of zero or more atomic formulae, written Ol9 O2,..., On,
each Of, 1 ^ i ^ n, an atomic formula.

Example 1 : The following are terms :

1. (m, <- /(O, 1) (m2) ; m2 <- / ( l , 2) (m3, m4)).
2. ^ , [ ( ^ ( 0 , l)(mx) - . (m1 <- /(O, D K ) ; X,), £)].

An assignment is a quadruple s = < D, F, T, V > where :

L D is some non-empty domain;
2. F is a function which associâtes with each function symbol f(i, n) a

total function F(f(i, n)) : Dn -> D : if rc = 0 then F(ƒ(/, «)) e D ;
3. T attaches to each predicate symbol /?(/, «) a total function T(/?(/5 /i)) :

Dn - { 0, 1 } : if n = 0 then T(/?(z, «)) G { 0, 1 } ;
4. Let D m dénote the set of ail total functions from 1 M to A Le. D(M

set of states as in J. McCarthy [6],
Let P(D m) be the set of ail partial functions from D m to D m. The func-

tion V attaches to each Xt e X a function F(X£) G P(D m).
Given an assignment s = < D, F, T, F > we can defîne an interprétation I

for an assertion 4̂ : <)> h Y as shown below :

vol 19, n° 3,1985



296 A. PELIN

1. Interprétation ofterms :

Given an assignment s = < D, F, T, V >, each term x is interpreted as a
partial function 7t(x) (s) from Dm to D rM as follows :

1.1. For each \ | /eD f M , It(Q)(s)ty) undefmed i.e. It(Q)(s) is the totally
undefined function.

1.2. For each v|/ e D m, It(E) (s) (\|/) = v|/.

1.3. For each Xt e X, It(X.) (s) = V(Xtl

1.4 If T = m <- ƒ(/, «) (mij9 mi2>..., m.J then for any

where

V l^m^^KX.-^CmJ) if y =

1.5. If x = (p(i, ri) (mii9 mi2,..., m fj -> xl5 x2) then for any

if T(p(i, ri)) {^(mh\ .... i|/(min)) = 0 .
1.6. If x = (x1; x2) then /(x) (J) = (/(x2 (̂ )) o (7(x2) (s)) where o is the com-

position opération for partial fonctions.

1.7. On the set of partial fonctions P(DeM)%e introducé the opérations
( ; ) and (p — > —, —) and a partial order ^ . The opération ( ; )
takes as input two partial fonctions ƒ and g and outputs their com-
position go £ i.e. (f;g) = go f. The opération (p -> ƒ g) = ƒ and
if /? = 1 then (p ^> f, g) =^ g. Since /> is a constant the opération
(P -> — —) is a binary opération from P(D m)* x P(i) m) to P(/) fw).
Let ƒ 0 G P(Z> m ) . We say that ƒ ^ g if and only if, for ail me f M, if
/(m) is defined then g(m) is defined and ^(m) = f (m).

The relation ^ is a partial order on P(D m). It has a minimal element (the
function nowhwere defined) and it has greater lower bounds (glb's) for ail
subsets. It also has least upper bounds (lub's) for chains. We can also show that
the opérations ( ; ) and {p -> —, —) preserve lub's of chains. We can show
by induction that any expression x(X) obtained from constant fonctions in
P(D m \ the variable X and the opérations ( ; ) and {p -» —, —) preserves
lub's of chains. Since P(Dm) has lub's of chains and it has a minimal element,
the transformation X -• x(X) has fixed points and in particular a minimal
fixed point. This theorem attributed to Tarski occurs in Scott [11]. A generali-
zation of it using category theory can be found in M. Wand [12]. A proof simi-
lar to D. Scott's [11] can be found in Appendix A.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



EQUIVALENCE OF RECURSIVE PROCEDURES 297

We can now defîne the interprétation of terms of the form \iX[x].

%X[x]) (s) = glb { ƒ | ƒ G P(D « ) & /(x) < D, F, T, F / Z : = ƒ > = ƒ } .

That is we interpret all terms in t except X. The resuit is a function

X being a variable. This function satisfies Tarski's theorem and it has a mini-
mal fîxed point. We interpret \iX[x] as the minimal fixed point of this transfor-
mation. That is, a procedure is the minimal fixed point of the transformation
ƒ -» /(t) (S/X := ƒ). We make the convention that whenever / refers to
term / then I(x) stands for 7f(x) and when / refers to a formula A then I(A)
stands for If(A).

2. Interprétation of Atomic Formulae :

2.1. If((xx < T^istrueiff/,^) < /t(x2)i.e.ifforallx|/eflm, It^,)W - V
implies It(x2) (\|/) = v)/1. This means that if/f(

Ti) is defined for a state \|/
then /((x2) is also defined and It(xx) (v|/) = /t(x2) (\|/).

2.2. It((x1 = x2)) is true iff Ijix^i^) = v)/1 implies /,(x2)(\|/) = x)/1 and
/t(x2) W = V implies / / x j W = x)/1.

3. Interprétation of formulae :

A list /r(O) = /ƒ(*!,. . . , On) is true ifif each /ƒ(((>;) is true, 1 ̂  z* < n; if <|>
is the empty list of formulae, If($) is false.

3. THE AXIOMS AND RULES OF THE EXTENDED fi-CALCULUS

The axioms and rules are given below :

I. Composition Axioms :

1. h Q ; I = a\-X;Q = Q.
2. \-X;(Y;Z)=(X;Y);Z.
3. \- E;X = Xh X;E = X.

IL Ordering Axioms :

4. h X < X.
5. h Q < X.
6. X ^Y,Y ^ X\- X = Y.
7. x < y, y ̂  z h x < z.
8. Z ^ y h t < x[y/Z] (monotonicity axiom).

