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SEQUENTIAL MAPPIMGS
OFœ-LANGUAGES (*)

by Ludwig STAIGER (*)

Communicated by A. ARNOLD

Abstract. - The present paper investigates how partial word-functions monotonie with respect to
the initial word relation can he extended to partial mappings on the space X01 of infinité séquences.
It turns out thaï, to a certain extent, the infinité behaviour of these mappings can be described by
the finite behaviour via two suitably defined limit-operators. We dérive necessary and sufficient
conditions for the validity of several translation formulae. Moreover, we investigate the special
case of agsm-mappings and give an application to closure properties of families of (û-languages.

Résumé. - Cet article examine comment les fonctions partielles définies sur les mots et monotones
par rapport à l'ordre préfixiel peuvent être étendues en des fonctions définies sur les mots infinis.
Il apparaît que dans une certaine mesure, ces extensions peuvent être définies en utilisant deux
types de limites. Nous donnons des conditions nécessaires et suffisantes pour la validité de formules
définissant ces extensions. Nous étudions aussi le cas particulier des transductions séquentielles et
nous en donnons une application aux propriétés de clôture des familles de w-langages.

0. INTRODUCTION

In the study of families of languages or co-languages it is often useful to
consider transductions, and it is important to have a certain scheme for
extending transductions of languages to transductions of co-languages if one
deals with the joint study of families of languages and co-languages
(cf. [SW1, BN]). A particular simply to extend case of transductions are
sequential mappings, important subcases of which are gsm-mappings and
processes (i. e. partial recursive functions monotonie with respect to the initial
word relation).

The extension of gsm-mappings to the case of (û-languages has been used
e. g. to dérive subhierarehies of regular co-languages [Wa 2] and results relating
context-free languages to œ-languages [BN].

(*) Received August 1984, revised September 1986.
C1) Z.K.I. der A.d.W., D.D.R. 1086 Berlin, Kurstrape 33/PSF 1298.
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148 L. STAIGER

In connection with recursive oo-languages [SW1, St4] the notion of recur-
sive operator [Wa 1] is of some importance. It has been shown that recursive
operators are simple limit-extensions of recursive functions monotonie with
respect to the initial word relation [St4], The more gênerai case of the above
mentioned processes has been considered in connection with questions of
program complexity and randomness of infinité séquences [Sel, 2]. In this
paper we investigate the limit extension of gênerai sequential mappings (L e.
partial functions monotonie w. r. t. the initiai word relation). The extension
of a sequential mapping q> will be denoted by cp and also called a sequential
mapping. (It will be always clear from the notation or the context which
kind of sequential mapping we have in mind.) In an earlier work [LS] we
have considered in detail totally unbounded sequential mappings (p (i. e. fully
defined mappings for which the limit extension cp is also fully defined). It
has been shown that in this very case the infinité behaviour of the sequential
mapping can be derived from the finite behaviour by means of the limit-
operator Is via the translation formulae [St 1] (cf also [LS]; and [BN] where
this operator is called adhérence Adh) :

(I)

and

(II)

where W and V are arbitrary languages.

However, in the cases where the sequential mapping (p is not fully defined
a translation of the finite behaviour to the infinité one by means of the ls-
operator fails for topological reasons: the mappings q> need not be continuous,
and the équations (I) and (II) imply to a certain kind the continuity of the
mapping (p. Thus it is impossible in the case of an arbitrary sequential
mapping to obtain the translation formulae (I) and (II). It turns out that in
this gênerai case the 8-limit and a generalized inverse are useful tools for
translating the behaviour of the sequential mapping cp to its counterpart cp.
In the case of translation formulae involving the 5-limit we have to confine
to the case of équation (II), since G5-sets in the space X* are involved and it
is well known that even simple projections of Gö-sets may not belong to the
Borel-hierarchy (cf [Ku, St 3]). Basing on the translation formulae involving
the ls-limit we are interested in the cases of validity of the translation
formulae (I) and (II). Since we are concerned with not necessarily fully defined
sequential mappings, in the sequel we consider équation (I) in the following
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SEQUENTIAL MAPPING OF (Ù-LANGUAGES 149

slightly modified form

<p(lsW) = ls<p(A(W)) (I)

In the final two sections we return to a point mentioned above. First we
study the relations between a sequential mapping <p and its conterpart cp in
the case when cp is an agsm-mapping. Then we apply these results to closure
properties of families of co-languages which are based on the closure properties
of their underlying families of languages.

