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CONTINUOUS MOIMOIDS
AND YIELDS OF INFINITE TREES (•)

by M. DAUCHET (*) and E. TIMMERMAN (2)

Communicated by A. ARNOLD

Abstract. - We dejîne in a canonical algebraic way the structure of (order-) continuous monoid
and the notion of the yieid of an infinité tree. We prove the decidability of the equality of the
yields of two regular infinité trees.

Resumé. - Nous spécifions, dans l'esprit des catégories, ce que doivent être un monoïde continu
et le feuillage d'un arbre infini (la continuité est prise au sens des C.P.O.). Nous prouvons la
décidabilité de Végalité des feuillages pour les arbres infinis réguliers.

INTRODUCTION

Infinité words (MacNaughton [8], Nivat [10], Nivat-Perrin [11]) and Infinité
trees (Courcelle [4], Nivat [9]) have been studied a lot. Courcelle [2] and
Timmerman [13] associate with one infinité tree a frontier [2] or a yield [13]
as a generalization of the yield of a finite tree.

There are two goals in this paper:
— to specify, in a categorical way what is a continuous monoid and to

construct the free structure,
— to deduce the notion of the (free) yield of an infinité tree and to prove

the decidability of the equality of the yields of two infinité regular trees.
A monoid M is continuous if it is provided with a partial order such that

M is also a C.P.O. and the concaténation is continuous. We construct and
describe the free continuous monoid W*° (Z) generated by an alphabet S.
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252 M. DAUCHET, E. TIMMERMAN

The set W(L) of finite words is the quotient (X UÜ)*/Q = QQ, where Q is a
new symbol (the bottom element). W™^) is constructed from WÇL) by
completion and W(L) is the finitary basis of the algebraic C.P.O. W°°(L).

If we consider a congruence on (Ilj{fi})* that can be represented by a
confluent and noetherian term rewriting System (Huet [7], Courceile [3]), and
if the normal form mapping N is increasing, then NCW00 (E)) is a continuous
monoid. For instance, we deduce the usual infinité words (Nivat [10]) from
the congruence Qa = Q (for every a e ï ) .

Here we consider infinité trees in the usual sense (Courceile [4], Nivat [10])
with the syntactic order, Then an application cp of infinité trees into a
continuous monoid is a yield-application iff<p is continuous and, for every
tree ƒ (t^ . . ., tn), we have :

Then, we consider initial yields (in the categorical sense). They are words in
W* (X).

Courceile [2] has introduced frontiers of infinité trees as a generalization
of yields of trees to the infinité case. But "frontier" is a different notion than
"yield": if the frontiers of two infinité trees are equal, so are their yields, but
not conversely. Intuitively, frontier takes into account more information
about the structure of the infinité branches (see the examples in part II of
this paper).

Unfortunately, the frontier is not continuous. This is the reason why we
introducé the yield.

The problem of decidability of the equality of the frontiers of regular trees
has been recently solved by Thomas [12]. In part III of this paper, we give a
décision algorithm for equality of yields of regular trees. The principle is to
construct a rational language from a regular tree, this language being a
directed subset (in C.P.O. sense) whose lub is the yield of the tree. This is
done in two different ways:

— constructing an automaton from a system that represents a regular tree,
— using Heilbrunner's results [6] and transforming his regular expressions

(that represent frontiers) into rational ones that represent the languages we
are looking for.

I. CONTINUOUS MONOIDS

1.1. Définitions

Let M be a set provided with an opération ° called concaténation and with
a partial order <.

Informatique théorique et Applications/Theoretical Informaties and Applications



CONTINUOUS MONOIDS AND YIELDS OF INFINITE TREES 2 5 3

(a) Continuons monoid

DÉFINITION : M is a continuous monoid iff it is both:

— a monoid (w.r.t. the concaténation),

— a C.P.O. {Complete Partial Order)
and satisfies:

— the order relation is compatible with the concaténation, i. e. (x<y & z<t)
implies x°z<y°t,

— the concaténation is continuous, Le. lub(D) olub(D') = lub(D°D') for
all directed subsets D and D'ofM.

Let us remark that the set D oD' = {xoylxeD&yeD'} is a directed subset
of M whenever D and D' are directed subsets, since the order is compatible
with the concaténation.

