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COORDINATED PAIR SYSTEMS; PART I:
DYCK WORKS AMD CLASSICAL PUMPING (*)

by A. EHRENFEUCHT (1), H. J. HOOGEBOOM (2) and G. ROZENBERG (1>2)

Communicated by J. BERSTEL

Abstract. - The notion of a coordinated pair system, cp system for short, is a special instance
of an ects System which in turn provides a common framework for quite a number of grammar
and machine models encountered in the literature. In particular, the notion of a cp System
corresponds very closely to (is another formulation of ) the notion of a push-down automaton.

In this paper we continue the investigation of cp Systems and in particular we investigate
the possibility of obtaining pumping properties of context-free languages via the analysis of
computations in cp Systems. In order to do this we analyze the combinatorial structure of Dyck
words. The properties of Dyck words we investigate stem from the combinatorial analysis of
computations in cp Systems. We demonstrate how this correspondence can be used for proving
the classical pumping lemma.

Résumé. - La notion de système de paires coordonné, abrégé en cp système, est un cas
particulier de ects système qui, lui, fournit un cadre commun à un grand nombre de modèles de
grammaires et de machines rencontrés dans la littérature. En particulier, la notion de cp système
est très proche (est une autre formulation) de celle d'automate à pile.

Dans cet article, nous continuons l'étude des cp systèmes, et nous étudions en particulier la
possibilité d'obtenir des propriétés d'itération de langages algébriques à travers l'analyse des
calculs dans les cp systèmes. Pour ce faire, nous analysons la structure combinatoire des mots
de Dyck. Les propriétés des mots de Dyck que nous étudions proviennent d'une analyse
combinatoire des calculs dans les cp systèmes. Nous montrons comment cette correspondance
peut seqskèù démontrer le lemme d'itération classique.

INTRODUCTION

The notion of an ects system provides a common framework for quite a
number of grammar and machine models considered in the literature (see
[R]). A considerably simplified model of an ects system consists of an n-tuple
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4 0 6 A. EHRENFEUCHT, H. J. HOOGEBOOM, G. ROZENBERG

of grammars which are working in a coordinated fashion — a direct rewriting
step in any of the grammars is coordinated with certain rewriting steps in
some of the other grammars.

In particular in the case of two grammars the first of which is right-linear
and the second is right-boundary (a right-boundary grammar is like a right-
linear grammar except that one does not distinguish between terminal and
non-terminal symbols — still the rewriting is applied to the last symbol of a
string only) we speak of a coordinated pair System, cp System for short. It
turns out that cp Systems correspond very ciosely to (are another formulation
of ) push-down automata.

The systematic research exploiting the cp System approach to the theory
of push-down automata was initiated in [EHR2]. There, the basic formalism
to deal with cp Systems was settled as well as the basic technical tooi —the
Exchange Theorem — w&s proved. The proofs presented in [EHR2] indicate
very clearly that in order to understand the structure of computations in cp
Systems one has to study the combinatorial structure of Dyck words.

The idea of a correspondence between the structure of Dyck words and
computations in push-down-like models is one of the oldest ideas in formai
language theory, however the correspondence we obtain for cp Systems is
very well suited for the analysis of computations in them.

The present paper takes up this idea. We formulate and prove a number
of combinatorial properties of Dyck words (Section 3). Since Dyck words
are used in the investigation of various types of data structures, these results
seem to be of independent (combinatorial) interest.

Then in Section 4 we demonstrate the correspondence between these proper-
ties and the computations in cp Systems (the correspondence is established
using the Exchange Theorem). Using this we prove the classical pumping
property for context-free languages {see, e. g., [B], [H] or [S]).

1. PRELIMINAIRES

We assume the reader to be familiar with basic formai language theory, in
particular with the theory of push-down automata and context-free grammars
(see, e. g. [H] and [S]). Although the définitions of notions concerning cp
Systems that are used in this paper are provided in Section 2, it may be
instructive for the reader to consult [EHR2] for some additional background
and examples.

Informatique théorique et Applications/Theoretical Informaties and Applications
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We fix now some more spécifie notation and terminology used in this
paper.

N dénotes the set of all nonnegative integers and N+ dénotes the set of all
positive integers.

For a set W, #W dénotes its cardinality; for sets U, W, U<=W dénotes
the inclusion of U in W and UczW dénotes the strict inclusion of U in W.

Whenever a subset N is specified in the form {il5 . . ., in}, it is assumed
that it <. . . <in; to remind the reader of this convention we of ten use the
notation (iu . . ., i„) to dénote {fls . . ., in}. Given U, WgNwe write U< W
if all éléments of U are smaller than all éléments of W.

We assume that all the alphabets considered in this paper are finite and
nonempty. Given an alphabet S, £ will always mean the alphabet { a | a e E }
and it is assumed that S (~\L = 0.

For a word x, \x\ dénotes its length and if lrgfc^ |x|, then x(k) dénotes
the fe-th letter of x. À dénotes the empty word.

