INFORMATIQUE THÉORIQUE ET APPLICATIONS

Juha Honkala

A decision method for the recognizability of sets defined by number systems

Informatique théorique et applications, tome 20, no 4 (1986), p. 395-403
http://www.numdam.org/item?id=ITA_1986__20_4_395_0

© AFCET, 1986, tous droits réservés.
L'accès aux archives de la revue « Informatique théorique et applications » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A DECISION METHOD FOR THE RECOGNIZABILITY OF SETS DEFINED BY NUMBER SYSTEMS (*)

by Juha Honkala (${ }^{1}$)

Communicated by J. Berstel

Abstract

We show that it is decidable whether or not a k-recognizable set is recognizable. Consequently, it is decidable whether or not the set defined by a number system is recognizable.

Résumé. - Nous montrons qu'il est décidable si un ensemble k-reconnaissable est reconnaissable. En conséquence, il est décidable si l'ensemble défini par un système de numération est reconnaissable.

1. INTRODUCTION

Recent work in the theory of codes and L codes has increased the importance of the study of arbitrary number systems (see [5]). Here "arbitrary" means that the digits may be larger than the base (in our considerations also negative) and that completeness is not required. Many basic facts about number systems were established by Culik and Salomaa, [1]. It was shown in [3] and [4] that the set of bases of the set represented by a number system strongly depends on whether or not the set is recognizable. If the set is not recognizable then the bases form a subfamily of an exponential family. This is not the case if the set is recognizable. It is often possible to determine the bases if it is known whether or not the set is recognizable. For the time being, however, no algorithm is known for determining the bases of the set given by a number system. Below we give an algorithm to decide whether or not the set defined by a number system is recognizable. The algorithm is, in

[^0]fact, more general. It can be used to decide whether or not a k-recognizable set is recognizable.

The reader is assumed to know the basic facts concerning finite automata and k-recognizable sets (see [6] and [2]).

2. PRELIMINARIES

By a number system we mean a $(v+1)$-tuple $N=\left(n, m_{1}, \ldots, m_{v}\right)$ of integers such that $v \geqslant 1, n \geqslant 2$ and $m_{1}<m_{2}<\ldots<m_{v}$. The number n is referred to as the base and the numbers m_{i} as the digits.

A nonempty word

$$
\begin{equation*}
m_{i_{k}} m_{i_{k-1}} \ldots m_{i_{1}} m_{i_{0}}, \quad 1 \leqslant i_{j} \leqslant v \tag{1}
\end{equation*}
$$

over the alphabet $\left\{m_{1}, \ldots, m_{v}\right\}$ is said to represent the integer

$$
\begin{equation*}
\left[m_{i_{k}} \ldots m_{i_{0}}\right]=m_{i_{k}} \cdot n^{k}+m_{i_{k-1}} \cdot n^{k-1}+\ldots+m_{i_{1}} \cdot n+m_{i_{0}} \tag{2}
\end{equation*}
$$

The word (1) is said to be a representation of the integer (2). The set of all integers represented by N is denoted by $S(N)$. We denote by $\operatorname{Pos} S(N)$ the set

$$
S(N) \cap\{0,1,2, \ldots\}
$$

and by $\operatorname{Neg} S(N)$ the set

$$
S(N) \cap\{0,-1,-2, \ldots\} .
$$

A set K of integers is said to be representable by a number system, RNS for short, if there exists a number system N such that $K=S(N)$. An integer p is called a base of an RNS set K if there is a number system with base p representing K.

If $k \geqslant 2$ is an integer, define the mappings λ_{k} and v_{k} from $\{0,1, \ldots, k-1\}^{*}$ to the set of nonnegative integers by

$$
\lambda_{k}(w)=\sum_{i=0}^{m} w_{i} \cdot k^{m-i}
$$

and

$$
v_{k}(w)=\sum_{i=0}^{m} w_{i} \cdot k^{i}
$$

where $w=w_{0} w_{1} \ldots w_{m}$ and $w_{i} \in\{0,1, \ldots, k-1\}$. A subset A of the set of nonnegative integers is k-recognizable if there exists a regular language L over the alphabet $\{0,1, \ldots, k-1\}$ such that $A=\lambda_{k}(L)$. The following theorem is a generalization of the translation lemma due to Culik and Salomaa, [1]. For a proof see [4].