1. PRELIMINAIRES

The set {0, 1, 2, . . .} of natural numbers is denoted by N, and for a finite
alphabet X* (X*) dénotes the set of finite words (infinité séquences) on X.
For a word weX* and a string beX^XJX^ let wb be their concaténation.
This in an obvious way defines a product W'B of sets W<=iX* and

r . We introducé into X* U ^ 0 a partial ordering

wÇfe: o wb' = b for some

By

A(b): ={w:weX* and w

and

A(B): = V A(b)
beB

we dénote the set of initial words of beX* [J X™ and 5 g J * [j X™ resp.

For a word w its length is | w|, and X": ={w: WeX* and | w| = rc} where n
is a natural number. By e we dénote the empty word in X*. We extend the
opérations * and m to arbitrary subsets W g X* in the usual way:
W*: = U Wn where W°: ={e}, and W»\ ={wo-w1- . . . -w,-- . . . :ieN and

} is the set of (infinité) séquences in X™ formed by concatenating
members of W.

We will refer to subsets of X*(X*Ù) as languages (œ-languages).

In X™ we will consider the (natural) product topology which is defined by
the basis {w W**: wel*} or otherwise by the closure operator C, where for
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150 L. STAIGER

is the smallest closed set containing the set F.

As usual we define the Borel hierarchy in JY^rG^FJ is the class of
denumerable intersections (unions) of open (closed) sets. Then G5c, G5o5, . . .
and FCTÔ, FÔCTS, . . . and Faô, Fa6ü are defined in the usual manner.

Closed sets and G5-sets in X* can be characterized by languages in X*
using the following limits

DÉFINITION:For W<=X* we will refer to

isW: - { ( 3 : P G ^ and A($)

as the limit (in [BN]: adhérence) of the language (cf [St 1, LS]), and to

Wd:• = {p : p e X» and A (P) O W infinité}

as the 8-limit of the languages (cf [Da]).
The following properties of the operators Is and 5 are easily derived

(cf [LS]):

\sW = \s A(W) (la)

À (W8) g 4 (Is W)^A(W) (lb)

Is W\J\s K = ls(^U^0 (lc)

= \s(A(W)nA(V)). ( l d )

PROPERTY 1 : ƒƒ P e Is W, then there is a subset U^W such that { P} = Is U.

PROPERTY 2 : Let X be finite, W g l * . Then Is W=0 iff W is finit e.

For F^X» the closure C(F) equals (cf [LS])

C(F) = ls^(F) = ̂ (F)s. (2)

Moreover, we have

PROPOSITION 3 [Da] if: A subset F^X™ is a G6-set iff there is a Wg,
such that F= Wh.

With équation (1) we obtain

COROLLARY 4: A subset FgA™ is closed iff there is a W<^X* such that
F=ls W,

Informatique théorique et ApplicationsTheoretical Informaties and Applications



SEQUENTIAL MAPPING OF (Û-LANGUAGES 151

2. SEQUENTIAL MAPPINGS

Troughout this paper let X and 7 be finite alphabets containing at least
two letters each.

We regard the initial word relation « fZ » in X* and 7*. A mapping

<p : X* -• 7* is called sequential iff (p is monotonie with respect to « fZ », i. e.

for words w, ainits domain dom(cp), w^v implies cp(w)IZcp(ü).