Hère x|T/X] dénotes the term x in which Y was substituted for Z.

vol. 19, n° 3,1985



298 A. PELIN

III. Branching Axioms :

In the next five axioms p and q stand for predicates p(i, ri) (xv ..., xn) where
p(U n) e \ P, i,ne <Ù and < xv ..., xn > is an n-tuple of memory variables.

9. h (p - X, X) = X.
10. h (p -> x , (p -> y, z)) = (/>->*, z) .
I U ( ^ ( M Ï , y), z) = (p -> x, z).
12. h (p - , (9 -> Z, y),(« - Ü, V)) = (q^(p^X, U\(P - y, F)).
13. h Q> -> X, 7); Z = (p -> X; Z, 7; Z).

IV. The other axioms and rules are :

14. h x[(iX[x]/X] ^ ixX[x] (the fixed point axiom).
15. (The ji-induction rule)

h

provided that X does not occur free in \|/.
Before introducing the next three axioms some essential concepts are to

be defined. Let x = x <- ƒ(/, ri) (xl9 x2,..., JCB). The set of input variables of x
is z(x) = { xu ..., xn } and the set of output variables ofx is o(x) = { x }. The
/>7/7w? seffor a given predicate/? = /?(/, «)(xls x2î..., xn) is /(/?) = { xl5 x2> ...5 xn }.
Also z(Q) = o(Q) = 4>, /(£) = o(£) = <|> andforany X e X, i(X) = o(X) = (M. '

16. h ^ 4 ; i ? < i ? ; 4̂ provided that 4̂, B are assignments and

n o(B) = i(B) n o(A) = o(A) n

17. h A; B = B provided that A, B are assignments,

o(A) ç o(^) and

18. \~ A ; (p -^> X, Y) = (p ^> A ; X, A ; Y) provided that A is an assignment
and o(A) n i(p) = <|).

19. Substitution rule for memory variables : Let b : ( M ^ f M be a bijec-
tion, i.e. a one-to-one and onto function, O a formula and OZ> the formula
obtained from O by replacing each me IMby b(m). Then O h <ï>6.

The rules dealing with ^ and = are the same as in propositional calculus,
where ^ stands for logical implication and = for équivalence. The substitu-
tion rule for procedure variables is the same as in first order predicate calculus.
The validity proofs for the above axioms are presented in Appendix A.

Intuitively, the composition axioms state that the procedures form a monoid

R.A.I.R.O. Informatique théorique/Theoretical Informaties



EQUIVALENCE OF RECURSIVE PROCEDURES 2 9 9

with zero under sequencing. The ordering axioms assert that < is a partial
order with a minimal element; moreover it has the monotonicity property.
The branching axioms state properties involving élimination of predicates,
switching the order of two consécutive predicates and distributing ';' over
branching.

Axiom 14 is used for proving the existence of the minimal fixed point and
rule 15 allows proofs by induction. Axiom 16 states cases when sequencing of
assignments is commutative, axiom 17 deals with the removal of useless
instructions and axiom 18 states cases when ' ;' is left distributive over branching.

4. USEFXJL THEOREMS OF THE EXTENDED fi-CALCULUS

An important result is that \iX[x] is the minimal fixed point of x (J. W.
De Bakker [3]). This result can be established as follows :

Part A : \iX[x] is a fixed point :

1. h T[\IX[T]/X'} ^ \IX[T] by axiom 14.
2. h O < x[Q/X] from axiom 1.
3. I ^ T h x ^ x[x/X] from axiom 8.
4. h \iX[%] < x|>X[x]/X] from 2 and 3 by rule 15.
5. h \IX[T] = x|>X[x]/X] from 1 and 4 by axiom 6.

Thus \iX[x] is a fixed point of x.

Part B : \iX[x] is a minimal fixed point i.e. :

Y = x[Y/X] h nX[x] ^ Y.
1. 7 = x[Y/X] h Q < 7 by tautology from axiom 5.
2. y = x[y/X], X < y.h x ^ X[Y/X) by axiom 8.
3. y = x[Y/X] h \iX[x] ^ y by the ̂ i induction rule, from 1 and 2.
J. W. De Bakker [3] defined the " while " loop as follows

(Dx) \-p*A = ixX[(p -> (A;X\ E)-] .

Hère/? is a predicate (the répétition test) and A is the loop body.
To simplify the notation, V is assumed to have higher priority than ';'.

Furthermore, from now on parenthesis around (x1 ; x2) will be removed
since ';' is associative (axiom 2). In most cases ';' will also be omitted. The
following property of loops can be proven by using the formalism of the
Extended n-Calculus ;

(T2) h p * A, ; A2 = nX[(p - Ax X, AJ] .

vol. 19, n° 3S 1985



300 A. PELIN

The proof of (T2) reduces to showing that
(*) h p * Ax ; A2 ^ uX[(/> - , A, X, A2y\ and
(**) h i*X[(p - , Al X, A2y\ ^ p* A1;A2 are theorems.
The proof of (*) is given below :

1. h Q^42 = Q by axiom 1.
2. h Q ^ \iX[(p -+ AXX, A2)] by axiom 5.
3. h £L42 < î X\_{p -> i4t X, ^ 2 ) ] by tautology from 1 and 2.
4. h O -* A1 Xy E) ; A2 = (p - , ^ t XA2, A2) by axioms 13,3-
5. XA2 ^ \iX\{p - , ^ X, ^ 2 ) ] h (/? -> ^ x X, £ ) ^ 2 <

(p -+ Ax \iX[(p - • Al X, A2)\ A2) by axiom 8 from 4.
6. !-(ƒ>-> ^ jiX[(p - . ^ X, ^2)]5 ̂ 2 ) ^ jiX[(p - . ^ x X, ̂ 2 ) ] by axiom

14.
7. X ^ 2 < yJClip - , ^ x X, 4 2 ) ] h (^ - , ^ x X, •£) ̂ 2 < ^ [ ( / ; -> ̂ x X, ̂ 2 ) ]

by tautology from 5, 6.
8. h p * Ax ; A2 < ^ [ ( ^ -> ^ i X, >42)] by ^-induction from 1, 7.