In this paper it is necessary to distinguish carefully between different
occurrences of letters (or subwords) in a given word. Therefore we introducé
the following notions that lead to a clear distinction between an object (letter,
subword) and its occurrence in a word.

DÉFINITION 1.1: Let w be a word.
(1) An element i of { 1, . . ., |w\} is called an occurrence in w. We say

that i is an occurence of (the letter) w (i) in w.
(2.1) A subset U of {1, . . ., | vv|} is called a support (in w); the set

{1, . . ., [ w|} is called the full support (in w) and is denoted by fs(w), If
U={i, ï+1, . . ., j} for some occurrences i and ; in w, then U is called a
segment (in w).

(2.2) Let U~(ix, i2, . . . , in) be a nonempty support in w. Then
w(ï1)w(i2). . .vv(i„) is called a sparse subword of w. If U is a segment in w,
then we say that w ^ w ^ ) . . . (xvn) is a subword of w. U is referred to as an
occurrence of w(i1)w(i2). . -w(in); on the other hand, vv(z'1)w(/2). . .w(in) is
referred to as the image of U (in w) and it is denoted by w(U).

Additionally, we define w(0) = A and we say that the empty set is an
occurrence of the empty word in w. •

Ds dénotes the Dyck language (see e. g., [S]) over the alphabet I 1 J Î ,
where, for each letter a in Z, its matching "right parenthesis" is a in Ê.
Formally, DL is the minimal language L over Z U £ that satisfies:

(i) AGL;

(ii) if weL, then awa e L for every aeS, and
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4 0 8 A. EHRENFEUCHT, H. J. HOOGEBOOM, G. ROZENBERG

(iii) if wls w26L, then w1w2eL.
Eléments of Dz are called balanced words.
In this context symbols from S and £ are referred to as left and right

letters (or parentheses) respectively.
A letter to letter homomorphism is called a coding and a homomorphism

that maps each letter either into a letter or into the empty word is called a
weak coding.

Two languages are considered equal if they differ at most by the empty
word, two language generating devices are said to be equivalent if their
languages are equal.

A context-free grammar, abbreviated cf grammar, is specified in the form
G = (L, P, S, À) where S is its alphabet, P its set of productions, S e £ \ A
its axiom and A<=E its terminal alphabet. For x, y e S* and neP we write

x=>j if x directly dérives y using n. We use L(CF) to dénote the class of
G

context-free languages.
A right-linear grammar, abbreviated ri grammar, is a context-free grammar

G = (E, P, S, A), which has its productions in the set
(E\A)xA*((X\A)U{A}) .

A right-boundary grammar, abbreviated rb grammar, differs from the right-
linear grammar essentially in the fact it does not distinguish between terminal
and nonterminal symbols. A rb grammar is specified in the form of a 3-tuple
G = (L, P, S), where E is its alphabet, P ^ I x I * is its set of productions
and S e S its axiom. As in the case of a ri grammar productions are applied
to the last occurrence in a word only. Thus, for x, J G Z * and n = A -> weP,

x directly dérives y (in G using 71), written x=>y, if x = zA and y = zw for
G

some zeE*.

2. CP SYSTEMS; BASIC NOTIONS AND RESULTS

In this section we recall a number of notions and results presented in
[EHR2]. We start by defining a coordinated pair system.

DÉFINITION 2. 1: A coordinated pair System, abbriated cp system, is a triple
G = {G1, G2, R) such that:

(1) G1 = (S1, P l5 Sl9 A) is a rl-grammar,
(2) G2 = (Z2, P2, S2) is a rb-grammar, and

Informatique théorique et Applications/Theoretical Informaties and Applications



COORDINATED PAIR SYSTEMS 4 0 9

(3) K g P x x P 2 . •
Gi and G2 are referred to as the first and second component of G respecti-

vely. Eléments of R are called rewrites of G.

DÉFINITION 2.2: Let G = (GU G2, R) be a cp system, where
G ^ ^ i , Pi, Si, A) and G2 = (E2, P2, S2).

(1) Let x = (x1,x2)9 j ; = (j l 9 ^ e Z f xZ | . x directly computes y (in G),
n i

denoted x=>j>, if there exists a rewrite K~(KU n2)eR such that xx =>;>! and

n 2 n

x2=>y2; we write then x=>y and we say that x directly computes y (in G)
G 2 G

usi'ng TL

=> dénotes the reflexive and transitive closure of =>. If x=>y, then we say
G G G

that x computes y (in G).
(2) A computation (in G) is a séquence p = p(0), . . ., p(n) of éléments

fromSf xL* such that n^O, p(0)=(S ls S2) and, for l ^ i ^ n , p(i- l)=> p(i).
G

We say that p is successful if p(n)=(u, A) for some ueA*; then the result
of p, denoted by res(p), is defined by res(p) = w.