Every sequential mapping cp: X* -> 7* yields a sequential mapping <p :
X01 -> 7W the domain of which is

is infinité} (3)

and the values of which are given by

>1(9(P)) = ^(9(^(P))) for pedom(9) (4)

Utilizing the ö-limit introduced above we may define (p alternatively via

0 when pG**> (5)

(where (cp(P)} = 0 means that (p(P) is not defined).
In the sequel we shall often make use of the following property of sequential

mappings.

PROPERTY 5 : If [/c=dom(<p) n 4(P) is infinité and PGdom(cp) then <p(U)
is also infinité,

Next, we introducé the upper quasiinverse U9 of a sequential mapping cp,
To this end let Min W: =W\W-X-X* be the set of all minimal éléments

with respect to « fZ » of W<^X*, and for VG 7* and Kg 7* we set

ç w: wedom(cp) and ü

and

If weU^u) i. e. ujZ<p(w) and üC_<p(w') for every w'IZw, then we will call w a

cp-least upper bound (cp —1. u. b.) on v. One easily obtains the following

vol 21, n° 2, 1987



152 L. STA TG ER

équation.

U^ (7*) = {w: wedom(cp) and cpu)#cp(w) for ail w[Zw} (6)

In contrast to the inverse mapping cp"1 the upper quasiinverse U^ has the
following properties.

PROPERTY 6 : There is a weU^t;) such that

u\^w provided u[Zcp(w).

This property implies that a word veY* has a cp —1. u. b. iff v e A (cp (X*)).

PROPERTY 7. : Let weU^y) and w'eUp(u')-

Then w[Zw' implies v [Z9(w)[Iy'[Z9(w').

These two properties establish that the correspondence

cp:

is one-to-ono and onto for every peX0. The following theorem relates the
upper quasiinverse U9 of a sequential mapping cp to the inverse cp"1.

THEOREM 8: Let cp be a sequential mapping and V^ 7*.
Then

Proof : If PeU<p(V)0 then there is an infinité family {wt: i€N}^A($) such
that every w£ is a cp — 1. u. b. on some word vte V.

Property 7 shows that wt[ZWj implies u£Oj. Thus {U,.:ÎGJV} is an infinité
family in A (cp (A (p))) H K, which proves 9 (P) e Fö. Conversely, let (j> (P) e Ks

}

i. e. there is an infinité family {vi:ieN}^A(<p(A(fpi)))r\V. According to
Property 6 we consider for each vt a cp — 1. u. b. wt in /4(P). If | ^ | > | cp(wI-)|
then the corresponding Wj satisfies ŵ lZŵ . Hence, {vv îeAT} is an infinité
family of cp —1. u. b. s on words in V contained in A (P), which implies
pe iy j / ) 5 - D

Inserting V=Y* yields a characterization of the domain of

dom(9)-cp-1(y°') = Uv(7*). (7)

Though sequential mappings 9 : ̂ ° -• 7*° in gênerai are not continuous, their
inverses preserve most classes of the Borel hierarchy. By theorem 8 cp"1
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SEQUENTIAL MAPPING OF CO-LANGUAGES 1 5 3

preserves G5-sets. Since

ieN ieN

and

the mapping cp"1 preserves also G5CT-, G5(p5-, . . .-sets. More-over dom((p) is
a G8-set, and since

9 - 1 ( X - \ f ) = dom(ç) \ç- 1 ( i ï ) , (8)

cp"1 preserves also FCTÔ-, F0Öa-, . . .-sets.
The following example shows that we cannot do any better.

Example 1 : Let X=Y={0, 1} and let h:X*-+Y* be a homomorphism
defined by h(0) = 00 and fc(l) = e. Then h"1 (¥<») = (X*-{0}T is a Gô-set but
not an Fo-set, for J^\ (X*- {0})<ö = X*- {l}" is a countable and dense in itself
set, hence no G5-set (cf. [Ku]). D

For FCT-sets équations (7) and (8) shows that the following is true.