1. h Q ^ p * >41 ; A2 by axiom 5.
2. X ^ /> * Ax ; ̂ 42 I- (/> -> ̂ 4j X, ̂ 42) < (p -> ^41 /? * A1 ; y42, >42) by axiom 8.
3. \~ (p -^ Axp * At; A2, A2) = (p -• Axp * ̂ 4l5 £*); ̂ 42 by axiom 13.
4. \- (p ^ Ax;p * Av E) ^ p* Axby axiom 14.
5. X ^ /; * ̂ 41 ; A2 h (/? -> Ax X, A2) ^ p * A1;A2by tautology from 2, 3,4.
6. h \iX[(p -> ̂ 4j X, ^42)] < ^ * i4A ; A2 by ^ induction from 1, 6.

The logical connectives ' A ' , ' V ' , '—I' are introduced by the following défi-
nitions :

(D3) h (/>! A p2 - , x, y) = fo - , (p2 - , x, y), y).

(1>4) !" (Px v p2-^X,Y) = (Pl -+ X,(P2 - X, Y)).

One can then formally prove that ' A ' and ' v ' are commutative :

(T6) h (Pl A p2 - , x , y) = ( p 2 ^ ^ x , y ) .

( T 7 ) h ( ^ v p2 -+ X, y) = (p2 vPl^X,Y).

Proof of(T6) :

1. \- (Pl Ap2^X,Y) = (Pl - , (/>2 - , X, y), y) by (D3).
2. h (/?2 - , y, y) - y by axiom 8.
3. h (Pl - , (p2 - , x , y), y) = (/., - , (p2 -* x , y), (^2 - y, y» by tauto-

from 2.

R.A.LR.O. Informatique théorique/Theoretical Informaties



EQUIVALENCE OF RECURSIVE PROCEDURES 301

4. h (Pl -> (p2 -> x , y), Q>2 -> Y, Y)) = (/>2 - (Pl - x , y), o>, -> y, y))
by axiom 12.

5. h (/?! -> Y, Y) = Y by axiom 8.
6. h (/>2 - , (Pl - , x , y), (/,, - , y, y)) = {Pl - , ( ^ - , x , y), y) by tauto-

logy from 5.
7. h (/>2 - , (Pi - , X, y), y) = Q>2 A ^ - , X, Y) by (D3).
8. \- (/>! A jr?2 -> X, y) = (/?2 A Pl - , X, y) by tautology from 1, 3, 4, 6, 7.

The " While " loop described in (DJ can be extended to include "A",
y", and "-i" constructions as follows :

(D 8 ) h Pl A P l * A =

(D9) \ - P l v P2*A =

( D 1 0 ) h —1/7 * ^ = ^ [ ( z ? - , E,

The following properties of " While " loops can be proven in this formalism.

( r n ) y ^ y1

Formai proofs for theorems (T11)-(T16) are given in Appendix B.

5. RESULTS CONCERNING MEMORY USE BY PROCEDURES

A Procedure schema is a term in the language of the Extended |a-Calculus
which has no free procedure variables. kProcedure is a pair P = (x, I) where x
is a procedure schema and I is an interprétation.

In this section the focus is on two points.

(1) Given a procedure schema x we can define Mem(i) as being the set of
memory variables which occur in T. We define c(x) as the set of memory loca-
tions m ç Mem (x) for which there is an interprétation I and an initial memory
content \|/ e DeM such that (/(x) (\(/)) (m) # x|/(m) i.e. the content of m gets chang-
ed under at least one interprétation. We want to characterize the set c(x).

(2) For a procedure P = (x, I) the resuit of the computation is determined
by the initial content of the memory location in Mem (x). This so since the
interprétation fixes the meaning of the predicates and functions and the

vol. 19, n° 3,1985



302 A. PELIN

computation is deterministic. However, some memory locations in Mem (x)
may play only a passive rôle and their initial content does not affect the exé-
cution of the procedure. For example if x = ml <^-f(m2, m3) ; m4 <- /(m3, m2) ;
(p(m4) -> £ ; fi) the final content of the memory locations in Mem (x) = { ml5

m2, m3, m4 } is determined by the initial content of { m2, ra3 } and the inter-
prétation /. The initial content of the same set { ra2, m3 } together with ƒ
détermines if (x, /) terminâtes or not For a procedure schema x we want to
define a set d(x) satisfying the following properties :

1. For any initial content of the memory \|/ : î M -> D and any interprétation
I if we know the restriction of \|/ to d(x) then we know :

1.1. If /(x) (\|/) is defined or not, and
1.2. If /(x) 010 is defined then we know the final content of all memory

variables in Mem (x).

2. d(x) is minimal.
We want to characterize the set d(x).
The set of memory variables changed by a procedure P = (x, I) can be

defined as : c(x, I) = { m | there is \|/ e DëM such that /(x) 010 is defined and
/(x) 0|r) (m) ̂  v|/(m) }. Of course c(x) = U c(x, I).

i

Further on A 1 /will dénote the restriction of the function ƒ to subdomain A.

DÉFINITION 3 : Let P = (x, I) be a procedure and A a subset of 2 M. A is

called significant for P if for every \|/, § e DfM, A 1 \|/ = A 1 $ implies
c(x, /) 1 x(I) (\|0 = c(x, I) 1 x(/) (<()). X/*e 5e/ of significant sets for P is written

x, 1).