(3) Let p = p(0), . . ., p(n), n ^ l , be a computation in G. The séquence

i

nl9 n2, . . .» 7tB of rewrites from K such that, for l ^ i ^ n , p(ï—l)^p(i) is
G

called the control séquence of p and it is denoted by cont (p).
If p = p(0), then we define cont(p) to be the empty séquence.
(4) The language of G, denoted L (G), is defined by

L (G) = { res (p) | p is a successful computation in G};

it is also referred to as a coordinated pair language or cp language for
short. •

If G is a cp system, then we say that G computes the language L (G). The
class of all cp languages is denoted by L(CP).

We realize that we somewhat abuse the notation by writing séquences in
the form p = p(0), . . ., p(n) rather than p= <p(0), . . ., p(n)> (this leads
to somewhat ambiguous expressions like, e.g., p = p(O)). However, using
brackets to delimit séquences would lead to an additional burden on the

vol. 20, n° 4, 1986
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already involved notation. We hope that abuses of notation of this type will
not lead to misunderstandings.

It is easily seen that the notions push-down automaton and cp system are
closely related (see [R]); the first component of a cp system acts as input, the
second component as a push-down store. Hence we have the following resuit.

THEOREM 2.1: L(CP) = L (CF), M

We will now recall some notions used to describe computations in cp
Systems. Our first définition is that of a trail of a rewrite —it represents the
detailed record of the way the rewrite is used after it has been split into
"elementary actions". Once the notion of a trail is defined for rewrites, it
carries over to computations through their control séquences. We use the
symbol [Sx; S2] to indicate the beginning of this record.

DÉFINITION 2. 3: Let G = (Gl, G2, R) be a cp system, where
G^ÇLU Pl9 Sl9 A) and G2 = (Z2, P2, S2). Then let

T(G) = {[S1; S2]}U{fr, i]\n = (nu A^>w)eR, ieN and î g | w|}.

(1) Let n = (nl9 A^w)eR.
The trail of n, denoted by trl(n\ is the word over F (G) defined by

(2) Let p be a computation in G with control séquence 7i = 7il9 . . ., nn, for
some n^O, 7ils . . ., nneR.

The trail of p5 denoted tri (p), is defined by
trl(P) = [S1;S2]trl(n1)...trl(nn). M

Given a trail x of a computation p, its contribution, ctb (x), gives the word
that is generated on the first component during this computation. On the
other hand, the weak description of x, wdes (x), yields the word that describes
the séquence of actions taken during the computation p on the second
component.

DÉFINITION 2.4: Let G — iG^ G2, R) be a cp system, where
GX = ÇE19 Pl9 Sl9 A) and G2 = (Z2, P2, S2).

(1) ctb is the homomorphism from F(G)* into A* defined as follows.
For XGF(G) , ctb(x) equals

w> if T = [^Î 0] for some n e R where either n = (X -* u 7, 7c2)

or n — (X-+u, 7i2), for some X, Yel>1\A,

A, otherwise.

Informatique théorique et Applications/Theoretical Informaties and Applications
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For a word oc e F (G)*, ctb(a) is referred to as the contribution ofa.

(2) wdes is the coding from F (G)* into (X2 U £2)* defined as follows.
For XGF(G), wdes(x) equals

S2, if T = [ S I ; S 2 ] ?

Â, if x — [n9 0] where TC = (7C1S X -• w)eR,

w(/c), if T = [7i, k] where 7i = (7i1; A -> w) and l ^ f e ^ | w .

For a word oteF(G)*, wdes (a) is referred to as the weak description of
a. •

If p is a computation in G, then wdes (tri (p)) is called the weak description
ofp. Note that if p is successful, then ctb(trl(p))~res(p).

The following resuit concerning weak descriptions of successful computa-
tions is closely related to the fact that the second component acts like a
pushdown store: the last symbol introduced is the first symbol to be rewritten.

LEMMA 2 .1 : Let p be a successful computation in a cp System G. Then
wdes (tri (p)) e D^ where Z2 is the alphabet of the second component of G. M

A basic property for cp Systems is the real-time property. A real-time cp
system is a cp system which générâtes exactly one terminal symbol on the
first component in every computation step.

DÉFINITION 2.5: Let G = (GU G2, R) be a cp system, where
G1 = (£ls Pl9 Su A) and G2 = (£2, P2, S2). We say that G is real-time if every
rewrite n e R is of the form n = (X -> a Y, n2), where
XeZiXA, y6 (Z 1 \A)U{A} ï aeAandï ï 2eP 2 . •

The following resuit establishes a normal form for cp Systems. It is closely
related to the Greibach normal form for cf grammars and it can be obtained
by translating this grammatical normal form into the terminology of cp
Systems. In [EHR1] this resuit was proved directly within the theory of cp
Systems.

THEOREM 2.3: For every cp system H there exists an equivalent real-time
cp system G. •

The Exchange Theorem enables us to swap equivalent pièces of successful
computations in a cp system to obtain new computations. (Using it we will
show in Section 4 that given a suitable successful computation we can
"pump it up" and obtain an infinité séquence of new computations.) In the
formulation of the theorem we shall use the following notions.

vol. 20, n° 4, 1986
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DÉFINITION 2.6. Let G = (Gl, G2, R) be a cp System and let E2 be the

alphabet of G2.