Let us note, for a continuous monoid M:

°M: the concaténation,

XM: the neutral element,

< M: the order,

and _LM: the least element of M
(we sometimes omit the subscript M).

PROPERTY: ± M O _ L M = = I M

Proof: 1 M < M 1 M ° 1 M

by the compatibility of ^ M with o, and by antisymmetry one gets the equality.

(b) Morphisms

DÉFINITION; Let M, P be continuous monoids, a mapping h:M->P is a
morphism (of continuous monoids) ifit is:

— a morphism of monoid,

— a morphism of CPO

(L e. a continuous mapping such that h(±M) — ±P)

vol. 20, n° 3, 1986



254 M. DAUCHET, E. TIMMERMAN

(c) Free continuons monoid

Let E be an alphabet. We consider, from now on, the continuous monoids

generated by E; i. e. the triples (E, ƒ M) denoted by E -• M where M is a
continuous monoid and ƒ a mapping from E into M.

A morphism of continuous monoids generated by E is a morphism (of
continuous monoids) cp : M -• M' such that the following diagram commutes:

ƒ

£ > M

This forms a category.
The initial object of the category is called a free continuous monoid

{generated by E), whenever it exists and it is then unique up to isomorphism.

1.2. Construction of the free continuous monoid

Let Q be a symbol not in E(O is the symbol for "undefined").
We consider the free monoid (EU {Ü})*-, i-e. the set of finite words over

E U {&} provided with the usual concaténation.
Let ^ n dénote the relation on (E U {Q})* defined by:
for ail x, y

or
. . .xn_lQxn, x teE*

that is: y is obtained from x by substituting arbitrary words for occurrences
of Q.

It is easy to check that ^ n is the least preorder on (EU
with the concaténation such that Q is less than every word.

Let ~ dénote the congruence on (E U {^})* generated by:

compatible

Informatique théorique et Applications/TheoFetical Informaties and Applications



CONTINUOUS MONOIDS AND YIELDS OF INFINITE TREES 2 5 5

Then, t?~w iff v^aw and w^nv for all v9 w, and thus the quotient set
(2U{^})V- is (partially) ordered by :gn (same notation for the preorder
on words and the order on congruence's classes).

Let us dénote by W(L) the monoid (2 U {fi})*/^.
The canonical représentative of an element of WÇL) is the shortest word

of the class, i. e. the word which has no two successive occurences of the
symbol IÎ; it is obtained as a normal form by the confluent and Noetherian
rewriting System: QQ -• Q.

We always identify an element (also called word) of WÇL) with its canonical
représentative.

The concaténation on WÇL) is the corresponding quotient opération.
The empty word e (more precisely the class {e} of e) is the neutral element

for this opération.
The order (^^) on W(L) is compatible with the concaténation and QQ*9

(the class of Q) is the least element of W(Z).
W(£) is not a CP.O.: it can be completed by ideal completion (standard

construction), which gives an oa-algebraic CP.O. denoted by W™ (Z) whose
least element is Q. WÇE) is the finitary basis of the CP.O. W™ (£), hence:

^CE), ID^WÇL) such that w-lub(i>)
and

- VDgW(I), D being a directed subset lub(Z>)eW(E)ïff D is finite.
The concaténation on WÇL) extends by continuity to W™(L)9 and thus, by
construction, W™ (E) is a continuous monoid generated by 2:

Z $ W™ (E)

with id the identity mapping

PROPERTY: W00 (E) is the free continuous monoid generated by 2 .
See [5] for the proof, which is straightforward.
We will call 'infinité term" a non-finite element of W°°(I,).

1.3. (usual) infinité words as forming a continuous monoid

(à) Preliminary

PROPERTY: If = is a congruence (ofmonoids) on W(L) that can be criented
into a confluent and Noetherian term rewriting System (t.r.s.), then there is an
isomorphism ofmonoids N between W(L)/= and N(W(T)) in the following

vol. 20, n° 3, 1986 *



2 5 6 M. DAUCHET, E. TIMMERMAN

sensé:

— for all m, N(m) dénotes the normal form ofm associated with the t.r,s.

— N(W(L)) is the set of normal forms and the concaténation, denoted by .,
is defined by:

N(m).N(m') = N(m.m')

Example: The congruence defined by VaeE, Qa = Q is oriented into the
Noetherian and confluent t.r.s.