The set of memory variables which détermines P can now be defined as
d(x, I) = fi i.e. it is the glb (greatest lower bound) of the set of

significant sets. For a procedure schema x, d(x) can be defined as d(x) = (J d{x, I).
i

For a procedure schema x one can define the set of input memory variables
of x, i{x) = { m | m is input to a predicate or an assignment in x } and the set
of output memory variables of x, o(x) = { m | m is the output variable of some
assignment in x }. The following propositions are helpful in finding c(x) and
d(x) for a procedure schema x.

PROPOSITION 1 : If h xx = x2 then c(xx) = c(x2) and d{x^) = d(x2).

PROPOSITION 2 : For any procedure schema x, c(x) ç o(x) and d(x) ^ /(x).

Proposition 1 states that the sets c(x) and d(x) are invariant under formai
déduction (but not o(x) and /(x)) and proposition 2 gives an upper bound for
those sets.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



EQUIVALENCE OF RECURSIVE PROCEDURES 303

The proof of these two propositions can be found in A. Pelin [8].
Unfortunately, there is no algorithm for finding the sets c(x) and a\x) for an
arbitrary schema x. The proof that the above problem is unsolvable is based
on the fact that the équivalence problem for flowchart schemata is unsolvable
(see Z. Manna [5]).

This in turn is used for showing that the Extended u-Calculus is incomplete
since the flowchart schemata can be simulated by tenus in the language of the
Extended u-Calculus. The incompleteness in turn implies that there is no
algorithm for Computing d(x) and c(x). The details of the proof of the above
stated results can be found in A. Pelin [8].

An important metatheorem is the one given below :

METATHEOREM 1 : If A and B are procedure schemata (ie. no free procedure
variables) and if o(A) n i(B) = o(B) n i(A) = o(A) n o(B) = § then V A ;

The proof can be found in Appendix C. This metatheorem which states a
case when ';' is commutative is very important if one considers the exécution
of A and B in parallel. Metatheorem 1 states that if A does not modify the
input of B, B does not modify the input of A and if the output sets of A and B
are disjoint then A and B commute. The condition that o(A) n o(B) = <|)
is essential since for A = z« - / ( l , 2) (x, y) and B = z <- ƒ(!, 2) (y, y) the
conditions that i(A) n o(B) = <|> and i(B) n o(A) = <|> are satisfied but A;
B = B; A is not a tautology i.e. there are interprétations for which

Open Problem

It would be désirable for the System to be aie to give a formai proof of the
fact that (*) h A ; X ; B = X; B where A, B are assignments, o(A) n (i(X) u
i(B)) = (j) and o(A) e (B). This would be a généralisation of axiom 17.
If i(A) n o(X) = 4) then h A : X ; B = X ; B by using metatheorem 1. What
axioms would have to be modified in order to have (*) ? Putting (*) as an
axiom would be cheating since it would complicate the semantics and shift
the proof to the metalanguage.

APPENDIX A

The consistency proofs for axioms and rules are simpler if some properties
of the partial functions on a non-empty set are presented fîrst Let P(S) dénote
the set of partial functions from S to S.

voL19,n°3,1985



304 A. PELIN

DÉFINITION 1 : Let S bea non-empty set and f g be two partial functions on S.
ƒ ^ 9 tfffor every x e X iff(x) is defïned then g(x) is defined and g(x) = f(x).

LEMMA 1 : (P(S), ^ ) is a partial order.

Proof ;

DÉFINITION 2 : Let (S, < ) be a partial order. A chain in (S, ̂ ) is a séquence
(s) = s0 ^ st < s2 ^ — ̂  sn ̂  •- of éléments in S.

LEMMA 2 : Let S bea set and A ç P(S). Then A has a lub in {P(S\ <).

Proof : Define g\b(A) as a partial function g : S -> S as follows : for any
x e S, g(x) is defined iïïf(x) is defined for ail ƒ e A and for allfheA if f(x)
and h(x) are defined then ƒ (x) = h(x) ; otherwise g(x) is undefined

It is now easy to check that g is the lub for A. In particular P(S) has a lub
in (P(S), ^ ). This element is the nowhere defined function and it will be denoted
byO.

LEMMA 3 : Let (ƒ) be a chain in (P(S\ <). Then (ƒ) has a lub.

Proof: Let (ƒ) be a chain in ( P(S\ ^ ). Define g : S -> S as follows :

, x f y«W i f tnere is Ï e © such that fi(x)

X undefined is defined otherwise .

Clearly g satisfies the conditions of définition 2.

LEMMA A: Let % : P(S) x P(S) -> P(S) be defined by .(ƒ g) - f.g where ®

w /Ae opération of composition of partial functions (fis applied first). Then for
any f g, h e P(S).

L 0./= 0 and 0. /= 0;
2. f.(gh)=(fg).h;
3. f.\S = ƒ am/ | S./ = ƒ

S ÏJ ̂ Ae identity function on S.

The proofs are very simple and are not presented hère.
Let now / be any interprétation and let D be the domain of I. Any term

T is interpreted as a partial function /(T) : Dl M -> Z> FM. By rule 5.1, 7(Q) = 0
where 0 is the totally undefined function from D m to D m. By rule 5.2, I(E)
is the identify function on Dm. By rule 5.5 for any terms xls T2,
^ I ; x2) = /(x1)./(x2). Thus axioms 1, 2, 3 are valid by lemma 4.

DÉFINITION 2 : Let (A, ^A) and(B, ^B) be two partial orders and f: A-+ B
be a total function. The function fis monotonie if for every av a2 e A, a1 ^A a2

implies f(aj <B/(fl2).