(1) A word a e F ( G ) * is balanced, if wdes (oc) e D l 2 .

(2) Two nonempty words a and P in F(G)* are equivalent, denoted ot~P,

if they are balanced and oc(l) = p(l), a ( | a | ) = p( | p | ) . •

THEOREM 2 .4 (Exchange Theorem): Let G be a cp system and let p1? p2 be
two (not necessarily different) successful computations in G, where
tri (px) = a t Pi Yi and tri (p2) - oc2 P2 y2 with $x ~ p2.

77ien t/iere exist (unique) successful computations p1 2 anJ p 2 1 in G such that
) = Mi2 andtrl(p21)=(ù21. M

3. COMBÏNATORIAL PROPERTIES OF DYCK WORDS

In this section we prove some basic properties of Dyck words. The results
we prove are useful in the analysis of computations in cp Systems. As a
matter of fact in the next section we will demonstrate the use of these
properties in providing an alternative proof for the classical pumping lemma
for context-free languages.

We start by defining the following very basic notions.

DÉFINITION 3 .1 : Let weDz.

(1) A pair (f, j)g=fs(w) is called a (w-)balanced pair if W ( Ï ) W ( I + 1 ) . . . w(/)
forms a balanced subword of w.

(2) A w-balanced pair (i,j) is called a (w-)nested pair if either j = i +1 or
( i+1 ,7 — 1) is a w-balanced pair. •

DÉFINITION 3.2: Let w e D £ and let U=(i, i + l , . . . ,y) be a nonempty
segment in w. U is called (w-)balanced ((w-)nested\ if (i, j) is a w-balanced
(w-nested) pair in w. •

We will say that a word w e / ) z is nested if fs(w) is a w-nested segment.

REMARK: Note that a w-balanced pair (/, j) is not w-nested if and only if
there exists an occurence k, i<k<j—\, such that (i, k) and (k + lj) are
w-balanced pairs. In [B] nested words are called (restricted) Dyck primes;
they are the balanced words that are not the product of two nonempty
balanced words. •

Informatique théorique et Applications/Theoretical Informaties and Applications



COORDINATED PAIR SYSTEMS 4 1 3

Example 3 .1 : Let w~abbaabaaaabaabbaaa^D{a b}. w has the following
nested structure:

1 2 3 4 . 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a b b a a b a a a a b a a S b a a a

(6, 15) and (9, 14) are w-balanced pairs.
(9, 14) is not a w-nested pair, since the subword âbaâ of w is not balanced.
(1, 4), (6, 15) and (11, 14) are w-nested pairs. •
It turns out that Dyck words must contain balanced segements satisfying

particular length constraints. This resuit will be used extensively in the sequel

THEOREM 3.1: Let weDz and let m be an integer such that 1 ^ m ̂  (1/2) | w |.
Then there exists a w-balanced segment U with m< # U ^ 2 m .

Proof: If m = (1/2)| w|, then U=fs(w) satisfies our lemma.
So we consider m with m < (1/2) | w |.
Let Uo be a balanced segment in w such that # Uo > 2 m and moreover Uo

is a shortest w-balanced segment with that property; hence if U' is w-balanced
and #l / '>2m, then #U'^ #Uo. It is obvious that such a subword exists.

We consider separately two cases.

(i) U0 = (U Ï + 1, . - ., ;) is w-nested.
Then C/1 = (i + l, . . .,y —1) is w-balanced and clearly shorter than Uo. We

have 2m^#Ux = #U0-2>2m-2.
Consequently #t71 = 2m (remember that U1 is w-balanced and thus has

an even number of éléments) and so U=U1 satisfies the lemma.
(ii) Uo is not w-nested.
Then l/0 = l71\JU2 for some nonempty w-balanced segments U1<U2.

Both U1 and U2 are smaller than C/o. Hence #Ui^2m and # [ / 2 g2m. On
the other hand either #Ul>m or # t / 2 > m (because
2 m < # U 0 = # l / 1 + # C / 2 ) . Thus one of the assignments U=Ul or U=U2

satisfies the statement of the lemma •
The relative positions of w-nested words in a Dyck word fall into two

basic catégories: w-chain and w-cochain. This fact will be exploited in many
considérations to follow.

DÉFINITION 3. 3: Let w G DZ.

(1) A séquence•K = (ïl9y1), . . ., (im,jm), m>0, of w-nested pairs is called a
w-chain if ẑ  < i 2 < . . . <im<jm< . .
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414 A. EHRENFEUCHT, H. J. HOOGEBOOM, G. ROZENBERG

m is the length O/K and is denoted by | K |.

For each l^l^m, (ih jt) is referred to as a (nested) pair O/K.

(2) A séquence K = (Î1? J\)9 . . ., (imi jm), m^O, of w-nested pairs is called a
w-cochain if i1<j1<i2<J2< • • • <im<jm an<^ iï> f° r every l^ /c</^m, (i/,^)
is w-balanced.

m is the length O/K and is denoted by |K .