VaeE, £ïa->Q.

The normal f orm N is such that: for any mx, . . ., m p € l*

N(mxQ. . .Qmp) = m1Q

Nis an isomorphism of W(E)/ = on JV(tf(S)) = I * Q U S * and, in
for ail m, m'eS*, one has:

and

mQ. w/

m.m' = mm'.

PROPERTY: If N is monotone, then

(a) N extends (by continuity) to W™ (Z) -> ^°° (Z),

(è) N(py°°(D)) provided with the induced concaténation and with the order
^ n (limited to this subset of W°°(Z)) is a continuons monoid. It is isomorphic

See [5] for the proof.

(b) Infinité words

An infinité word is a mapping w: AT+ -> L with Z-the alphabet and N+ the
set of positive integers.

S" dénotes the set of infinité words over S and E00 = Z*U^ t ö the set of
words (over E). It is well known that E00 provided with the prefix order is a
(œ-algebraic) C.P.O. whose finitary basis is 2*. It is also a monoid (with the
usual concaténation).

Informatique théorique et Applications/Theoretical Informaties and Applications
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Since the prefix order is not compatible with .concaténation, E00 is not a
continuous monoid.

Let = be the congruence on W(L) previously defined (fia = Q).
The mapping N: W(L)-* W(L) associated with the congruence is mono-

tone.
The set of normal forms N(W(E)) is equal to E* U£*£2-
The order ^ f t, limited to this set, can be defined by:

— xeE* and x=y
or

It is very similar to the prefix order.
N extends to W™ (E) and

directed subset g

Let us remark that a directed subset D of E* f2 is an increasing séquence

The set {lub (D)/D directed subset of S*Q} corresponds exactly to Zœ, and
thus iV(P^°°(2;)) = 2;*QUE00 which is a continuous monoid generated by E:

id

II. THE YIELD OF AN INFINITE TREE

II. 1. Trees

Let E be a ranked alphabet and Q be the symbol of arity 0 such that Q £ E
(it means "undefined").

Let us dénote by E£, ieJV, the subset of E of symbols of arity i; Eo is the
set of constant symbols.

vol. 20, n° 3, 1986



258 M. DAUCHET, E. TIMMERMAN

We consider ^ ( 2 ) = r ( I U {O}) the set of finite and infinité trees over
s u {o}.

For each tree t in 7^(£), dom(t) dénotes its tree-domain and fr(t) the
string of terminal nodes ordered by lexicographie order in the tree-domain t
being considered as a partial mapping t : JVJ. -• ï U {Q} with the usual proper-
ties.

The syntactic order on trees is defined by:

r<r /ïfTdom(t)gdom(O and for all w in dom(t),

if t(w)^Q then t'(w) = t(w)

T£ (£), provided with the syntactic order, is an (o-algebraic C.P.O.; O is the
least element, and Tn(L), the set of finite trees over I U { 0 } , its finitary
basis.

The set of maximal trees, w.r.t. the syntactic order, is T°(L) the set of
trees over S.

The yield opération on finite trees is the mapping:

fg: TQ

defined by;
for sllt in Tn(Z):

- fe{t)=fg(t1). . .fg(tp) whenever

II.2. Yield opération and initial yield

DÉFINITION; We call yield a mapping <p; T^ (£) -* M, where M is a conti-
nuons monoid, such that:

— cp is strict:

— <p is monotonous: t<t' implies <p (t) <M<p{t%

— <p is continuous: <p(hib(D))=lub{<p{D)) for all directed subset D of

— <p (t) = q> {tj)° . . . ° <p (tp) whenever

t=f{ty,...,tp\ ƒ 6 Z p

Informatique théorique et Applications/Theoretical Informaties and Applications



CONTINUOUS MONOIDS AND YIELDS OF INFINITE TREES 259

DÉFINITION; A yield (p : T£ (E) -+ M, 1*5 initial iff for any yield,
cp' : T£ (L) -• M\ there exists one and only one morphism (of continuous
monoids) h\M -• M' such that <p' = h° cp i. e. such that the diagram commutes:

Immédiate property: The yield (p : 7^ (Z) -• W00 (Eo) defined by:

cp(a) = a /or a// a e £ 0

is the initial yield.