PROPERTY 9 : Let cp be a sequential mapping. The inverse cp"1 preserves Fc-
sets if and only if dom(cp) itself is an Fa-set.

ït arises the question, under which conditions the inverse cp"1 preserves
open and/or closed sets and when cp is extendable to a continuous mapping
(b.X® -+ Y™. We are going to answer these questions in the subséquent
sections.

This section is finished by a proof that cp: dom(cp) —> Y™ is a continuous
mapping, when we use an appropriately chosen natural topology in dom (cp),
the topology in 7*° being the same as indicated in section 1.

To this end we define for a subset [ / g l* the following metric p^ in X™:

Pu IP> s; • 12! "card iA (P) n A (Ç) n U) if B ̂  E

We mention that in case U = X* the metric p: =px* is a standard metric
inducing the usual product topology in JC° (cf. [BN]).

Clearly, card A (p) O U = n < oo implies p^ (P, ^) ̂  21 "" for all ^ e JP", ^ # p.
Hence, P^Ï7Ö implies that P is an isolated point in the space
Consequently, Uh is closed in (X", p^).
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154 L. STAIGER

Now we can prove the announced theorem.

THEOREM 10: Let 9 be a sequential mapping, and let t/5 = dom(cp). Then
cp:(dom(cp), p^) -> (Y1", p) is a continuons mapping,

Proof: Let peU5=l/ç(y*) f i, and let e = 21"". We choose a word weA(fi)
such that card (A(w)nU9(Y*)) = n. Since every £>eUè with p o (^ p ) ^ 2 " | w |

has at least | w | + 1 initial words in A (P) O 17, we have A($)C\A (£) 2 A (w).
From this inequality we obtain via équation (4)

^ (9 (P)) n ^ (ip(ö) e <p (x (p)) n

Now, property 7 yields

card cp (A (w)) = card (A (w) O t/f (Y*)). (9)

Thus, p(cp(P), (p(£,))^8 whenever p^CP, Ç)^2~ | w | , and the assertion is pro-
ved. D

3. INVERSE MAPPINGS AND THE EQUATION (II)

The aim of this section is to show a direct relation betwen cp"1 and cp"1

instead of U^ as in the preceding section. Furthermore, we dérive a necessary
and sufficient condition under which the équation (II) holds true. To this
end we introducé a special class of subsets of X* and investigate in certain
cases the functional équations relating cp"1 and cp"1 together. First we dérive
an auxiliary resuit.

LEMMA 11: Let p e-X™ and F g Y*. Then 9 04(P)) O V is infinité if and only
if A (P) H 9 " l (V) and 9 (A (P)) both are infinité.

Proof: The relation <p(A (p) n 9" 1 (*0) = <P(/l(p)) O Kg<p(>4(p)) makes
the only-if-part obvious. Now let 9(^4(P)) and ^4(P)n9~1(^ /) be infinité.
Since /4(P) O 9 = 1 (^)Edom(9) we can apply property 5 and obtain that
q>(A (P) O 9" 1 (V)) = y(A (P)) Pi K is infinité. •

As a conséquence of lemma 11 we obtain an inequality being the first step
to the investigation of équation (II). To this end, we consider the équations

9" 1 (F)5 ndom(9) -{p :9 (^ (p) ) f\V is infinité}, (10)

which is a conséquence of lemma 11, and

9"1(Kô) = {p:^(9(A(p)))n V is infinité}, (11)

Informatique théorique et Applications/Theoretical Informaties and Applications
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which is immédiate by the définitions of q> and the ô-limit. Equations (10)
and (11) yield the following one:

^ ( K ^ c p - ^ K ^ n d o m ^ ) . (12)

Inclusion in équation (12) may be proper as the following example shows.