For each 1 ^ / ^ m , (ih jt) is referred to as a (nested) pair O/K. •

Example 3.1 (continued): K = (5, 18), (6, 15), (11, 14), (12, 13) is a w-chain,
but also ^ = (5, 18), (11, 14) is a w-chain. They have length 4 and 2
respectively.

p, = (7, 8), (9, 10), (11, 14) is a w-cochain of length 3.

ji'=(7, 8), (11, 14) is a w-cochain of length 2.

The séquence (1, 4), (6, 15) consists of w-nested pairs, but it is not a
w-cochain because it does not satisfy the second requirement: (1, 15) is not
w-balanced. •

DÉFINITION 3.4: Let weL>2.

(1) The depth of w, denoted dp(w), is the length of the longest w-chain.

(2) The width of w, denoted wd(w\ is the length of the longest
w-cochain. •

Note that if U is a w-balanced segment and w = w((7), then dp(u)^dp(w)
and wd(u)^wd(w), because every u-(co)chain \i obviously corresponds to a
w-(co)chain K with | K | = | |i |.

Example 3.1 (continued): dp(w) = 4, wd(w) = 3. •

The following relationship holds between the depth, width and length of a
Dyck word. (This resuit was already obtained in [AB]; for the sake of
completeness we give its proof hère.)

THEOREM 3.2: Let w be a word in Ds. Then |w|rg2(# + g2+ . . . +qp),
where p = dp (w) and q = wd (w).

Proof: We keep q fixed and prove the lemma by induction on p.

Let weDz and let p~dp (w), q = wd (w).

(i) If /? = 0, then obviously w = A.

Hence | w| = 0 (note that for/? = 0 the sum q + q2+ . . . +qp becomes 0).

(ii) Induction step. Let/?^ 1. We assume the lemma holds for every W eDz

with dp(w')<p.

Informatique théorique et Applications/Theore'jeal Informaties and Applications



COORDINATED PAIR SYSTEMS 4 1 5

We can décompose w into nested subwords: for some mf^q there exist
m balanced words wl5 . . ., wm such that w=o1wiê1. . .<Jmwmêm, where

Obviously, for every l ^ ï ' ^ m , Pi — dp(w^1kp-~ 1 and qi =

Consequently, by our assumption,

. . . -f gp-i).

Thus

+ . . . + qp). •

The following corollary of the above result will be especially useful in the
sequel.

C9ROLLARY 3.3: Letp^l, q^2 and let WGÜEbe such that \w\^4qp. Then
either dp(w)>p or wd(w)>q.

Proof: Assume to the contrary that, for a word weDz with | w| ^4qp, both

^p and wd(w)^q.

Then, combining Theorem 3.2 with the assumption of the corollary, we

However

+ +q) q ^
q-\

and so we get 4qp<z4{qp— 1); a contradiction.

Hence the result holds. •

Once a w-chain or a w-cochain is fixed in a Dyck word w it leads to a
natural partition (splitting) of w.

DÉFINITION 3.5. Let weD z .
(1) Let K = (i1) j j ) , . . ., (zm, jm), m ̂  1, be a w-chain and let:

Uo = { 1,2, . . ., ix —1},

[ƒ, = {;„ Ï , + 1, . . . , Ï I + 1 - 1 } for all l ^

vol. 20, n° 4, 1986
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a n d

U2m = {jm+hJm + 2, • • • > | w | } .

The séquence Uo, Uu . . ., U2m is cailed the k-splitting ofw.

(2) Let k = (Ï1S 7\), . . ., (ïm, jm), m g: 1 be a w-cochain and let

t/0 = { l , 2, . . ., i2 — 1},

^2 l - l = {^ ï"l+U • • - ; / } f o r a l i I ^ ^ W ,
U2/ = {ji+l» Ji + 2> •••> î ' / + i - l } for ail l ^

and

The séquence Uo, Uu . . ., U2m is called the x-splitting ofw. •
We say that a segment F of w contains the w-(co)c/iawi K = (îl9 jt)9 . . .,

(zm, j j , m ^ l , if (i1? Ji)sK((i l 9 j J i F respectively), or equivalently if
2 m - l

U Uk^V, where t/0, t/ls . . ., [72m is the K-splitting of w.
k=X

Example 3.1 (continued): The séquence

{1,2,3,4}, {5}, {6, 7, . . . , 10}, {11}, {12,13}, {14}, {15}, {16,17,18}, 0

is the K-splitting of w.
The K'-splitting of w is the séquence

{1,2, 3, 4}, {5, 6, . . . , 10}, {11, 12,13, 14}, {15, 16, 17,18}, 0 .

The ji-splitting of w is the séquence

{1,2, . . . , 6 } , {7,8}, 0 , {9,10}, 0 , { 11,12,13,14}, {15,16,17,18}.

The j^-splitting of w equals {1, 2, . . ., 6 }, {7, 8 }, {9, 10 },
{11, 12, 13, 14}, {15, 16, 17, 18}. •

In analyzing the structure of Dyck words (especially in the context of
computations in cp Systems) it is often useful to group together various
occurences in a Dyck word. This leads us to the following notion.

