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ON FRONTIERS OF REGULAR TREES (*)

by Wolfgang THOMAS (X)

Communicated by I E. PIN

Abstract. - In this note, some connections are pointed out between the theory of generalized
words as developed by Courcelle and Heilbrunner, the model theory oflinear orderings, and Rabin's
theory of automata on infinité trees. As an application, a décision problem raised by Courcelle and
Heilbrunner (on équivalence of countable word- or order-types) is settled.

Résumé. - Dans cet article, on étudie les connections entre la théorie de mots généralisés comme
développée par Courcelle et Heilbrunner, la théorie des modèles des ordres linéaires et la théorie
de Rabin des automates sur les arbres infinis. On obtient comme application une solution d'un
problème de décision proposé par Courcelle et Heilbrunner (sur l'équivalence de types de mots
dénombrables).

1. INTRODUCTION

Given a finite alphabet A, we may identify a nonempty word over A with
a map w : M -> A where M is the domain of a finite linear ordering (M, <).
Usually, M is assumed to be an initial segment of the natural numbers; it
represents the set of "positions" of the letters of the word. The present paper
is concerned with generalized words which arise when one considers arbitrary
at most countable linear orderings (M, <) instead of finite ones. Familiar
examples of such generalized words are co-words or Z-words.

We need some terminology and conventions. In the sequel we say "counta-
ble" to mean "at most countable". A (generalized) word over the alphabet A
is a triple W = (M, <, w) such that (M, <) is a linear ordering, M ^ 0 , and
w a map from M into A. (In [1] such triples are called "arrangements".) If
M is finite, resp. countable, we speak of a finite, resp. countable word. Two

(*) Received in February 1985, revised in April 1986.
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372 W. THOMAS

generalized words (M, <, w) and (M', <', w') are isomorphic if there is an
order-preserving bijection y : M -• M' such that w^w'oy. By a (word-) type
we mean an isomorphism type of generalized words. If A is a one-letter
alphabet, one can view a generalized word over A as a linear ordering; in
this case a word-type becomes an order-type.

Given generalized words U = (M, <, u) and U', <', u'), the concaténation
UU', the (ù-repetition U™ (also denoted !/[ƒ. . .) and the oo*-répétition U&*
(also denoted . . . UU) are defined in the standard way. For example, UU' is
the generalized word (JV, < s w) where

N = ( { 0 } x M ) U ( { l } xM'), w((0, x)) = u(x), w((l, x)) = u'(x)

and (/, x) -< 0, y) if i</ ° r (i—j and x<j>, resp. x <'y). Similarly, U& and
L/*0* are defined over œ x M using the natural ordering, resp. its reverse, on
the set co of the natural numbers.

The countable words are closely connected with infinité (valued) trees. For
simplicity we restrict ourselves to binary trees in this paper. The nodes of a
binary tree are given by finite words over {/, r} ("left", "right"); thus the
partial tree ordering is the prefix relation on {/, r}* and the root of a tree is
represented by the empty word £. An A-valued tree is a mapt : dom(t) -> A
where dom(t) c {/, r}* is a language closed under préfixes. The frontier of
t9 denoted fr (t)9 is defined by fr (t) = { u e dom (t) | ul, ur $ dom (t)}. It is linearly
ordered by the lexicographie ordering •< on {/, r }*. Hence, for any ^4-valued
tree t, we obtain a countable word W = (fr(t\ -<, w) where w : fr(t) -* A is
the restriction of t to fr(£). We call this word the frontier-word of t. (It may
also be called the "yield" of t. However, to avoid confusion with [11] where
"yield" has a different meaning for infinité trees, we use the term "frontier-
word".) Conversely, any countable word over A is the frontier-word of some
,4-valued tree. This is easily inferred from the following two f acts: (1) Every
countable linear ordering can be embedded in the ordering of the rational
numbers, and (2) the latter ordering is isomorphic to the ordering of the
frontier of a tree t say with fr(t) = (// U 0* 'r-

The subject of this paper is a certain constructively defined subclass of
countable words. They emerged in the work of Courcelle [1] and Heilbrunner
[4, 5] as solutions to Systems of équations for words.