R.A.LR.O. Informatique théorique/Theoretical Informaties



EQUIVALENCE OF RECURSIVE PROCEDURES 305

DÉFINITION 3 : Let {A, ^A) and (B, ^B) be two partial orders with glb's
for chains andf: A -• B be a monotonie function. The function ƒ is called œ-
continuous if f or any chain (a\ lub ( ƒ ((a)) = /(lub ((a))) Le. f preserves lub's
of chains. This means thatfor any chain a0 ^ a1 < ••• ^ an < • • • /« A,

/( lub ({ a0, alt.... an,... })) = lub ({ Aa0), /(a,) f(a„),... }).

DÉFINITION 4 : Let (A, ^A) and(B, ^B) be two partial orders. A new relation
^A*B can be defined on A x B, where A x B is the cartesian product of A and B
asfollows : (a1? bx) ^A*B(a2, b2) iïïa1 ^A a2 andbx < B b2.

LEMMA 5 : Let (A, ^A) and(B, <B) be partial orders with glb's for any sub-
sets and with lub's of chains. Then {A x B, ^AxB) is a partial order with glb's
of any subsets and with lub's of chains.

COROLLARY 6 : For any D * <|>, (P(D?M), < ) x (P(DfM\ < ) has glb's
of subsets and lub's of chains.

LEMMA 7 : Let p : D m -+ { 0, 1 } be a total predicate and let (p -• x, y) :
P(D m) x P(D m) -> P(D m) be the function defined as :

( u h JXW if

(p -> x, y) W = < n . .f . n n

Then (p -• x, j ) w âtn (ù-continuous function.

Proof : It is clear that if xx ^ x2 and j j ^ j 2 then (p -> x l 5 j j ) ^ (j? -• x2, j 2 ) ,
i.e. (p -• x, ƒ) is monotonie. Let (c) : (xOiyo) < (xl5 j j ^ ••• ^ (xn,yn) ^ •••
be a chain in (P{Dm) x P(DeM\ < ) and let (a) : x0 ^ xx < ••• ^ xn ^ —
and (b) : y0 ^ y1 < -• < j n < -• be the two chains obtained from (c) by
projection. Let x = lub ((a)) and y = lub ((è)). Then (p - • x, j ) is an upper
bound for the chain p((c)) : (p^ x0, y0) ^(p^ xv yY) ^ - *$(/>-+ xnî j n ) ^ -
since xn ^ x and >>„ ^ y.lïu is another upper bound for p((c)) then w = (t, v)
and (/? -> xrt, j n ) ^ {p ^ U v) for ail « e ©. This in turn implies that t is an
upper bound for (a) and v an upper bound for (b\ hence (x, j ) ^ (t, v), le.
(p -> x, j ) is the lub of the chain p((c)).

LEMMA 8 : Let D be a non-empty set and®: P(D m) x P{Dm) be the
opération of composition of partial functions defined in lemma 4. Then®is an
(ù-continuous function.

Proof : The proof is similar to theorem for lemma 7.

COROLLARY 9 : Any function from (P(D m))n -> P(Dm) obtained by using
the composition and branching opérations is (ù-continuous.

vol. 19,11° 3, 1985



306 A. PELIN

For example, (p -> (x, y\ z)®(q -> u, v) : (P(D m ) ) 5 -±.P{DÎM) /s ©-con-

Now the ordering axioms are obviously valid since every term x is inter-
preted as a partial function from DÎM to D fM, Le. /(x) e P(D m ) and < is
interpreted as the order on the partial functions in P(D fM) given by défini-
tion 1. The axioms 9-13 are easy to prove by applying interprétation rules 1.5
and 1.6.

DÉFINITION 5 : Let ƒ : S -> S be a function. An element xe S is called a fixed
point off iff(x) =• x.

LEMMA 10 (Tarski) : Let (S, <) be a partial order with glb's for subsets and
lub's ofchains and let f : S ^ S be an co-continuous function. Thenfhas a mini-
mal fîxed point.

Proof : Since (S, ^ ) has glb's for any subset A ç S it must have a minimal
element (set A = s). Let 0 be the minimal element in (S, ^ ) . The chain (a)
is defined recursively as follows : a0 = 0, an f(a(n — 1)) for n > 1. Since
ƒ is co-continuous, it is monotonie, thus 0 ^ /(O) ^ /(/(O)) ^ ••• i.e.,
a ^ ax ^ a2 ^ •••. This is so because a0 < a1 since ÛE0 is minimal and then
one can show that f(an) ^ f(a(n + 1)) by induction, keeping in mind that ƒ
is monotonie. Let x = lub ((a)). Thus, for any n e co, an ^ x. Since ƒ is co-
continuous f(x) = lub (/((a))). But

lub (/((a))) = lub ({ f(ao\ f {ül\ ... }) = lub ({ av a2,... }) = x .

Thus x is a fixed point of ƒ In order to show that x is the least fixed point one
uses mathematical induction to prove that for any fixed point y of ƒ an < y.
0 ^ y since 0 is the minimal element in (S, ^ ) . If an ^ y then

a(n + 1) = ƒ(«„) < ƒ(;/) = j

since ƒ is monotonie and >> is a fixed point. Thus y is an upper bound for the
chain (à). Since x is the lub of (a), x ^ y, i.e. x is the minimal fixed point

COROLLARY 11 : Let xbea term in the language ofthe Extended\i-Calculus, I
an interprétation with domain D and X a free procedure variable. Then

where J(x) (X) is obtained by replacing X in /(x) by a partial function in P{D ?M\
has a minimal fîxed point.

R.A.LR.O. Informatique théorique/Theoretical Informaties



EQUIVALENCE OF RECURSIVE PROCEDURES 307

Prooj : 7(x) is œ-continuous by corollary 9. By lemma 10, /(x) has a minimal
fixed point.