DÉFINITION 3. 6: Let weD2 and let F be an alphabet.
(1) A T-coloring of w is a mapping S : fs(w) -> T.

The cardinality of F is called the index of S and is denoted as ind (ô).
Let 5 be a F-coloring of w.
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(2) Two occurrences i and j in w are b-equivalent if b(i) = b(j).

Two pairs (iu j±) and (i2i j2) of occurrences in w are ô-equivalent if

(3) A w-(co) chain is called b-uniform if ail its nestëd pairs are
5-equivament. •

Example 3.1 (continued): We define the {0, 1 }-coloring 5 of w as follows.

TT i r 1 -> 1 o i s n\ f 1, if * is prime,
For k e {1, 2, . . ., 18 }, 5 (k) = <

[0, otherwise.
Then K' is a 8-uniform w-chain. ji' is a 5-uniform w-cochain. Both K and \i

are not 5-uniform. •
Our next resuit formulâtes the basic property of colorings of Dyck words.

We start with the following lemma.

LEMMA 3.4: Let r, p^. 1, q^2. Let weDz and let b be a coloring ofw with

If | w\^4(qr2)pr , then there exists:

either a b-uniform w-chain K with | K | >p

or a b-uniform w-cochain K with \ K | > q,

Proof: According to Corollary 3. 3 either dp(w)>pr2 or wd(w)>qr2.
Assume that dp(w)>pr2.

Hence there exists a w-chain |i with j ji | >pr2. b may have at most r2 values
on the set of all balanced pairs in w. Consequently more than p pairs of \i
must be ô-equivalent. These pairs form a w-chain K, with j K | >/?, which is
5-uniform.

If, on the other hand, wd (w) > qr2, then by the same arguments there exists
a 6-uniform w-cochain K with | K | > q. •

THEOREM 3.5: Let r, p^l, q^2. Let weDz and let b be a coloring ofw
with ind(b)<r.

If U is a w-balanced segment with # U^4(qr2)pr , then

either U contains a b-uniform w-chain K, with |K |> / ? ,

or U contains a b-uniform w-cochain K, with | K | > q.

Proof: Apply Lemma 3.4 to w' = w(U). Obviously a w'-(co)chain K' corres-
ponds to a w-(co)chain K with | K | = | K' |. •
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4. THE CLASSICAL PUMPING LEMMA FOR CONTEXT-FREE LANGUAGES

In this section we demonstrate how using results from the last section
(combinée! with the Exchange Theorem) one proves (a somewhat strengthened
version of ) the classical pumping lemma for context-free languages.

We start by oberving the relationship between the length of a contribution
from a segment of (the trail of ) a successful computation and the number of
occurrences of (letters corresponding to) right parentheses in the Dyck words
corresponding to the weak description of the computation.

LEMMA 4.1: Let p be a successful computation in a real-time cp System G.
Let a=tr/(p), ^ = wdes (a) and let U be a segment in a.

Then | ctb(a(U))\= # {ksl/|Ç(fc)eZ2}, where Z2 is the alphabet of the
second component of G. Furthermore, if a(ÏT) is balanced, then
\ctb(a(U))\= (1/2) #U.

Proof: Let G=^(Gly G2, R) be a real-time cp System, where

Gx = (Zl5 P2, S2, A) and G2^ÇL2, P29 S2).

Then (directly from the real-time property) it follows that, for any xeF(G),
ctb (x) e A if x = [n9 0] with n e R and ctb (x) = A, otherwise.

Moreover, for x e F (G), wdes (x) e Z2s if x = [TC, 0] with n e R and
wdes(x)ell2, otherwise.

Now consider x = oc(/c) for some /ce/s(oc).
Since wdes is a coding, Z0(k) = wdes(aL(k)). Consequently,
ctb(a(k)) = A if and only if ^(fe)el25 and
ctb(a(k))eA if and only if £(fc)eS2.

From the above the lemma easily follows. •
Given a word w over an alphabet Z, we can interpret w as a function from

fs (w) into E, which maps an occurence k in w to the letter w (k) in Z.
So, let a be the trail of a successful computation in a cp System G and let

£ be the weak description of a. Then f s (a) = fs (^), hence, using the above
interprétation of a, we can regard a as a F(G)-coloring of Ç. Ç itself is a
balanced word (see Lemma 2.1) thus it is now possible to talk about
a-equivalent balanced pairs of Ç. As our next lemma shows such pairs are
closely related to equivalent (in the sensé of Définition 2.6. (2)) subwords in
the trail a of p.

LEMMA 4.2: Let p be a successful computation in a cp System G and let
a = trl(p) and Ç — wdes (a). Let (il9 j j , (f2, j2) be two a-equivalent balanced
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pairs in Ç and let Ul=(ii9 fx -h 1, . . ., A), U2 = (i2, i2 + h • • •> h\ Then

Proo/: (1) First we will show that a (t/i) and a(C/2) are balanced. This is
seen as follows.

