@article{ITA_1986__20_1_43_0, author = {Pansiot, Jean-Jacques}, title = {Decidability of periodicity for infinite words}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {43--46}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {20}, number = {1}, year = {1986}, mrnumber = {849964}, zbl = {0617.68063}, language = {en}, url = {http://archive.numdam.org/item/ITA_1986__20_1_43_0/} }
TY - JOUR AU - Pansiot, Jean-Jacques TI - Decidability of periodicity for infinite words JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1986 SP - 43 EP - 46 VL - 20 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/ITA_1986__20_1_43_0/ LA - en ID - ITA_1986__20_1_43_0 ER -
%0 Journal Article %A Pansiot, Jean-Jacques %T Decidability of periodicity for infinite words %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1986 %P 43-46 %V 20 %N 1 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/ITA_1986__20_1_43_0/ %G en %F ITA_1986__20_1_43_0
Pansiot, Jean-Jacques. Decidability of periodicity for infinite words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 20 (1986) no. 1, pp. 43-46. http://archive.numdam.org/item/ITA_1986__20_1_43_0/
1. The ω-Sequence Equivalence Problem for DOL Systems is Decidable, J.A.C.M., Vol. 31, 1984, pp. 282-298. | MR | Zbl
and ,2. On Infinite Words Obtained by Iterating Morphisms, Theoretical Computer Science, Vol. 19, 1982, pp. 29-38. | MR | Zbl
and ,3. Adherence Equivalence is Decidable for DOL Languages, Proceedings of the Symposium on Theoretical Aspects of Computer Science, Paris, April 1984. Lecture Notes in Computer Science No. 166, pp. 241-249, Springer-Verlag, Berlin, 1984. | MR | Zbl
,4. Bornes inférieures sur la complexité des facteurs des mots infinis engendrés par morphismes itérés, Ibid., pp. 230-240. | MR | Zbl
,5. The Mathematical Theory of L Systems, Academic Press, NewYork, 1980. | MR | Zbl
and ,