Axiom 14 states one half of the fixed point property : I{\i x [T]) is the mini-
mum fixed point of the transformation ƒ (T) : P(D m) -* P(D m) obtained by
replacing X in 7(x). It states that replacing X by the minimal fixed point of
the transformation 7(x) yields a partial function less than or equal to the least
fixed point.

Rule 15 is very important because it provides an inductive proof for certain
properties. It parallels the construction of the minimal fixed point in lemma 10.

Axiom 16 is obvious.
Axiom 17 is a little different. It states that useless instructions may be remo-

ved. Its proof is obvious.

APPENDIX B

Formai proof of (T1}) : (monotonicity of |i).

1. y ^ y I- Q < \iX[x] [Y1 /Y] by tautology from axiom 5.
2. Y ^ Y\ X ^ HX[T] [Y1/Y] h x ^ xj>X[x] [Y1IY]/X'] by the mono-

tonicity of x in X.
3. y < y \ x ^ nx[x] [Y'/Y] \-

by the monotonicity of x in y.
4. h x[yvn l\ix[x] [Y'/Yyx^ = x[
5. h x[Y1IY]\y,X[x][YlIY]]IX'\ ^ ^[^[Y/Y1] by axiom 14.
6. y ^ Y \ X ^ ixX[x] [Yl/Y] h x < \iX[x] [Yx/Y] by tautology from 2,

3, 4, 5.
7. y ^ y 1 h \xX[x] ̂  \xX[x] [Y1/Y] by the ^-induction rule from 1, 6.

Proof of(T12) :

L\-p*A = [iX[(p^> AX9 £)] by (DJ.
2. h jiX[(/? ~> AX, £)] =(/?-> ^ ^ [ ( / ? -> ̂ X, £)], ̂ ) by Example 1,

where x = (/? -> ̂ 4X, £).
3. h (/? -> v4|iX[(^ -> ̂ X, E)\M) =(j>^> A;p*A,E) by tautology.
4. \- p * A = (p -^> A;p %_A, EJ'by tautoîogy from 1, 2, 3.

Proofof(T13) :

1. h p * / > * , 4 = ( j ? -+ p * A\p*p* A , E)by(Tl2).
2. \-p*A;p*p*A = \xX [(/? -> ̂ 4X, £)] ;p * p * Aby the définition of *.
3. h jiX[(p - ^X, Ey];p*p* A - ^ [ ( p -* AX,p*p* A)-] by (T2).

vol. 19, n° 3, 1985



308 A. PELIN

4. hjiX[(p-,4X,£)];

/?*/?* A = \iX[(p -> 4X , (/? -^ p * 4 ; /> * p * 4, £))]

by(T12).
5. \-\iX[_(p^AX,<j>^p*A;p*p*A9E)y]=)LX[(p^AX9E)'] by

axiom 10 and the monotonicity of \iX.
6. h \iX[(p -> AX, EJ] = p * A by définition (DA).
7. h p * ̂4 = (jt? -> ̂ 4 ; p * A, E) by theorem (T12).
8. V p * p * A = (p -> (p -* A\ p * A, E\ E) by tautology from 1, 2, 3, 4,

5, 6, 7.
9. h (p -+ (p -^ A ; /? * ,4, E), E) = (p -+ A ; p * 4̂, E) by axiom 11.

10. \- p * p * A — (p -+ A;p * A, E)by tautology from 8, 9.
11. V p * p * A — p * Aby tautology from 10, 7.

Proofof(TX4) :

1. h p * (yl ; /? * A) = (p - • (A ; p * ̂ 4) ; p * (̂ 4 ; p * ,4), £) by theorem (T12).
2. K^;^*^);^*(^;^*^) = ̂ ;uX[(j9^^x)^)];/7*(^;jp*^) by

définition (Dj).
3. h^;^[(^^^X

by theorem (T2).
4. h j i X [ ( ^ - ^ ^ X , / ( ; / ) ]

= jiX[(p ^ ^X, (p ̂  ^;,p * ̂ ; p * (^ ;p * A\
by theorem (T12) and the monotonicity of u.

5. h^X[(p-,^X,
by axiom 11 and the monotonicity of jx from 4.

6. h |xX[(/7 -• ̂ 4X,p *(A;p * A)~] = p * A by tautology from 1, 5.
7. \-p *(A;p * A) = (p ̂ > A;p * A, E) by tautology from 1, 2, 3, 6.

8. \-(p-+A;p*A,E)=p*A by theorem (T1 2) .

9. h ƒ? * (v4 ; p * 4̂) = /? * A by tautology, 7, 8.

Proofof(T15) :

1. h p -> ̂ x ; (p -> ̂ 2 , ̂ 3 ) = jiX[(p - . ̂ x X, Qi - . ̂ 2 , ̂ 3))] by theorem

2. h jiX[(p -^ ̂ t X. (p -* ̂ 2 , ̂ 3))] = | iX[O -> ̂ t X, AJ\ by axiom 10
and the monotonicity of u.

3. hp* At;A3 = \LX[(J> -* ̂ x X, ̂ 3 ) ] by theorem (T2).

4. h i? ->• Ax ;(/?-> ^42, >43) = p * i44 ; ̂ 3 by tautology from 1, 2, 3.

Proofof(Tl6) :

1. \- p * E = (p ̂ > E;p * E, E)by theorem (T12).
2. I- Q ̂  E;p * E by axiom 5.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



EQUIVALENCE OF RECURSIVE PROCEDURES 309

3. h (/> -> Q, E) ^ (p -> E;p*E,E) by axiom 8 from 2.
4. h (/? -• Q, £) < p * £ by tautology from 3.
5. h Q ^ ( ^ ^ Q ) by axiom 5.
6. X ^ (p -• E, Q) h E; X < (/? -> £, Q) by axiom 3.
7. X ^ (ƒ>->£, Q) h O -> £ ; X, £)<(ƒ> -> (p -> £, Q), £) by axiom 8.