These Systems are of the form

X1=M 1 ,

where xu . . ., xn are distinct variables and uie({x1, . . ., xn} U A)* for
Ï = 1 , . . ., n. A solution of H is an n-tuple of words which (substituted for
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ON FRONTIERS OF REGULAR TREES 373

xl9 . . ., xn) satisfies E. Courcelle [1] showed how to associate with any
system Z a séquence of n trees such that their frontier-words are a solution
of Z. Heilbrunner [4, 5] presented an algorithm which produces, for any 2,
the explicit définition of n word-types yielding a solution of £. This explicit
définition is given by "regular expressions", which are finite denotations for
certain word-types. Over the alphabet A, the class Reg(A) of regular expres-
sions over A is defined inductively as follows:

(a) Every finite word is in Reg(A);
(b) (Concaténation) If r, s are in Reg(X), so is (rs);
(c) (co- and co*-iteration) If r is in Reg(A), so are rm and r™*;
(d) (Shuffle opération) If rls . . ., rn are in Reg(v4), so is (rl9 . . ., rj*1.
For cases (a), (b), (c), the word-types denoted by the regular expressions

are defined in the natural way, derived from the corresponding opérations
for words as explained above. It remains to define the word-type denoted by
(rl9 . . ., rj"1. Let us assume that Ul9 . . ., Un are words of the types denoted
by rl9 . . ., rn respectively. A generalized word U is of the type denoted by
(rl9 . . ., ro)

n if U is a countable word of the following form: it is composed
of segments each of which is isomorphic to some Ui9 such that between any
two of these segments, bef ore any such segment, and after any such segment
there is, for 7 = 1, . . ., n, another segment isomorphic to Ur A familiar
argument of the theory of dense orderings shows that this condition fixes a
countable word up to isomorphism (cf. [5] or [9], p. 115 ff.).

Example. — Consider nine generalized words Ul9 . . ., U9 and let R be
the set of rational numbers which have a décimal expansion 0, d1 . . . dk with
d,-e{0, . . ., 9} for l^ï<fe and dke{l, . . ., 9}. If one associâtes with any
such number 0, dt . . . dk the word Ud, the usual ordering of R induces a
generalized word (composed of L/rcopies) which is a shuffling of Ul9 . . ., C/9.

Let M {A) be the class of word-types denoted by regular expressions in
Reg(A). Two regular expressions are called equivalent if they dénote the same
word-type. It is easy to see that different regular expressions may be equiva-
lent. [As an example consider the expressions (ab)™* (ab)™ and (ba)a* (ba)®.]
Courcelle [1] and Heilbrunner [5] raised the question whether the équivalence
of regular expressions is decidable. (In [1] the question is stated in terms of
frontiers of trees. In this framework, a modified version of the problem has
meanwhile also been considered by Dauchet and Timmermann [3], [11], [12];
there the notion of frontier-word is replaced by the coarser opération of
"yield" of a tree).

One aim of the present note is to answer the above question affirmatively.
The proof uses a decidability resuit in the model theory of linear orderings.
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374 W. THOMAS

For readers not familiar with model theory we give this argument in some
detail. Another aim is to clarify the relation between generalized words and
trees: We show that a word has a type in M (A) iff it is (isomorphic to) the
frontier-word of an ^4-valued regular tree. As a conséquence we obtain, using
Rabin's theory of automata on infinité trees, that a countable word-type
belongs to M (A) iff it is characterizable in the monadic second-order language
of orderings.

2. ISOMORPHISM OF GENERALIZED WORDS

The class Ji{Â) generalizes an important class of order types in model
theory. Restricting to a one letter alphabet one obtains from Ji {A) the
class Ji of order types introduced by Làuchli and Léonard in [6]; they showed
that a sentence of the first-order language of linear orderings is satisfiable by
some linear ordering iff it is satisfiable by a linear ordering whose type is
in Ji, obtaining as a conséquence that the first-order theory of linear orde-
rings is decidable. (For a detailed exposition cf. [9].)

In the following we make also use of the monadic second-order language
of linear orderings and the stronger theorem, due to Rabin [7], that the
monadic second-order theory of countable linear orderings is decidable. In
order to décide équivalence of expressions in Reg(>l), we simply characterize
the types in Ji (A) by monadic second-order sentences and then apply Rabin's
decidability theorem.

For this purpose, we fix an alphabet A={au . . ., ak} and identify any
word with a relational model. Namely, the word (M, <, w) is represented
by the structure (M, <, P l 5 . . ., Pk) where P( c M is defined by p. = w~l (aj.
By the obvious correspondence between words and these word-models we
use the letters U, V, W, . . . to dénote either of them. The isomorphism
relation holds between two models W=(M, <, P l s . . ., Pk) and
W' = (M', <' , P'l5 . . ., Pk) iff there is an order-preserving bijection
y: M ^ M ' s u c h t h a t y (PJ = P; for i= l , . . ., fc.