Example 1 (continued): Consider W={00}*-{0}. Then Wnh(X*) = 0.
Hence h'1 (Wf = 0, but W* = {O}m = h(Xa) which implies

On the other hand, if we consider U: ={00}* = h(X*)9 we have X* = h~l (U)6*

This example might lead to conclusion, that cp"1 (K^ücp"1 (Vb) holds
provided only KÇ(p(X*). This need not be true as the following example
shows.

Example 2: Let Y: = X: ={0, 1}, and h be the (doubling) homomorphism
defined by h(0): = 00, h(l): = 11, and define cp via

cp(e): = <p(O):=<p(l):=e

cp (0 w) : = h (vv)

cp (1 wx) : = h (w) x where w G X*, xeX.

Then <f>-l((X2)*)& = 0-X" whereas

Next, we exhibit a class of languages for which in équation (12) equality
holds. To this end we dérive some properties of the 5-limit.

( t /U W)S=Ï/5U W6. (13)

From this identity one easily obtains (U D Wf g t/5 C\ Wh as well as
(t/U W)b=U6 = (U\Wf provided Wb = 0.

DÉFINITION: We will refer to a language as a (a, 5)-subset of X* iff for
every peJST either A($)C\ W or / l (p)\P^ is finite. Clearly, this condition is
equivalent to Wd O (X^\W)s=^0, which in turn implies that the complement
of a (G, ô)-subset is again a (a, 5)-subset.

Examples of (a, 8)-subsets are finite languages (and their compléments).
Further examples are provided by the languages of the forms A(U) and
W'X*. In [St2] those languages were termed closed and open languages,
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156 L. STAIGER

respectively, for their images under-5-limit A(U)6 and {W* X*f=W' X*> are
exactly the closed (cf. équation (1 a) and corollary 4) and open subsets of X™.

The following lemma explains the term (a, ö)-subset.

LEMMA 12 [St2]: A subset F g r is simultaneously an Fa- and a Gó-set if
and only if there is a (a, fy-subset W of X* such that F= W5.

Proof: Let W be a (a, S)-subset of **. Then W&D(X*\Wf = 0 and
Wb\J(X*\W)a = X™. Consequently, W* = Xm\(X*\W)* is also an FCT-set.

In order to prove the only-if-part, according to proposition 3 we assume
F=W'& and X(Ü\F=U& for appropriately chosen subsets W\ U g X*. The
above derived properties of the ô-limit allow us to assume eeW' and
W'DU = 0, for {W O Uf £ W/à nU6 = 0. NOW? we add to the language
W' for each w'eW' all its successors with respect to " C " up to the time we

meet a word in t/, i. e. we define

W: = {w: w e l * and there i saw 'e W' such that no u'eU

satisfies u>' C uf C w}.

One easily observes that X* \P^ is constructed in the same manner, only
interchanging the roles of Wf and U. Moreover, if w [I u (or w C w) for we P̂
and weZ*\py, then there are w'e W' and u'e C/ such that w'^w C u'[^u

( o r u T C w T w resp.). Consequently, if A (P) O W and /l (P)\»V are both

infinité, so are A (P) f\ W' and ^ (P) O U. The latter case is impossible, for
W'àn U6 = 0. Thus W is a (a, ô)-subset of X*. Finally, Wh=Wrh follows
from Py' g W, U £ X * \ ^ and Wb H (X*\P^)6 = 0 . D

Remark 1; First, we will emphasize that, though VKÔ is an FCT-set provided
W is a (a, ö)-subset, the converse need not be true. So (X2)* is not a (a, 5)-
subset, but ((X2)*)Ô = XW is an Fff-set.

Remark 2: The construction in the above proof immediately shows that W
is a regular (recursive) language if only W' and U are regular (recursive)
languages.

We add some properties of (a, 5)-subsets.