8. i- (/> -> 0> -» £>Q)>£) = (/> -> £>Q) by a x i o m 10-
9. X < (p -> £, Q) h (p -+ EX, Q) ^ (p -* E, Q).

10. h * E ^ (p -> £", Q) by the |i induction rule from 5 and 9.
11.. \- * E{p -> £, Q) by axiom 6 from 3 and 10.

APPENDIX C

For a schema 4̂ with no free procedure variables, i(A) was defined to be
the set of all input variables to the assignments and predicates in A and o(A^
was defined to be the set of all output variables of the assignments in A. From
the définition it follows that /(Q) = i{E) = o(Ù) = o(E) = fy since no assign-
ments or predicates occur in E or Q.

For a free predicate variable X, i(X) = o(X) = 2 'M since X can affect any
memory variables and it also can use any memory variables. The following
lemma is very useful in checking commutativity of programs :

LEMMA 1 : If B is an assignment, A is a procedure schema,

i(B) no{A) = i(A) n o(B) = o(A) n o(B) - 4>

then V A; B = B; A,

Proof : The proof is by induction on the height (complexity) of the term A.

(Basis)

Case 1 : A is E or A = Q. Then h A ; B = B ; A by axioms 3 and 1 respec-
tively.

Case 2 : A is another assignment Then by applying axiom 16 twice one
obtains A\B = B; A.

(Inductive Step)

Assume that A : B = B; A is true for ail terms S having height less than n
satisfying the condition

i(A) n o(B) = i(B) n o(A) = o(A) n o(B) = $ .

Let A have height n. There are three cases.

Case 1 : A = C; D where C and D have height less than n. Of course

vol. 19, no 3, 1985



310 A. PELIN

i(C) ç i{A\ i(D) ç ï'(̂ X o(Z>) ç o(^), o(D) ç o(̂ 4), thus C and D satisfy the
conditions of the lemma By the induction hypothesis, h C; B = B; C and
\- D;B = B;D. Below is a proof for Y A\B = B\A.

1. h A ; £ = (C; D) ; B by assumption.
2. h ( C ; D ) ; £ = C ; (Z) ; £) by axiom 2.
3. Y D; B = B; Dby the induction hypothesis.
4. I- C; (D; 5) = C; (J3; D) by substitutionfrom 3.
5. h C;(B;D) = (C; 5) ; D by axiom 2.
6. h C; 5 = i?; C by induction hypothesis.
7. h (C; B) ; D = (£; C) ; D by substitution from 6.
8. \-(B- C);D = B;(C;D)by axiom 2.
9. hi?;(C;D) = i?;A

10. h ̂  ; B = B ; A by tautology from 1, 2, 4, 5, 7, 8, 9.

Case 2 : 4̂ =( />-• C, Z)) where C and D have height less than n. Again
z(C) ç i(^)9 i(D) ç Ï (^) , o(C) ç o(i4) and o(D) ç o(^) thus C and Z) satisfy
the conditions of the lemma. By the induction hypothesis, V C\B = B\C and
h D\B = B\D. Below is a proof for h A ; 5 = 5 ; A.

1. \- A; B = (p ^> QD);B by assumption.
2. h (p -> C, D); B = (p-+C;By D;B) by axiom 13.
3. \- C; B = B; C by induction hypothesis.
4. \- D; B = B; D by induction hypothesis.
5. h (p -• C; £, D ; B) = (p -> £ ; C, £ ; D) by substitution, using 3 and 4.
6. \-(p ^ B;C,B;D) ^ B;(p^ C,D) by axiom 18.
7. h £ ; ( / > ^ C , D ) = £ ; A
8. h A ; £ = £ ; A by tautology from 1, 2, 5, 6, 7.
Case 3 : A — \iX [C] where C has no other free procedure variables except X.

The proof that \iX[C] ; B = B; \iX[C] is by u-induction.
1. h C[Q/X]; B = 5 ; C[O/X] by induction hypothesis.
2. X; B = B; X \- C; B = B; C since there are no free procedure varia-

bles other than X.
3. h \iX[C] ; 5 = B; \iX[C] by u induction.
Lemma 2 is a generalization of axiom 18.

LEMMA 2 : If p is a predicate, X and Y are schemata, A is a procedure sche-
mata and i(p) n o(A) = $ then V A ; (p -> X, Y) = (p -> A; X, A; Y).

Proof : By induction on the height of A.

(Basis)

Case 1 : A = Çl or A — E, Then the resuit holds by axiom 1, respectively
axiom 3.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



EQUIVALENCE OF RECURSIVE PROCEDURES 311

Case 2 : A is an assignaient Then h A ; (p - , X, F) = (/? -» 4 ; X, A ; 7)
is an instance of axiom 18.

(Inductive Step)

Assume the lemma to be true for ail terms A of height < n. Let A have
height n.

Case 1 : A ~ C ; D. Then both C and D satisfy the conditions of the lemma
and have height less than m

Below is a proof that the lemma holds for A.
1. h A ; {p ->X, 7) = (C; D) {p - , X, Y) by assumption.
2. h (C; D)(p-*X,Y) = C; {D;(/>-, X, Y)) by axiom 2.
3. h D ; (/? - , X, Y) = (p - , Z) ; X, D ; Y) by induction hypothesis.
4. h C; (D; (/? -» X, Y)) = C; (/> -> D; X, D; Y) by substitution, using 3.
5. h C ; ( ^ D ; I , D ; y ) = (i?-> C; (D; X), C; (D; Y)) by induction hy-

pothesis.
6. h (ƒ> - C; (D; X), C : (D; Y)) = (/>-> (C; D) Z, (C; D) Y) by substi-

tution and axiom 2.
7. h (ƒ> -> (C; D) X, (C; D) Y) = (p -> AX9 AY).
8.. l-i4 ;(/>-> X, Y) =(/>-+ v4Z, ̂ Y) by tautology from 1, 2, 4, 5, 6, 7.
Case 2 : A = (q ^ C, D), Then C and D have height < n thus the induction

hypothesis applies to them. A formai proof of A ;(p -• (q -> ^4X, ̂ 4 Y)) is given
below :

1. h ( ^ ^ ^ ; X , ^ ; Y) - (/>-*(g-> C,D)X5(^-^ C, Z)) Y) by assump-
tion.