Let us introducé the monadic second-order language L2 (A) which allows
to describe word-models corresponding to the alphabet A={au . . ., ak}.
L2 (A) contains variables x, y, . . . (for éléments of orderings) and variables
X, 7, . . . (for subsets of orderings). The atomic formulas are of the form
x <y, x=y, xsX, xePt(\^i^k); and arbitrary L2(yl)-formulas are combi-
ned from these by the propositional connectives —i, v , A, ->, <-> and the
quantifiers 3, V (acting on either kind of variable).
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ON FRONTIERS OF REGULAR TREES 375

Formulas without free variables are called sentences. The satisfaction rela-
tion 1= between word-models U and L2 (^4)-formulas cp is defined in the
standard way; one writes (M, <, Pu . . ., Pk)\= <p[Q] (for a subset Q of M)
if the L2 (A) formula <p(X) with free variable X holds in (M, <5 Pu . . ., Pk)
when interpreting X by g.

Let W2 (X) be the class of countable word types t that are characterized
by some L2 (A)-sentence q> (in the sensé that a countable word satisfies cp iff
it is of type t).

PROPOSITION 1. — Ji(A) <=.W2(A); in others words: For every regular
expression r over A one can construct an L2 (A)-sentence \|/r such that for any
countable word W, W h \|/r iff W is of the type denoted by r.

Proof — We shall find, for any regular expression r, an L2 (>l)-formula
q>r(X) such that for any countable word-model (M, <, Pu . . ., Pk) and any
Q cz M, we have (M, <, Pl9 . . ., ƒ**)*= <pr[Q] iff the submodel of
(M, <, Pu . . ., Pk) with universe g is of type r. Then we are done: Given r
one takes 3X(V xxeX A cpr(X)) as the desired sentence ij/r.

If r is finite, say r = ajl . . . o^, we take as (pr(X) the formula

A x, r - v .
m —

A A
i =

1

1
<x l + 1 A

m

i = l

which clearly characterizes the type (denoted by) r.
Given r, s and corresponding formulas <pr(X), q>s(X), the concaténation

(rs) is characterized by the following formula:

3Y3Z("X=Y[JZ" A " 7 < Z " A (pr(7) A (ps(Z)).

(Hère and in the sequel we freely use shortwritings like "X—Y\JZ"\
"X< T\ etc. if their formalization in L2 (̂ 4) is straightforward.)

For the remaining steps it is convenient to use a formula
"X/ = Comp(x, X)" which says that X/ is the "component of x with respect
to X'\ namely the largest interval (in the given model) that contains x and
consists solety of éléments from X: So X' = Comp(x, X) abbreviates

Now assume that (prPO characterizes the countable words of type r.
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376 W. THOMAS

To obtain a characterization for r™, we use a formula q>{X) which says
that X can be eut into an co-sequence of segments each of which satisfies cpr.
We represent this séquence in the form

I Y Y' Y Y1 I Y I

using two sets 7, 7 ' and an auxiliary set Z (indicated by the dots).

The required segments occur then as components of the Z-elements, alterna-
tively with respect to Y and Y'. As formula for r™ we take

3 Z 3 Y 3 r ( " Z i s o f type©" A "min (Z) e 7"

A " i = 7 u r " A "7n7 '=0"

A Vxlz3C(zeZ A (C = Comp(z, Y) v C = Comp(z, Y')) A XEC)

A V z V z' ("z' is the < -successor of z in Z" -* (z e 7 <-> z' e 7'))

z, 7) v C = Comp(z, 7') -> cpr(C))).

Note that the condition "Z is of type co" is formalizable in L2(A) by
expressing "Z is ordered discretely with first but without last element such
that the induction axiom holds".—The case r0* is handled similarly.

Finally let cp1(X), . . ., <p„(X) be given characterizing rl5 . . ., rn in the
class of countable words. To characterize (rls . . ., rj11 in the class of counta-
ble words, we require the existence of a partition Xu . . ., Xn of X such that
the Xrsegments given by this partition satisfy <p;, and the density conditions
in the définition of the shuffle opération are fulfilled:

n

A X} ̂  \cJ A X = X± vJ . . . \J JCn A / \ ^ j 2

A A i i

A VxVz(x<z A "x, z are on different components"

A 3y(x<^<z A
i = 1

A Vx A 3y(x<y .

n

A Vx A 3y(y<x A yeX()).
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ON FRONTIERS OF REGULAR TREES 377

Hère "x, z are on different components" is expressed by

V U3 C3 C'(C = Compte, X(-) A C' = Comp(z, X3) A C<C'\ •

COROLLARY. — The équivalence problem for regular expressions [denoting
word-types in Ji (A)] is decidable,

Proof. — Given two regular expressions rx and r2, one constructs the
corresponding L2 (^4)-sentences \|/1 and \|/2 as in Proposition 1 and obtains
that r1 is equivalent to r2 iff

(1) for ail countable words W : VF h x^ <-> \|/2, L e., iff
(2) for ail countable linear orderings (M, <) and ail partitions Pu . . ., Pk

of M :

(M, < ,P 1 , . . . . P * ) ^ - ^ .