Theorem 1: For every number system $N=\left(n, m_{1}, \ldots, m_{v}\right)$ the sets $\operatorname{Pos} S(N)$ and $-\operatorname{Neg} S(N)$ are n-recognizable.

In Theorem 1 we denote $-\operatorname{Neg} S(N)=\{x \mid-x \in \operatorname{Neg} S(N)\}$.
If A is a subset of the set of nonnegative integers, define the ω-word $\omega(A)=a_{0} a_{1} a_{2} \ldots$ by

$$
a_{i}=\left\{\begin{array}{lll}
0 & \text { if } & i \notin A \\
1 & \text { if } & i \in A .
\end{array}\right.
$$

If y is a word denote by y^{ω} the ω-word $y y y \ldots$ The set A is recognizable if there exist words y_{1} and y_{2} such that $\omega(A)=y_{1} y_{2}^{\omega}$. The ω-word $y_{1} y_{2}^{\omega}$ is called the representation of A if $\omega(A)=y_{1} y_{2}^{\omega}$ and the following condition is satisfied: if $y_{1} y_{2}^{\omega}=y_{3} y_{4}^{\omega}$ for binary words y_{3} and y_{4} then either $\left|y_{4}\right|=\left|y_{2}\right|$ and $\left|y_{3}\right| \geqslant\left|y_{1}\right|$, or $\left|y_{4}\right|>\left|y_{2}\right|$. Here $|y|$ stands for the length of y. If $y_{1} y_{2}^{\omega}$ is the representation of A, then $\left|y_{1}\right|$ is called the index of A and $\left|y_{2}\right|$ is called the period of A.

In what follows we assume that L is a fixed regular language and n is a fixed positive integer, $n \geqslant 2$, with the standard form $n=n_{1}^{v_{1}} \ldots n_{s}^{v_{s}}$ (i. e., each v_{i} is a positive integer and each n_{i} is a prime with $1<n_{1}<\ldots<n_{s}$).

We are going to show that if the index or the period of a recognizable set A is large then if \mathscr{A}_{1} and \mathscr{A}_{2} are finite deterministic automata recognizing $\lambda_{n}^{-1}(A)$ and $v_{n}^{-1}(A)$, respectively, then at least one of them has a great number of states. (In fact, both have. In the proofs below, however, it is more convenient to use first λ_{n} and then v_{n}) What remains in deciding whether $\lambda_{n}(L)$ is recognizable is to check a finite number of times whether $\lambda_{n}(L)$ equals a recognizable set. This can easily be done. By Theorem 1 we can then decide whether $\operatorname{Pos} S(N)$ is recognizable for the number system N.

Example: Denote $N_{k}=(2,1, k)$ and $S_{m}\left(N_{k}\right)=\{x \mid x$ has a representation of length m according to $\left.N_{k}\right\}$. It is easy to see inductively that

$$
\begin{aligned}
& S_{m}\left(N_{k}\right)=\left\{x \mid 2^{m}-1 \leqq x \leqq k .2^{m}-k \quad \text { and } \quad x \leqq 2^{m}-1 \quad(\bmod k-1)\right\} . \quad \text { Hence } \\
& S\left(N_{k}\right)=\bigcup_{m=1}^{\infty}\left\{x \mid 2^{m}-1 \leqq x \leqq k .2^{m}-k \text { and } x \equiv 2^{m}-1(\bmod k-1)\right\} .
\end{aligned}
$$

For $k=5$ we obtain $S\left(N_{5}\right)=\{1,5\} \cup\{x \mid x \equiv 3(\bmod 4)\}$. Hence $S\left(N_{5}\right)$ is recognizable. Because $\omega\left(S\left(N_{5}\right)\right)=010101(0100)^{\omega}$, the index of $S\left(N_{5}\right)$ is 6 and the period is 4.