Example: Let M be IJQUX0 0 , the continuous monoid previously defined.
Let (pM : 7^ (E)-> M be the yield defined by (pM(a) = a for all a in Zo. Then
the morphism h : W° (Zo) -> M is defined by h (a) = a for all a in So.

Let ( be the tree defined by the équation:
so that t =

Considering fmite approximations of t, we get:

(p (t)=lub {a" fi *"/« e N} = lub (a* Q **)

and

<P*r<*) = lub {an. fi. bn/n e N} = lub {a" Q/neN}

thus

vol. 20, n° 3, 1986
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Let f be the tree:

M. DAUCHET, E. TIMMERMAN

cp (O = lub {an Qbn+PQ cp/n, p e N}=lub(a*Qfc*Oc*)

CPM (O = * (<P (O) = lub {fc (an Qbn+PQ cp)/n, peN}

= \ub{an.Q.bn+p.Ù.cp/n,peN}

= l\ib{an.Q/neN}=ato.

II.3. Yield and frontier

The notion of frontier of an infinité tree, has been introduced by
Courcelle [2]. It is based on the définition of arrangements or generalized
infinité words. We just recall the main définitions and properties and then
compare yield and frontier, infinité terms and arrangements.

Arrangements

Let X be an alphabet. An arrangement over X is a triple w = <D, TT, h}
consisting of a set D, a total order n on D, and a mapping h:D ->X. u is
said countable whenever D is.

A^{X) dénotes the set of countable arrangements. The words of X* are
identified with the fini te arrangements <[n], ^ , h} where [n] = {l, 2, . . ., n}
and ^ the natural order on integers. The arrangements <iV+, ^ , h} corres-
pond to the infinité words of X®.

An équivalence relation on arrangements is defined as follows: if
u = < £>, 7c, h y and u' — < D', TC', A' >, M and t; are said equivalent (M = u) iff

there exists a bijective order preserving mapping f:D -+D' such that
h = h'°f. The concaténation of arrangement can also be defined (see
Courcelle [2] and Heilbrunner [6]).

Informatique théorique et Applications/Theoretical Informaties and Applications



CONTINUOUS MONOIDS AND YIELDS OF INFINITE TREES 261

We consider T00 (E) the set of trees over E [i. e. the set of maximal trees

Let us recall that a tree is locally finite iff every branch leads at least to a
leaf.

T*OC(S) dénotes the set of locally finite trees.

DÉFINITION; For each tree t: dom(t) -> E, the "frontier" oft is the countable
arrangement ty(t) = (fr(t\ ^h t} (there ^ , is the lexicographie order).

PROPERTIES:

- Ift=f(fl9 ..., g , / e E p then:
— for each finite tree t : \|/ (t) ^

THEOREM (Courcelle):

^ (20) = {• (t)/t s 7 - (E)} = {e} U {• (t)/t e P" (E)}.

Let us recall that \|/ is not "continuous" in TgÇL), i. e.: if (ti)ieN and
(fJ)leN are increasing séquences of trees in Tn(E) such that \|/(tj) = \|/(tî) for
all i in iV, this does not imply \|/(lub{tf/ieiV}) = v|/(

Example (Courcelle [2]):

i-times i-times

n
For all ieiVwe have:

but

\|/ (lub {tji e N}) # \|/ (lub {fji e N}).

Conséquence: For all t, t'eT*00^)

(p(r) = (p(O does not imply

vol. 20, n° 3, 1986



2 6 2 M. DAUCHET, E. TIMMERMAN

On this example, if:

t = lub{tl/îeiV} and t' = l

Conversely, we have the following:

PROPERTY: For ail ty t'e1*OQ{I)

\|/ (r) = \|; (O implies 9 (t) = 9 (f ).

Note that this property does not generally hold in T° (Z).

Example:

\

! \ I «'' \ / x^
/ \ / ii \ / \

cp (t2) = lub {Q an Q/n eJV}#tp (tj

and

These properties show that the frontier is a finer opération than the yield,
and that the éléments of W!oc(E0) (i. e. the set of yields of locally finite trees)
are classes of countable arrangements.

Informatique théorique et Applications/Theoretical Informaties and Applications
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More precisely, there exists an onto mappling S I J ^ E O ) -• Wloc(£o) such
that: for all te7*oc(ï)

and

u = v implies s(u) = s (v).