According to our assurnption (iu jx) is a balanced pair in Ç. This means
that ^ ( l / J eD^ . But wdes is a coding, hence £t(U1) = wdes(cL(U1)). Now, by
Définition 2.6.(1), o^t/J is balanced.

The same argument used for (i2, j2) leads to the conclusion that oc(L/2) is
balanced.

(2) We now prove the équivalence of a(C/1) and ot(l/2).
(Ï1S y'i) and (/2, ;2) are a-equivalent pairs in £, so we have a(i*1) = a(i2) and

a(/1) = a(/2)' But this implies that the first (and last) letters of a (L/J and
a(U2) are equal to each other, because

This complètes the proof of the lemma. •
The next lemma is about the "regularity" of occurrences of right letters

between the occurrences of the letters in Dyck words (corresponding to weak
descriptions of successful computations).

LEMMA 4.3: Let p be a successful computation in a cp System G and let
a = trl(p) and £> = wdes(oL). Let i and j be two a-equivalent occurrences in Ç of
left letters, where i<j. Then there exists an occurrence k with i<k<j such
that ^(k) is a right letter,

Proof: Let i<j be two occurrences in £ as in the statement of the lemma.
a(f)#[S1; S2], because otherwise the symbol [Sx; S2] would occur twice in a.

So let a(i) = a(/) = fo *] f° r s o m e te l? , tsN.
Then clearly t>0, because ^(i) and ^(j) have to be left letters.
Since Ç is the weak description of a computation, there exists an occurrence

k with i<k<j such that oc(fc) = [n, 0]. Obviously k is an occurrence of a right
letter in Ç. •

We are now ready to provide an alternative proof of the pumping property.

THEOREM 4.4: Let Kbe a context-free language over an alphabet A.
Then there exists a constant rfeN+ such that, for every weK with \w\ ~^.dy

there exist words wu w2, w3, w4, w5eA* satisfying:
(i) w = w1w2w3wAw5,
(ii) w^Afor all l^i^S,

(iii) | w2 w3 w41 ^ d and
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(iv) w1w
n

2w3w
n

4w5eKfor every neN.

Proof: Let G = (GX, G2, R) be a real-time cp System Computing the language
K=L(G\ where G ^ f T i , Pu Sl9 A) and G2 = (X2, P2i S2).

We choose d = 4(4r2){2r2\ where r = # F ( G ) and we will prove that the
theorem holds for this choice of d.

Now consider weK with | w|^d and let p be a successful computation in
G with res(p) = w. Met a = tri (ci) and ^ = wdes(a). Thus w = ctb(<x).

As bef ore we can regard a as a r(G)-coloring of £. Then a, seen as a
coloring, has index r.

By Lemma 2.19 £ is a word in DZ2 and so it is possible to apply to £ our
results on balanced words from Section 3.

The relationship bet ween occurrences in w and occurrences of right letters
in £, as well as the relationship between occurrences in a and £, has already
been discussed to some extent in the proof of Lemma 4.1. From this
discussion it easily follows that | a | = |£ | =2[ w| >2d,

According to Theorem 3.1 there is a ^-balanced segment U such that

Theorem 3. 5 implies that U contains
either an a-uniform Ç-chain K with | K | = 3
or an a-unif orm ^-cochain K with | K | =5.

We consider separately each of these cases.

(a) K = (Î1S j'i), (i2, 72), (Î3, 7*3) is an a-unif orm ^-chain contained in U.
Let Uo, Uu . . ., U6 be the K-splitting of £,.
Then let

Wx = Uo U Ult W2 = U2, W3 = U3, WA = UA and W5 = U5 U U6.

We will consider the image of the séquence Wl9 W2, W3, W4, W5 both in
^ and in a; let

$t = Z,(Wd, ai = a ( ^ for i= l , . . . , 5 .

Clearly ^ = xvdes (at) f or 1 ̂  i ̂  5.
Note that (i2, 72) and (z3, j3) are a-equivalent balanced pair in ^. Thus,

according to Lemma 4.2,

Now it is possible "to pump" the pièces a2 and a4 in the computation p
as follows.
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Let pi = p and apply the Exchange Theorem to p t and p; there exist
(unique) successful computations p0 and p2 in G such that tri (p0) = a1 oc3 a5

and tri (p2) = a1 oc2 a2 a3 a4 a4 a5.

Once more we consider the equivalent pièces a2 a3 a4 and a3, this time in
p and p2 respectively. If we apply the Exchange Theorem to these pièces we
obtain a successful computation p3 in G such that
tri (p3) = ax a2 a2 a3 a4 a4 a5.

Continuing this process inductively yields an infinité number of successful
computations pOï p1? p2, p3, . . . in G with trl(pn) = <x1 oc2a3a4oc5 for all
neN.

Let, for l ^ z ^ 5 , w^ctbC^).

Then w = res (p) = ctb (a) = ctb (at a 2 a 3 a 4 a 5 ) = wx w2w3 w4w5 and, for all
neN, res(p„) = ctb(ot1 ot2 a3 a4a5) = wx w2 w3 vv4 vv5.

This proves the existence of words wt satisfying requirements (i) and (iv)
from the statement of the theorem.