Let us replace the constants P; in xl/̂  and \|/2 by new variables, say
Xl9 . . ., Xfc, which yields formulas \|/'i(^i> • • •> ̂ jj» ^2(^1» • • • > ^t)-

Then (2) is equivalent to the condition that the L2 (y4)-sentence

i U. • • U-Xk" A A l*J"XinXJ=0"

holds in every countable linear ordering (M, <), i. e. belongs to the monadic
second-order theory of countable linear orderings. Hence, by the decidability
of this theory [7], the équivalence of rx and r2 can be tested in an effective
way.

3. REGULAR TREES

In the previous section we described an application of model theory to
language theory. The present section deals with an argument in the reverse
direction; it offers the proof of a model- theoretic resuit (namely, of a converse
to Proposition 1) by an automaton-theoretic method. The connection is
provided by a characterization of the M (yl)-types in terms of regular trees.

Given an alphabet A={au . . . , a f c } , an ^4-valued tree t : dom(t) -+ A
(where dom(t) a {/, r}*) will be called regular if it can be generated by a
finite automaton on the binary tree. Hère a finite automaton is of the form
^~(Ô> 4o> S, Qo, . . ., ôfc) where Q is the finite set of states, qo^Q the
initial state, 8 : Q -> Q x Q the transition function, and Qo> . . ., Qk a partition
of Q. For any such automaton there is a unique run of je on the (unlabelled)
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378 W. THOMAS

binary tree, given as a function p : { / , >"}*-• g satisfying p{z)=q0
 anc*

8(p(w)) = (p(w/), p(wr)), for we{I, r}*. An A-valued tree t is generaled by
sé if for we{! , r}* we have: t(w) = ai iff p(w)eQ i(i=l, . . ., n), and
w^dom(t) iff p(w)eöo- It is easy to see that our définition of regular
trees (as those generated by finite automata) is equivalent to other familiar
définitions, e. g. that a tree is regular iff it has only finitely many distinct
subtrees (cf. [2]).

Dénote by $F (A) the class of word types that are given by frontier-words
of regular ^4-vaIued trees.

PROPOSITION 2. -

Proof. — The inclusion from left to right is shown by induction over
M (A). First, a nonempty finite word is the frontier-word of a finite tree and
hence of a regular tree. —If W=UVi where U and V are assumed to be
frontier-words of trees generated by jév and sév, respectively, then a tree
with frontier-word W is generated by a finite automaton sé whose state-set
is the union of the two given (w. 1. o. g. disjoint) state-sets together with a
new initial state q0, such that sé's transition function S is the union of the
two given transition functions and £>(qo) = (<lu> qv) where qw qv are the initial
states of sév, séY. The letter at(i^l) associated with the new state q0 (by
setting qo€Qi) is of course arbitrary. — Now let U be given as the frontier-
word of the tree generated by stv (again with initial state qv); we find a
finite automaton sé generating a tree with frontier-word JJ^—UU../. Adjoin
a new state q0 (as initial state of s&) and extend the transition function 8 of
sév by setting 8 (q0) = (qü9 q0). [Similarly, for the word U*»* we let
§(qo) = (qo, qv).] Finally, suppose we are given finite automata séu . . ., sén

(with disjoint state-sets and initial states qu . . ., <?„) which generate trees
with the frontier-words Uu . . ., Un. A finite automaton sé for a tree whose
frontier-word is a shuffling of Uu . . ., Un as defined in the introduction is
obtained as follows: Adjoin new states q0, pu . . .,/?„_ls p\, - - ->Pn an<i
define the transition function 5 of sé as the union of the given transition
functions together with the requirements

= (/>!> Pol §(Pd = (<lo>PiX S(pd = (<Ii>PÏ+i) ( f o r l ^ ï
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ON FRONTIERS OF REGULAR TREES 379

The unique run of sé starts in the following way:

qo 4n

It is easy to verify that the frontier-word of this tree is a shuffling of
vu . . . , i / „ .