II. 3. Yields of regular trees

From now on, we only consider the initial yield <p : Tg (E) -• W™ (Lo) or
its restriction to T00 (I).

// . 3.1. Systems of équations

A tree is regular
— iff it has a finite number of distinct subtrees,

— iff it is component of the unique solution of a regular system of

équations {see Courcelle [4]).
Let V be a set of syntactic variables (arity 0); a regular system (of équations)

is a system of the form:

with xu . . ., xn in V, and with the u\ s in T(Z U V) and not in V.

S can also be viewed as a deterministic regular tree grammar (one produc-
tion rule for each syntactic variable). The solution of S is the n-uple of trees
of

where h substitutes the symbol Q for the variables.
Let S be the derived system, associated with S, and defined by:

S = <x1 = q>(tt1), . . ., x„ = (p(un)>

S is an algebraic system of équations (of words) in which for each xt, there
is only one équation with left-hand side xt.

Conversely, each algebraic system of words:

T=<x1=w1 , . . ., x„ = wn>, xteV,

vol. 20, n° 3, 1986



2 6 4 M. DAUCHET, E. TIMMERMAN

is the derived system, S, of some regular system of trees, S.

Let h be the morphism, h: (Zo U V)* -> H^(I0) defined by:

h (xt) = Q for each xi in F,

h(<x) = oi for each letter a in Zo.

*
It can be noted that h(u)^nh(v) whenever u-+v; so the set

s

*
Li = {h(w)/xi-*w} is a directed subset of W(L0), and thus has a lub in

PROPERTY: The n-uple (lubiLJ, . . ., lub(L„)) is the least solution of the
system S in {W™ (L0))

n and is equal to ((pC^), . . ., <p(t„)), where (tu . . ., tn)
is the solution of S.

Proof: A solution of S is a n-uple (wl9 . . ., wn) of {W™ (L0))
n satisfying the

équations, that is, such that for i= l , . . ., n: w{ = 0(i<£) with 0 the morphism
0 ; Wœ (Lo U V) -+ W™ (Eo) defined by:

- 0(Q)=Q,

- 0 (a) = a for all a in Eo,

- e ^ ^ W j forall x,. in V.

It is quite immédiate that lub(Ll) = q>(tI) and that (qKtJ, . . ., q>(O) is a

solution of S. A simple induction on the length of dérivation shows that
z£aWi whenever z is in Lt and (wly . . ., vv„) is a solution of 5, and thus
lub (Lt) ̂  Q w; for i = l , . . , , B .

Example: Consider the following regular system:

a Xj b c X2 à *i

Then

h; x2 = cx2dx1},

L2= U

Informatique théorique et Applications/Theoretical Informaties and Applications
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It is easy to see that Lx is equivalent (same lub) to the rational language
a*£lb*, and L2 to c*Q(da*Qft*)*; thus the (least) solution of 5 is

(lub(a*QZ>*), lub(c*Q(da*Ob*)*)).

In gênerai, the solution of certain particular classes of algebraic Systems (the
linear and quasi-rational ones) can easily be expressed with rational languages;
that is not so evident for arbitrary system.

Remark: Let us recall that an element of W(L0) is a class of congruence
(Q~OQ) of the free monoid (Xo U {Œ})*. Given a language L of (20 U {O})*,
one consider L, in W(Z0), as the set of classes which are represented i. e.
{weWÇL0)/3ueL &uew}.

Conversely, given a subset L of WÇL0) (also called language) one considers
if necessary, the corresponding language of (Z0U{^})* of the canonical
représentatives of the element of L.

THEOREM: For every regular tree t, one can find a rational language

J {&})* such that

— R (considered as a subset of W(E0)) is directed and

The proof of this theorem consists in solving the algebraic Systems of
équations and this can be done in two different ways:

— constructing an automaton associated with the system,

— using Heilbrunner's results [6].

These are described later.

Conséquence: The equality of the yield of two regular trees is decidable.

Proof: Let t and t' be regular trees and R, R' be rational languages satisfying
the previous theorem.

Then:

where

vol. 20, n° 3, 1986



M. DAUCHET, E. TIMMERMAN266

for all

Moreover, it is easy to check that the Ideal (more precisely, the set of
canonical représentatives of the Ideal) of a rational language is a rational
language, an expression of which can be constructed.