We proceed now by pro ving that |w2w3vv4|^d. First we observe that
W2\JW3[J W4^U, because K is contained in U.

Consequently

w2w3w4| =

On the other hand, using Lemma 4.1 we see that

\ctba(U)\ = (1/2) #U

— remember that U is a ^-balanced segment.

Hence | w2 w3 w41 ^ 1/2 #U^d.

This proves (iii).

Finally we will show that each of the words wi is nonempty.

This is clear for w3, w4 and w5, because each of £3, ^4 and ^5 explicitly
contains a right letter (^(/3X kÜi) an<l ^0*i) respectively) and the correspon-
ding symbols in a contibute letters to ctb (a3), ctb (a4) and ctb (a5).

So we are left with wr and w2.

i1? Ï2 and i3 are a-equivalent occurences of left letters in £,. By Lemma 4. 3
there exist occurences k1 and fc2 of right letters in £ such that
i1</c1<i2</c2<i3. Hence ^ and E,2 contain occurrences of right letters.

Thus, by an argument as above, we conclude that wx and vv2 are nonempty.

This proves (ii) and concludes the proof of the theorem in the chain-case.
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(b) u~(iujx% . . ., ( Ï 5 ,7 5 ) is an a-uniform Ç-cochain contained in U.
Let Uo, Ul9 . . ., U10 be the K-splitting of \ and let

W^Uo U t/x U ü2, ^2 = ^3 U 1/4» ^ 3 = ̂ 5,

WA = U6 U t/7 and P75 = l/8 U U9 U l/10.

As in the first case we consider ^. = Ç(W(.) and a,- = a(W^), for l^gi'^5, and
we continue the proof by showing that for each n e N, OL1 a2 oc3 4 a5 is the trail
of a successful computation in G. We then prove (analogously to (a) above)
that conditions (i) through (iv) hold. Actually, the situation is somewhat
simpler now —to see that the words w—ctbi&i), l ^ î ^ 5 , are nonempty we
observe immediately that each of the words ^ contains an occurrence of a
right letter.

Thus the theorem holds also in the cochain case.
From (a) and (b) the theorem follows. •
We conclude this section by the following remarks.
In the proof of Theorem 4.4 we have analyzed separately two cases: the

"chain" and the "cochain" case. The analysis of these two cases lead us to
the classical context-free pumping property.

Let us consider now the "cochain" case in more detail —in this way we
will obtain a "regular-like" pumping property.

LEMMA 4.5: Let p be a successful computation in a real-time cp System G
and let a — tri(p) and Z) = wdes(oL). If there exists an a-uniform ^-cochain of
length 3, then there exist nonempty words wl5 w2 and w3 such that:

(i) res(p) = wl w2 w3 and
(ii) w1w*w3^L(G).

Proof: Let k be an a-uniform ^-cochain with | K ] = 3 and let Uo, Ul9 . . .,
U6 be the K-splitting of £.

For i = 0, 1, . . ., 6 let a—afU,.).
Then a t ~a x a2 a3. Within the trail of p we apply repeatedly the Exchange

Theorem to ax and a! a2 a3 to obtain successful computations p0) Pi = p, p2>
p2, p3, . . . such that, for each neN,

tri (p j = a0 a4 (a2 a3)" a4 ct5 a6.

Hence if we write

Wi = ctb (a0 a j , w2 = ctb (a2 a3) and w3 = ctb (a4 a5 a6),
then
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res(p„) = wx w
n
2 w3 for each neN.

But wl5 w2 and w3 are nonempty, because Uly U3 and U5 contain occurren-
ces of right letters in Ç and consequently ctbipL^), ctb(a3) and ctb(a.5) are
nonempty — see Lemma 4.1.

From these considérations the lemma follows. •

Discussion

In this paper we have exploited the "cp System point of view" in the
analysis of the structure of computations on a push-down store.

In particular we have depicted a number of properties of Dyck words that
seem to be very basic in such an analysis. We believe that these results are
of independent interest in the gênerai theory of Dyck words.

We have demonstrated the use of these results (combined with the Exchange
Theorem) in providing an alternative proof of the classical pumping property
of context-free languages. We have tried to illustrate that the Exchange
Theorem and the combinatorial properties of Dyck words we have given in
this paper form a very basic and useful set of tools in the investigation of
context-free languages (through push-down computations and not through
dérivation trees in context-free grammars!).

This paper points to (at least) two areas of research which seem to be
worthwhile to continue.

(1) Analyze in more detail the combinatorial structure of Dyck words, so
that it can be connected to other known (and hopefully new) pumping
properties of context-free languages.

(2) Can a comparative study of the chain and cochain cases lead to
a combinatorial characterization of those context-free languages that are
regular?

We believe that further research in this direction will increase our
understanding of the nature of push-down compulations (and context-free
languages). As a matter of f act in the second part of this paper we present
results pertinent to (1) above. We will investigate the structure of sparse
subwords of Dyck words and use our results about this sparse structure to
dérive Ogden's pumping lemma for context-free languages.
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