For $k=6$ we obtain

$$
\begin{aligned}
& S\left(N_{6}\right)=\bigcup_{m=0}^{\infty}\left[\left\{x \mid x \equiv 1(\bmod 5) \text { and } 2^{1+4 m}-1 \leqq x \leqq 6.2^{1+4 m}-6\right\}\right. \\
& \bigcup\left\{x \mid x \equiv 3(\bmod 5) \text { and } 2^{2+4 m}-1 \leqq x \leqq 6.2^{2+4 m}-6 .\right\} \\
& \cup\left\{x \mid x \equiv 2(\bmod 5) \text { and } 2^{3+4 m}-1 \leqq x \leqq 6.2^{3+4 m}-6\right\} \\
& \left.\bigcup\left\{x \mid x \equiv 0(\bmod 5) \text { and } 2^{4+4 m}-1 \leqq x \leqq 6.2^{4+4 m}-6\right\}\right] \text {. }
\end{aligned}
$$

Suppose $S\left(N_{6}\right)$ were recognizable. Because $S\left(N_{6}\right)$ contains no element congruent to 4 modulo 5 , the period of $S\left(N_{6}\right)$ should be a multiple of 5 . This is, however, impossible because every residue class modulo 5 has arbitrarily long gaps. Thus $S\left(N_{6}\right)$ is not recognizable.

For finite automata we use the notation of [6]. In particular, if the automaton \mathscr{A} moves to q^{\prime} when reading w in state q, we write $q w \Rightarrow^{*} q^{\prime}$. We denote the number of states of \mathscr{A} by $\# \mathscr{A}$. If \mathscr{A} and \mathscr{B} are finite automata we denote their product by $\mathscr{A} \times \mathscr{B}$ (see [2], p. 17).

If $w=a_{0} a_{1} a_{2} \ldots$ is an ω-word over the alphabet Σ and each a_{i} is a letter, we denote $w[i, j]=a_{i} a_{i+1} \ldots a_{i+j-1}$ for nonnegative integers i and j.

3. THE PERIOD CANNOT BE LARGE

We show first that if $v_{n}(L)=A$ for a recognizable set A, then the period of A cannot have a large factor prime to n.

If A is a set of nonnegative integers, define the equivalence relation \sim_{A} by

$$
m_{1} \sim_{A} m_{2}, \quad m_{1}, m_{2} \in \mathbb{N}
$$

if and only if

$$
m_{1} n^{r}+i \in A \Leftrightarrow m_{2} n^{r}+i \in A
$$

for all $r \in \mathbb{N}$ and $0 \leqq i<n^{r}$.

For a proof of the following lemma, see [2], p. 107.
Lemma 2: If the set A is recognizable then the number of equivalence classes of \sim_{A} is finite and equals the number of states in a minimal finite deterministic automaton recognizing $\lambda_{n}^{-1}(A)$.

The following lemma is obvious.
Lemma 3: Suppose $\omega(A)=a_{0} a_{1} a_{2} \ldots$ If $\omega(A)\left[m_{1} n^{r}, n^{r}\right] \neq \omega(A)\left[m_{2} n^{r}, n^{r}\right]$ where m_{1}, m_{2} and r are nonnegative integers, then m_{1} and m_{2} are not equivalent modulo $\sim{ }_{A}$.

Lemma 4: Let A be a recognizable set with the representation $y_{1} y_{2}^{\omega}=a_{0} a_{1} a_{2} \ldots$ Suppose $\left|y_{2}\right|=c . n_{1}^{u_{1}} \ldots n_{s}^{u_{s}}$ where c, u_{1}, \ldots, u_{s} are nonnegative integers and c is prime to n. Choose k and m such that $n^{k} \geqq 2\left|y_{2}\right|$ and $m . n^{k} \leqq\left|y_{1}\right|<(m+1) \cdot n^{k}$. Denote

$$
\alpha_{m+i}=\left(y_{1} y_{2}^{\omega}\right)\left[(m+i) \cdot n^{k}, n^{k}\right]
$$