The converse direction of Proposition 2 can be obtained from Heilbrunner's
theorem [4], If sé = (Q, q0, S, g0 , . . ., Qk) is a finite automaton, associate
with it a system !<{sé) of équations for words, where Q is the set of variables,
by including in the system:

— the équation q = q'q" for any q such that ö(<?) = (<?', q") where q'$Q0,

— the équation q = q' (resp. q = q//) for any q such that §{q)~(q\ q") and
<ï$Qo> <l"eQo (resp. q'eQ09 q/f$Q0)\

— the équation q~ai for any qeQ( such that $(q) = (q', q") where q'eQ0

and q"eQ0.
Then a countable word is a solution of H(sé) iff it is (isomorphic to) the

frontier-word of the tree generated by sé. Heilbrunner's algorithm yields a
regular expression denoting the type of a solution of I,(sé). Hence the
frontier-word of the tree generated by sé is of a type in M 04). •

Note that in Proposition 2 the transition from regular expressions [for
Ji (̂ 4)-types] to corresponding automata (defining regular trees) is effective,
as is the converse direction using Heilbrunner's algorithm. Hence, by
Proposition 1:

COROLLARY. — The problem whether two regular trees have isomorphic
frontier-words is decidable.

In [6] Rabin suggested the use of regular trees in model theory. Using
Proposition 2 we give here such a model theoretic application by proving
W2(A) c Ji {A\ i. e. the converse to Proposition 1. The argument is based
on Rabin's results concerning tree automata that recognize sets of trees.
Rabin's tree automata accept A-valued trees with domain {/, r }* (i. e., where
the nodes form the f uil binary tree). In order to handle the case of arbitrary
trees over A = {au . . ., ak} we introducé a letter a0 and use it as value for
the nodes outside the domain of an A-valued tree. We call a set of (arbitrary)
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380 W. THOMAS

^4-valued trees Rabin-recognizable if the corresponding set of
(A U { a0 } )-valued trees is recognized by a Rabin tree automaton (as defined
in [7]). Also we use the monadic second-order language for {A U { a0 } )-valued
trees. It is defined as L2 (A) in Section 1 for linear orderings, with the
exception that it includes, instead of the symbol < for the order relation,
two symbols +/, +r for the successor functions on {/, r}*; moreover a set
constant Po (for the nodes with value a0) is added. Note that the partial tree
ordering and the lexicographie (linear) ordering -< of the nodes are both
definable in this language (cf. [7]). Call a set T of ,4-valued trees monadic
second-order definable if there is a sentence cp of this language such that te T
iff the corresponding (A U { a0 } )-valued tree satisfies cp.

We shall apply the following results due to Rabin:

(1) A set of ^4-valued trees is Rabin-recognizable iff it is monadic second-
order definable [7],

(2) Any nonempty Rabin-recognizable set of X-valued trees contains a
regular tree [8].

(A third key result, proved in [7], states that the emptiness problem for
Rabin-tree automata is decidable; it implies the decidability of the monadic
second-order theory of the (unlabelled) binary tree and, as a corollary, of
the monadic second-order theory of countable linear orderings.)

PROPOSITION 3. — W2(A) a Jt(A\ Le. a countable word W over A which
is characterized up to isomorphism (in the class of countable words) by an
L2(A)-sentence is o f a type in Jt(A).

Proof — Let cp be an L2 (y4)-sentence characterizing the isomorphism type
of W (in the class of countable words). Rewrite tp as a sentence cp in the
monadic second-order language of (A U {ao})-valued trees, such that <p
defines the set T of trees whose frontier-words satisfy cp. (For this purpose,
< has to be replaced by the définition of -< and all quantifiers of <p have to
be relativized to the frontier, i. e. to the set of nodes where both successors
carry a0 as value.) By (1), T is Rabin-recognizable. Since 7 V 0 , (2) applies
and yields a regular tree te T. By Proposition 2, the frontier-word of t has a
type in Jt (A). But by assumption on <p, this frontier-word is isomorphic
to W.

In model-theoretic terminology, Propositions 1 and 3 say that (with respect
to the monadic second-order language) a generalized word satisfies an K0-cate-
gorical sentence iff its type is in Jt (A). For the case of linear orderings (i. e.
the case of singleton alphabets) this result was first stated by Shelah in [10],
Theorem 0.2; a proof hint is given there saying that the techniques in
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ON FRONTIERS OF REGULAR TREES 381

Section 5 of the paper yield the result. The present approach using tree
automata and regular trees provides an interesting (and perhaps more transpa-
rent) alternative for the proof. Moreover, it seems possible to extend the
model theoretic application of regular trees beyond linear orderings to further
structures which are also embeddable in the binary tree.
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