Every commutative quasirational language is regular
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 20 (1986) no. 3, pp. 319-337.
@article{ITA_1986__20_3_319_0,
     author = {Kortelainen, Juha},
     title = {Every commutative quasirational language is regular},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {319--337},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {20},
     number = {3},
     year = {1986},
     mrnumber = {894717},
     zbl = {0617.68069},
     language = {en},
     url = {http://archive.numdam.org/item/ITA_1986__20_3_319_0/}
}
TY  - JOUR
AU  - Kortelainen, Juha
TI  - Every commutative quasirational language is regular
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1986
SP  - 319
EP  - 337
VL  - 20
IS  - 3
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/ITA_1986__20_3_319_0/
LA  - en
ID  - ITA_1986__20_3_319_0
ER  - 
%0 Journal Article
%A Kortelainen, Juha
%T Every commutative quasirational language is regular
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1986
%P 319-337
%V 20
%N 3
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/ITA_1986__20_3_319_0/
%G en
%F ITA_1986__20_3_319_0
Kortelainen, Juha. Every commutative quasirational language is regular. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 20 (1986) no. 3, pp. 319-337. http://archive.numdam.org/item/ITA_1986__20_3_319_0/

1. J.-M. Autebert, J. Beauquier, L. Boasson and M. Latteux, Very Small Families of Algebraic Nonrational Languages, in Formal Language Theory, Perspectives and Open Problems, R.V. BOOK, Ed., Academic Press, New York, 1980, pp. 89-107.

2. J. Berstel, Une hiérarchie des parties rationnelles de ℕ², Math. Systems Theory, Vol. 7, 1973, pp. 114-137. | MR | Zbl

3. J. Berstel, Transductions and Context-Free Languages, B. G. Teubner, Stuttgart, 1979. | MR | Zbl

4. J. Berstel and L. Boasson, Une suite décroissante de cônes rationnels, Lecture Notes Comput. Sc., Vol. 14, 1974, pp. 383-397. | MR | Zbl

5. A. Ehrenfeucht, D. Haussler and G. Rosenberg, Conditions enforcing reguiarity of context-free languages, Lecture Notes Comput. Sc.,Vol. 140, 1982, pp. 187-191. | MR | Zbl

6. S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw Hill, New York, 1966. | MR | Zbl

7. M. Latteux, Cônes rationnels commutativement clos, R.A.I.R.O., Inform. Théor., Vol. 11, 1977, pp. 29-51. | Numdam | MR | Zbl

8. M. Latteux, Langages commutatifs, Thèse Sc. Math., Lille-I, 1978.

9. M. Latteux, Cônes rationnels commutatifs, J. Comput. System Sc., Vol. 18, 1979, pp. 307-333. | MR | Zbl

10. M. Latteux, Langages commutatifs, transductions rationnelles et intersection, Publication de l'Équipe Lilloise d'Informatique Théorique, IT 34.81, 1981.

11. M. Latteux and J. Leguy, On the usefulness of bifaithful rational cônes, Publication de l'Equipe Lilloise d'Informatique Théorique, IT 40.82, 1982.