A parametric analysis of the largest induced tree problem in random graphs
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 20 (1986) no. 3, pp. 211-219.
@article{ITA_1986__20_3_211_0,
     author = {Protasi, M. and Talamo, M.},
     title = {A parametric analysis of the largest induced tree problem in random graphs},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {211--219},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {20},
     number = {3},
     year = {1986},
     mrnumber = {894712},
     zbl = {0604.05014},
     language = {en},
     url = {http://archive.numdam.org/item/ITA_1986__20_3_211_0/}
}
TY  - JOUR
AU  - Protasi, M.
AU  - Talamo, M.
TI  - A parametric analysis of the largest induced tree problem in random graphs
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1986
SP  - 211
EP  - 219
VL  - 20
IS  - 3
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/ITA_1986__20_3_211_0/
LA  - en
ID  - ITA_1986__20_3_211_0
ER  - 
%0 Journal Article
%A Protasi, M.
%A Talamo, M.
%T A parametric analysis of the largest induced tree problem in random graphs
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1986
%P 211-219
%V 20
%N 3
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/ITA_1986__20_3_211_0/
%G en
%F ITA_1986__20_3_211_0
Protasi, M.; Talamo, M. A parametric analysis of the largest induced tree problem in random graphs. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 20 (1986) no. 3, pp. 211-219. http://archive.numdam.org/item/ITA_1986__20_3_211_0/

1. P. Erdös and Z. Palka, Trees in Random Graphs, Discr. Math., Vol 46, 1983. | MR | Zbl

2. J. Friedman, Constructing 0 (n log n) size monotone formulae for the k-th elementary symmetric polynomial of n boolean variables, Proc. 25th Symp. on Foundations of Computer Science, 1984.

3. M. Karonski and Z. Palka, On the Size of a Maximal Induced Tree in a Random Graph, Math. Slovaca, Vol. 30, 1980. | MR | Zbl

4. A. Marchetti-Spaccamela and M. Protasi, The Largest Tree in a Random Graph, Theor. Comp. Sci., Vol. 23, 1983. | MR | Zbl

5. M. Protasi and M. Talamo, A New Probabilistic Model for the Study of Algorithmic Properties of Random Graph Problems, Proc. Conf. on Foundations of Computation Theory, Borgholm, Lect. Notes in Comp. Sci., Vol. 158, 1983. | MR | Zbl

6. M. Protasi and M. Talamo, A General Analysis of the Max-Independent Set and Related Problems on Random Graphs, Tech. Rep. 3/84, Dip. Matematica, Università dell'Aquila, 1984.

7. M. Protasi and M. Talamo, On the Maximum Size of Random Trees, Proc. X Coll. on Trees in Algebra and Programming, Berlin, Lect. Notes in Comp. Sci., Vol. 185, 1985. | Zbl