for $i \geqq 1$. Then $\alpha_{m+i} \neq \alpha_{m+j}$ if $1 \leqq i<j \leqq c$.
Proof: Assume on the contrary that $1 \leqq i<j \leqq c$ and $\alpha_{m+i}=\alpha_{m+j}$.
Denote $r=\left|y_{2}\right|$ and $y_{2}=b_{1} b_{2} \ldots b_{r}$. Then there exist binary words β_{1}, β_{2}, β_{3}, β_{4} and a positive integer t such that

$$
\alpha_{m+i}=\beta_{1} b_{1} b_{2} \ldots b_{r} \beta_{2}
$$

and

$$
\alpha_{m+j}=\beta_{3} b_{t} b_{t+1} \ldots b_{r} b_{1} \ldots b_{t-1} \beta_{4}
$$

and $\left|\beta_{1}\right|=\left|\beta_{3}\right|$. Because $(m+i) n^{k} \not \equiv(m+j) n^{k}(\bmod c)$, we obtain $t \neq 1$. Hence the words $b_{1} \ldots b_{t-1}$ and $b_{t} \ldots b_{r}$ are both nonempty. Because furthermore

$$
\left(b_{1} \ldots b_{t-1}\right)\left(b_{t} \ldots b_{r}\right)=\left(b_{t} \ldots b_{r}\right)\left(b_{1} \ldots b_{t-1}\right)
$$

there exists a nonempty word y such that

$$
b_{1} b_{2} \ldots b_{t-1}=y^{p} \quad \text { and } \quad b_{t} \ldots b_{r}=y^{q}
$$

for some positive integers p and q. Hence $y_{1} y_{2}^{\omega}$ is not the representation of A. This contradiction shows that $\alpha_{m+i} \neq \alpha_{m+j}$.

Lemma 5: Let A, y_{1}, y_{2} and c be as in Lemma 4. Then every finite deterministic automaton recognizing the language $\lambda_{n}^{-1}(A)$ has at least c states.

Proof: By Lemmas 3 and $4 m+i \sim_{A} m+j$ if $1 \leqq i<j \leqq c$. The claim follows by Lemma 2.

Next we show that if $v_{n}(L)=A$ for a recognizable set A, then no high power of any factor of n can divide the period of A.

Lemma 6: Let A be a recognizable set. Assume that the period of A is c. $n_{1}^{u_{1}} \ldots n_{s}^{u_{s}}$ where c is prime to n. Denote

$$
B_{i}=A \cap\{x \mid x \equiv i(\bmod c)\}
$$

for $0 \leqq i<c$. Then there exists an integer i such that the period of B_{i} is c. $n_{1}^{t_{1}} \ldots n_{s}^{t_{s}}$ where $\max t_{r}=\max u_{r}$.

Proof: If B_{i} is not empty then c divides the period of B_{i}.
To avoid notational complications we assume that $B_{i} \neq \varnothing$ for $0 \leqq i<c$ and that the index of A is 0 .

Assume without loss of generality that $\max u_{r}=u_{1}$. Let the period of B_{i} be $c . n_{1}^{u_{i 1}} \ldots n_{s}^{u_{i s} .}$ Denote $u=\max u_{i 1}$. We show that $u=u_{1}$.

Assume on the contrary that $u<u_{1}$. Then for $0 \leqq i<c$ there exist words $w_{i}=b_{i 0} b_{i 1} \ldots b_{i, q-1}$ of length $q=n_{1}^{u} n_{2}^{u_{2}} \ldots n_{s}^{u_{s}}$ such that

$$
\omega\left(B_{i}\right)=\left(0^{i} b_{i 0} 0^{c-1} b_{i 1} 0^{c-1} b_{i 2} \ldots 0^{c-1} b_{i, q-1} 0^{c-1-i}\right)^{\omega}
$$

Then
$\omega(A)=\left(b_{00} b_{10} b_{20} \ldots b_{c-1,0} b_{01} b_{11} \ldots b_{c-1,1} \ldots b_{0, q-1} b_{1, q-1} \ldots b_{c-1, q-1}\right)^{\omega}$
which shows that the period of A divides $c . n_{1}^{u} n_{2}^{u_{2}} \ldots n_{s}^{u_{s}}$. This contradiction shows that the assertion is correct.