This establishes the result since the equality of rational languages is decida-
ble.

III. 2. Solving algebraic Systems: first way

Let 5 be an algebraic system:

i = M* withu£6(IoU»0*; V={xu.. ., x„},
i = l, . . ., n; neN+.

Let = dénote the équivalence relation on the set of variables V, defined
by:

— Xi -> WXj w' ,

s
and

*
- Xj^VXtV',

s

This relation allows to make a partition of the system S into disjoint "closed"
subsysterns (that is: all variables appearing at the left part of the équations
are equivalent).

The principle is then to solve, regardless of the orthers, each subsystem by
considering it as a system. The gênerai solution of the system (i. e. the rational
languages) is then obtained by straightforward substitution of the partial
ones.

Example:

V={xl9 x29 x3}

x1=ax2bxl cx3d
S— x2 = ux2vx3w

Informatique théorique et Applications/Theoretical Informaties and Applications
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we have x2 = x3 and xx #x 2 and thus the subsystems:

Sx = {xl=ax2 bx1 cx3 d]

S =

5X is solved by the rational

Rl = (ax2b)*Çl(cx3d)*

If R2 and R3 solve S2, we just have to substitute R2 for x2 and R3 for x3 in
the expression of Rt to obtain the rational language corresponding to the
first variable of the system S.

The solution of a "closed" subsystem can be obtained by constructing an
automaton associated with it.

Let S be a system:

j f xt-u>

with Xi = Xj for all i9 j .

Let v4 be the automaton defined in the following way:

- Alphabet: JU{«},
- Set of states: Q = {qu . . ., qp} \J {qlt . . ., qp}

i. e. two states per variable.

- Transitions: of four different types:

(<0

^ i f «i = a*^

(d) q^m yi • qk if ui = wxjjixkw
/

vol. 20, n° 3, 1986



2 6 8 M. DAUCHET, E. TIMMERMAN

Let us note by Rt the language that is recognized by the automaton with q(

as initial state and qt as unique terminal state, for i = 1, . . . , /> .

Let h be the morphism of monoids:

h: (XVV)*->(XU{n})*

defined by:

*(**) = ft V i = l , . . . , /> ,

a, V a i n X

*
LEMME 1; For any word w such that xt -> w, the word h(w) is in Rv

s

Proof: Immédiate by définition of the automaton.

LEMME 2: For any word w in Rit there exists a word w' such that xt -> w'
s

and w ̂  Q h (w7).

Sketch of the proof:

(i) for ail séquences of transitions of the form:

qh #^^W qj2 m ^ \ ...m qjn m^^m qk

one has with 5:

for somew'e(A:UK)*.

(ii) symmetrically, if:

then k -* wy xkl Pj p2 . . . P„, some w'e(XU V).
s
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(iii) for all séquences of transitions of the form:

_ A - Pî - A - V
qhm

with S one has:

n + p+l
x •

for some x in V and w', w' in ( I1J K)*
(i), (ii), (iii) are direct conséquences of the définition of the automaton.
Let w be in Ri9 then w = w0QwxQ. . . wn_1Qw„, neN+.
With (i) and (ii) one easily gets:

s

with as least one variable in v. Since all variables are equivalent and by (iii)
one successively obtains:

s

and so on,

and thus:

xi->woz1wlz2w2. . . V i V i ^ w ^ w '
s

with the ZjS in {X{J V)* and by définition of ^ n one has w^n/i(w0.

PROPERTY: The p-uple (lub(JR1), . . ., lub(i?p)) is the least solution of the
System S [with R( considered in W(L)]t

Proof: Direct conséquence of Lemma 1 and Lemma 2.
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Example: (continued)

w

the associated automaton is:

which gives the rational languages:

and

Other example:

R3 = ((a u* Q + Qy* w) (v + p))* ïly •

' = {x = xa1xa2x. . .x
al9 a2; „.,11,
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III.3. Solving algebraic Systems: second way

Algebraic Systems have been studied by Courcelle [2] and Heilbrunner [6]
within the framework of countable arrangements and frontiers of infinité
trees.

The considered solution of a System in a n-uple of arrangements, each
component of which being equivalent (w.r.t. the équivalence of arrangements)
to the frontier of the corresponding maximal dérivation tree.