2. h (p -> (g - , C5D)X,(^ - C,D) Y)) = (p -> (9 - , CX,DX)te - , CY5DY))
by applying axiom 13 twice.

3. h (/? - , (q -> CX, DX), (« - Ci; D Y)) =
= (g - , (p - , CX, CY\ {p - . DX3 DY))

by axiom 12.
4. h (q - , (p - , CX, CY), (p - , DX? DY)) =

- (« -^ C(p - , X, Y), D(p -+ X, Y))
by applying the induction hypothesis to C and D.

5. h ($ - , C(/> - , X, Y), I)(p - , X, Y)) = (q - C, D) (p - , X, Y) by tauto-
logy and axiom 13.

6. h (g - , C, D) (/? - , X, Y) - ^ ; (p -> X, Y) by assumption.
7. h ̂  ; (p - , X, Y) = (p - , ^ ; X, A ; Y) by tautology from 1, 2, 3, 4, 5, 6.
Case 3 : A = [iZ[C] where C has height < M and contains no free procedure

variables except Z. Below is a proof that lemma holds for A :

1. h CQ/Z]; (p - , X, Y) = (/>-> C[Q/Z] X, C[Q/Z] Y) by the induc-
tion hypothesis.

vol. 19, n° 3,1985



312 A. PELIN

2. Z ; (p -> X, 7) = (/? -> ZX,Z7) h C;(/> -> X, 7) - (p -> CX, C7) isa
theorem since C contains no other free variables except Z.

3. h A ; (p -> X, 7) = (p -> ^X, ^ Y) by n induction from 1, 2.

METATHEOREM l : If A and B are procedure schemata,

i{A) n o(B) = o(A) n i(B) = o(A) n o(B) = <|>

rAen h ^ ; 5 = B ; A,

Proof : By induction on the height of B.

(Basis)

Case 1 : B = Q or B = E, Then h A ; B — B; A by axiom 1, respectively
axiom 3.

Case 2 : B is an assignment. Then h ̂ 4 ; 5 = B; A by lemma 1.

(Inductive Step)

Assume that for A and B satisfying the conditions of the theorem and height
(B) > n the metatheorem is satisfied. Let B have height n.

Case 1 : B = C ; D. Then one can establish \- A; B = B; Cby using a proof
similar to the one used in Case 1 of the inductive step in lemma 1.

Case 2 : B = (p -> C, D). Then i(p) <= i(B) n o{A) = $ and h ̂  ;

(p -> C, D) =(/>-> ^C, ^D)

by lemma 2. The proof that A; B — B; A isa theorem is given below :
1. h A ; B = v4 ; (/? -• C, D) by assumption.
2. h ^ ; (p -> C, D) = (/? -> ^ ; C, ^ ; D) by lemma 2.
3. h (/? -> 4̂ ; C, v4 ; D) = (p -+ C; A, D ; A) by induction hypothesis.
4. h (p -> C; 4, D; ^ ) = (p -> C, D); ^ by axiom 13.
5. h ( / ? ^ QD);A = B:A.
6. h ̂  ; B - £ ; ^ by tautology from 1, 2, 3, 4, 5.
Case 3 : B = ^xX[C] where C has no free procedure variables except maybe

X. The proof for this case is similar to the proofs for cases 3 of the inductive
steps done in lemmata 1 and 2.

ACKNOWLEDGMENTS

The author would like to thank the référée for many valuable suggestions.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



EQUIVALENCE OF RECURSIVE PROCEDURES 313

BIBLIOGRAPHIE

[1] R. S. BIRD, Notes on Recursion Elimination, CACM, Vol. 20, No. 6, 1977, pp. 434-
pp. 439.

[2] R. S. BIRD, Improving Programs by the Introduction of Recursion, CACM, Vol. 20,
No. 11, 1977, 856-863.

[3] J. W. DE BAKKER, Recursive Procedures, Mathematical Centre Tracts 24, Ams-
terdam, 1971.

[4] E. HOROWITZ and S. SAHNI, Fundamentals of Computer Algorithms, Computer
Science Press, 1978.

[5] Z. MANNA, Mathematical Theory of Computation, McGraw-Hill, 1974.
[6] J. MCCARTHY, Towards a Mathematical Science of Computation, Information

Processing, Proceedings of IFIP Congress 1962, pp. 21-28, North Holland Pu-
blishing Co., Amsterdam.

[7] E. MENDELSON, Introduction to Mathematical Logic, D. Van Nostrand, 1964.
[8] A. PELIN, An Extended Verson of De Bakker's ja Calculus, Ph. D. Dissertation,

1977.
[9] D. SCOTT, The Lattice ofFlow Diagrams, Symposium on Semantics of Algorithmic

Languages, Springer Verlag, 1977.
[10] D. SCOTT, Continuons Lattices, Oxford University Computing Laboratory Techni-

cal Monograph PRG 7, 1971.
[11] D. SCOTT, Data Types as Lattices, unpublished notes, Amsterdam, 1972.
[12] M. WAND, Fixed-Point Constructions in Order-Enriched Catégories, Indiana

University Computer Science Department Technical Report, No. 23, 1975.

vol. 19, n° 3, 1985