Lemma 7: Let A, c, u_{i} and B_{i} be as in Lemma 6. Choose an integer i such that the period of B_{i} is $c . n_{1}^{t_{1}} \ldots n_{s}^{t_{s}}$ with $\max t_{r}=\max u_{r}$. Then every finite deterministic automaton recognizing the language $v_{n}^{-1}\left(B_{i}\right)$ has at least u states, where $u=\max u_{r}$.

Proof: Assume on the contrary that there exists a finite deterministic automaton \mathscr{B} such that $L(\mathscr{B})=v_{n}^{-1}\left(B_{i}\right)$ and $\# \mathscr{B} \leqq u-1$.

Let w be a word over the alphabet $\{0,1, \ldots, n-1\}$ such that
(1) $v_{n}(w) \equiv i(\bmod c)$,
(2) $|w| \geqq u-1$,
(3) $w^{\prime} w_{4} \in B_{i}$ for some word w_{4}, where $w=w^{\prime} w^{\prime \prime}$ and $\left|w^{\prime}\right|=u-1$.

Then there exist words w_{1}, w_{2}, w_{3}, states q_{1}, q_{2}, q_{3} and a final state q_{F} such that $w^{\prime}=w_{1} w_{2} w_{3}, w_{2} \neq \lambda, q_{0} w_{1} \Rightarrow^{*} q_{1}, q_{1} w_{2} \Rightarrow^{*} q_{1}, q_{1} w_{3} \Rightarrow^{*} q_{2}$, $q_{2} w_{4} \Rightarrow^{*} q_{F}, q_{2} w^{\prime \prime} \Rightarrow^{*} q_{3}$, where q_{0} is the initial state. Choose an integer k such that no prime factor of c divides $n^{\left|w_{2}\right|}-1$ more than k times. Then we obtain (φ stands for Euler's function):

$$
\begin{aligned}
v_{n}\left(w_{2}^{l \varphi\left(c^{k+1}\right)}\right)=v_{n}\left(w_{2}\right)\left(1+n^{\left|w_{2}\right|}\right. & \left.+\ldots+n^{\left(l \varphi\left(c^{k+1}\right)-1\right)\left|w_{2}\right|}\right) \\
& =v_{n}\left(w_{2}\right) \cdot \frac{n^{l \varphi\left(c^{k+1}\right)\left|w_{2}\right|}-1}{n^{\left|w_{2}\right|}-1} \equiv 0(\bmod c), \quad l \in \mathbb{N}
\end{aligned}
$$

because by Euler's theorem $n^{\varphi\left(c^{k+1}\right)} \equiv 1\left(\bmod c^{k+1}\right)$. Let \bar{w} be a word over the alphabet $\{0,1, \ldots, n-1\}$. Then

$$
\left.\begin{array}{l}
v_{n}\left(w_{1} w_{2}^{l \varphi\left(c^{k+1}\right)+1} \bar{w}\right)=v_{n}\left(w_{1}\right)+n^{\left|w_{1}\right|} v_{n}\left(w_{2}^{l \varphi}\left(c^{k+1}\right)\right.
\end{array}\right) . \begin{aligned}
& \quad+n^{\left|w_{1}\right|+l \varphi\left(c^{k+1}\right)\left|w_{2}\right|} v_{n}\left(w_{2} \bar{w}\right) \equiv v_{n}\left(w_{1}\right)+n^{\left|w_{1}\right|} v_{n}\left(w_{2} \bar{w}\right) \\
& =v_{n}\left(w_{1} w_{2} \bar{w}\right) \quad(\bmod c)
\end{aligned}
$$

Choose l such that $\left|w_{1} w_{2}^{l \varphi}\left(c^{k+1}\right)+1\right|$ exceeds u and the index of B_{i}.
Because $q_{0} w_{1} w_{2}^{l \varphi\left(c^{k+1}\right)+1} w_{3} w_{4} \Rightarrow^{*} q_{F}$ we have

$$
v_{n}\left(w_{1} w_{2}^{l \varphi\left(c^{k+1}\right)+1} w_{3} w_{4}\right) \in B_{i}
$$