The solution is given by "regular expressions" that represent these arrange-
ments.

A regular expression consists in an expression using concaténation, expo-
nentiation to co and — co, and shuffle. Without recalling the précise définitions
of these opérations, we just give characteristic properties.

— Exponentiation: If u is an arrangement:

• u® is the solution of the équation x = ux,

• u~w is the solution of the équation x = xu;

— Shuffle: Let ul9 . . ., un be arrangements, neN+, and u be the set

« = { « ! , . . . , « „ } •
The shuffle of «, denoted be un is the solution of the équation

x == x«! xu2 x . . . xun x.

If «n = < Z), n, ƒ> with f:D -+u then one has:

for all x, y in D such that x^y and xity;

for all u e U, there exists z e D such that xnz and zny and ƒ (z) = u.
With any regular expression £, in Heilbrunner's sense, one can associate a
rational language of ( £ 0 U {^})* defined by the rational expression ^(£T), g
being recursively defined as follows:

— g(a)=a for each letter a in Z0)

— g(E. E') —g{E). g (E') whenever E and E', are regular expressions,

+ . . . +g(En)))*n whenever
£ = {£ 1 7 . . . , £„ } .

Let s be the mapping s: S/^CLQ) '~* wyx(^o) such that: for all locally finite
trees i, cp (t) = s (v(; (t)).
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PROPERTY; Let E be a regular expression that dénotes an arrangement u in
^JX0); then s(u) = \ub(g(E)).

Sketch oftheproof:
— u = w> weX* whenever u is finite and then g(E) = x = s(u).
— Let us suppose £ = £ 1 . E2 with Ex and E2 satisfying the property. Then

u — u1 u2 and s (u) = s (ut). s (u2) (by property of s); thus
siu^lubteiEJïAubigiEi)) and, by property of the CP.O. H^(Z0X
s (u) = lub ( g ^ E , ) ) - l u b (#(£)).

— Let a be a letter in Zo, and £ = aû). £ is the solution of the équation
x~ax. Considering the dérivation tree t of that équation, one immediatly
gets:

<p (t) = s (u) = lub (ot* Q) = lub (g (£)).

In the same way, if E = a"*0 the result is obtained by using the
equationx — xa.

— Let a ls . . ., a„ be letters in Zo

a = {als . . ., a j and E = a\

E is the solution of the équation x = xa 1 x . . . xa„x . As before, t is the
maximal dérivation tree (t is locally finite); s (u) = s (\|/ (t)) = <p (f) and, using
the previous method for solving this équation, one gets
<p(0 = lub((O( a i+ . . . + cO)* O) = lub (*(£)).

— It remains to be proved that s (w) = lub (g (0 (£))) where w is an
arrangment denoted by 0(£) , whenever an arrangement u is denoted by E
and satisfies s (u) = lub (g (£)), and 0 is a substitution of the expression £A

for the letter a such that s (uj = lub (#(£„)). We only need to ram'ark that
g (©(£)) is equal to T (#(£)) with x the substitution of the expression
for the letter oc.

Conséquence: Let S be an algebraic system

and El9 . . ., £p be the regular expressions given by Heilbrunner's algorithm
to solve 5.

Then the n-uple (lubO?^)), . . ., lub(g(£„)) is the least solution of the
system S, whenever none of the expressions Et is reduced to the empty word
e (i. e. the maximal dérivation trees, from a variable, are locally finite).
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Proof: Let tu . . ., tp be the maximal dérivation trees associated with S
(obtained from the variables) then £( represents ^f(tt) and
(p (tt) = s (\|/ (tj) ~lub(g (£f)) whenever tt is locally finite and (<p (ti), . . ., <p (tp))
is the least solution of S.

Example: (The same as previously).
Let S be the system:

xl=ax2bx1 cx3d

Heilbrunner's algorithm gives the expressions:

and then:

With the transformation g, one gets:

- g (E2) = u* n (Q (Qy* WÜ a u* Q 4- Qy* w Pa u* Q))* Qy* w

and:

- g (Ei) = («g (£2) fc)* Q ( ^ (£3) d*.

It is easy to see that giE^, g(E2) and g(£3) are, respectively, equivalent
(same lub) to the rational languages Rl9 R2 and R3 obtained by the first
method.
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