The word $w_{1} w_{2}^{l \varphi\left(c^{k+1}\right)+1} w_{3} w^{\prime \prime}$ has the same first u letters as the word

$$
w_{1} w_{2}^{l \varphi\left(c^{k+1}\right)+1} w_{3} w_{4}
$$

Furthermore, $v_{n}\left(w_{1} w_{2}^{l \varphi}\left(c^{k+1}\right)+1 w_{3} w^{\prime \prime}\right) \equiv v_{n}\left(w_{1} w_{2} w_{3} w^{\prime \prime}\right)=v_{n}(w) \equiv i(\bmod c)$. Hence $v_{n}\left(w_{1} w_{2}^{l \varphi}\left(c^{k+1}\right)+1 w_{3} w^{\prime \prime}\right) \in B_{i}$, which implies that q_{3} is a final state. Because $q_{0} w_{1} w_{2} w_{3} w^{\prime \prime} \Rightarrow^{*} q_{3}$, the word $w=w_{1} w_{2} w_{3} w^{\prime \prime}$ belongs to $L(\mathscr{B})$. This shows that the period of B_{i} is smaller than $c . n_{1}^{t_{1}} \ldots n_{s}^{t_{s}}$. This contradiction proves the lemma.

Lemma 8: Let A, c and u_{i} be as in Lemma 6. Then every finite deterministic automaton recognizing the language $v_{n}^{-1}(A)$ has at least $\max u_{r} / c$ states.

Proof: Let $v_{n}^{-1}(A)=L(\mathscr{A})$ where \mathscr{A} is a finite deterministic automaton. Let \mathscr{C}_{i} be a finite deterministic automaton, which has c states and which recognizes the language $v_{n}^{-1}(\{x \mid x \equiv i(\bmod c)\})$. Then $\mathscr{A} \times \mathscr{C}_{i}$ recognizes the language $v_{n}^{-1}\left(B_{i}\right)$. Furthermore, $\mathscr{A} \times \mathscr{C}_{i}$ has $\# \mathscr{A} . c$ states. By Lemma 7 $\# \mathscr{A} . c \geqq \max u_{r}$.

4. THE INDEX CANNOT BE LARGE

We still have to prove that if $v_{n}(L)=A$ then the index of A cannot be arbitrarily large.

Lemma 9: Let A be a recognizable set. Suppose that the period of A divides c. n^{u} where c is prime to n, and that m is the index of A. If $m \geqq n^{u+v-2}+1$ for a positive integer v, then any finite deterministic automaton recognizing $v_{n}^{-1}(A)$ has at least v states.

Proof: Assume on the contrary that there is a finite deterministic automaton \mathscr{A} such that $v_{n}^{-1}(A)=L(\mathscr{A})$ and $\# \mathscr{A} \leqq v-1$.

Let w be the shortest word such that $v_{n}(w)=m-1$. Then $|w| \geqq u+v-1$. Hence there are words $w_{1}, w_{2}, w_{3}, w_{4}$ and states q_{1}, q_{2}, q_{3} such that $w=w_{1} w_{2} w_{3} w_{4}, \quad w_{3} \neq \lambda, \quad\left|w_{1}\right|=u, \quad q_{0} w_{1} \Rightarrow^{*} q_{1}, \quad q_{1} w_{2} \Rightarrow^{*} q_{2}, \quad q_{2} w_{3} \Rightarrow^{*} q_{2}$, $q_{2} w_{4} \Rightarrow{ }^{*} q_{3}$, where q_{0} is the initial state. In the same way as in the proof of Lemma 7 we see that

$$
v_{n}\left(w_{2} w_{3}^{\varphi\left(c^{k+1}\right)+1} w_{4}\right) \equiv v_{n}\left(w_{2} w_{3} w_{4}\right) \quad(\bmod c)
$$

Hence

$$
v_{n}\left(w_{1} w_{2} w_{3}^{\phi\left(c^{k+1}\right)+1} w_{4}\right) \equiv v_{n}\left(w_{1} w_{2} w_{3} w_{4}\right) \quad\left(\bmod c . n^{u}\right)
$$

Because the index of A is m, one of the following two conditions holds:
(1) $m-1 \in A$ and if $x>m-1$ and $x \equiv m-1\left(\bmod c . n^{u}\right)$ then $x \notin A$.
(2) $m-1 \notin A$ and if $x>m-1$ and $x \equiv m-1\left(\bmod c . n^{u}\right)$ then $x \in A$.

If (1) holds then q_{3} is a final state, which is impossible because

$$
q_{0} w_{1} w_{2} w_{3}^{\varphi\left(c^{k+1}\right)+1} w_{4} \quad \Rightarrow^{*} q_{3}
$$

and $v_{n}\left(w_{1} w_{2} w_{3}^{\varphi\left(c^{k+1}\right)+1} w_{4}\right) \notin A$. If (2) holds then q_{3} is not a final state, which is impossible because $q_{0} w_{1} w_{2} w_{3}^{\varphi\left(c^{k+1}\right)+1} w_{4} \Rightarrow^{*} q_{3}$ and $v_{n}\left(w_{1} w_{2} w_{3}^{\varphi\left(c^{k+1}\right)+1} w_{4}\right) \in A$.

5. DECIDABILITY

Theorem 10: Let k be a positive integer, $k \geqq 2$. It is decidable whether or not a k-recognizable set is recognizable.

Proof: Let B be a k-recognizable set. By the definition there exist regular languages L_{1} and L_{2} such that $B=\lambda_{k}\left(L_{1}\right)=v_{k}\left(L_{2}\right)$. Thus we can calculate
how many states the finite deterministic automata recognizing $\lambda_{k}^{-1}(B)$ and $v_{k}^{-1}(B)$ have. Consequently, by Lemmas 5,8 and 9 it suffices to check whether $\lambda_{k}\left(L_{1}\right)=A$ when the period and the index of the recognizable set A are small. To check whether $\lambda_{k}\left(L_{1}\right)=A$ for a fixed recognizable set A form a regular language L^{\prime} over the alphabet $\{0,1, \ldots, k-1\}$ such that $A=\lambda_{k}\left(L^{\prime}\right)$. This can be done effectively (see [2], p. 108). Clearly $\lambda_{k}\left(L_{1}\right)=\lambda_{k}\left(L^{\prime}\right)$ if and only if

$$
0^{*}\left(\left(0^{*}\right)^{-1} L_{1}\right)=0^{*}\left(\left(0^{*}\right)^{-1} L^{\prime}\right)
$$

where $\left(0^{*}\right)^{-1} L_{1}$ stands for $\left\{w \mid 0^{*} w \cap L_{1} \neq \varnothing\right\}$.
Our main theorem now follows by Theorems 1 and 10.

Theorem 11: Given a number system N, it is decidable whether or not $\operatorname{Pos} S(N)$ is recognizable.

In Theorem 11, $\operatorname{Pos} S(N)$ can be replaced by $-\operatorname{Neg} S(N)$.

REFERENCES

1. K. Culik II and A. Salomaa, Ambiguity and Decision Problems Concerning Number Systems, Information and Control, Vol. 56, 1983, pp. 139-153.
2. S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.
3. J. Honkala, Bases and Ambiguity of Number Systems, Theoret. Comput. Sci., Vol. 31, 1984, pp. 61-71.
4. J. Honkala, On Number Systems with Negative Digits, 1984, submitted for publication.
5. H. Maurer, A. Salomaa and D. Wood, L Codes and Number Systems, Theoret. Comput. Sci., Vol. 22, 1983, pp. 331-346.
6. A. Salomaa, Formal Languages, Academic Press, New York, 1973.

[^0]: (*) Received in May 1985, revised in September 1985.
 (${ }^{1}$) Mathematics Department, University of Turku, Turku, Finland.