PROPOSITION 13 [St2]: Let U be a (a, fy-subset of X*. Then

(Unwy=UbnW6 for ail W^X*.
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Proof: The inclusion " £ " is obvious. Let pe UB O Wh. Then pet/5 implies
that A($)\U is finite. If peW6 then A(^)C\W is infinité. Therefore
A (p) O C/ O W is infinité too, since (>4 (P) O W ) \ f is finite. •

PROPOSITION 14 [St2]: The class of all (a, 8)~subsets of X* is a Boolean
algebra.

Proof: Closure under complémentation is shown above. Let U, W be (a, 8)-
subsets of X*. Consider (WfMJf and

(x*\(w n u)f=(x*\t/)6 u (x*\py)5.

Since U and W are (a, ô)-subsets, we have Ub D (X*\Uf = 0 and
W&n(X*\Wf = 0. Hence ( t /O ^) Ô H (X*\(MKO U)f = 0, and W^Ol/
is a (a, 6)-subset. D

We return to the considération of sequential mappings. If V is a (a, ô)-
subset of y*, proposition 13 and équation (5) imply

(P)) H n ô = {cp(P)} H ^ i.e. cp(^(p)) O K is infinité, iff
In view of équation (10) this proves.

LEMMA 15: If V is a (a, b)-subset of 7* then

Since Is W=A{Wf and A(W) is a particular kind of (a, 5)-subset>
lemma 15 yields a connection between cp~x (Is V) and Is cp"1 04 (K)).

PROPOSITION 16: For ever y F c y* we

Proof: Lemma 15 and équation (1 a) imply

Since cp is a sequential mapping,

q ) - 1 ^ ^ ) ) ^ ^ ^ - 1 (^(K)))H dom(cp)

and

dom(cp)5 => dom(cp).

Then équation (1 a) and proposition 13 yield

vol. 21, n° 2, 1987



158 L. STAIGER

and the assertion follows. D
With corollary 4 we gët immediately an analogue to property 9 for closed

sets.

COROLLARY 17: Let cp be a sequential mapping. The inverse cp"1 preserves
closed sets i//"dom(cp) is closed.

In order to dérive the same proposition for open sets, we prove a statement
similar to proposition 16.

PROPOSITION 18; For every V <= 7* we have

Proof: Inserting the (a, ô)-subset F- 7* instead of F into the identity of
lemma 15 yields

In view of Wh £ W-X<* we have cp" 1 ^ - 7*)5 £ cp"1 (F* y*)-Xa. Hence, it
suffices to show

q> "x ( K • y *) • ; r n dom (cp) g <p " l ( F • 7 *)5.

If pGcp"1(F-y*)-XG>ndom(cp) then there is a we^(P) such that
cp(w)eK* 7* and, moreover, <p(,4(P)) is infinité. Thus, cp (A (P) O w • X*) is
an infinité subset of q>(w)- 7* £ F* 7*, which implies Pecp '^F- 7*)5. D

COROLLARY 19: Let (p be a sequential mapping. The inverse cp"1 preserves
open sets i/jf dom(cp) is open.

We conclude this section by giving a necessary and sufficient condition for
the validity of Equation (II).

THEOREM 20: It holds for ail V g 7*

(II)

if and only if dom(cp) =lsdom(cp).

Proof: The only if part is easily verified by insertion of F: = 7* into (II).
Conversely, in view of cp"1 (A (V)) £ dom(cp)î we have

Is cp"1 (A(V)) g lsdom(cp)=dom(cp).

Hence, the assertion follows from proposition 16. •
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4. EQUATION (ï) AND CONTINUITY

In this section we investigate conditions under which the équation (I) holds.
To this end we quote a theorem of [Stl] (cf also [LS, BN]) which'shows the
validity of the équation under a strong hypothesis.

THEOREM 21 [Stl]: Let cp be afully definëd (dom(cp) ==X*) sequential mapping
and let also dom((p) = Xû>. Then

q>(hW)=ls<f>(A(W)) (!)

for all subsets W g X*.

Therefore, our main technique in deriving sufficient conditions is to extend
a sequential mapping cp in such a way that the extension \|/ satisfies
dom(\j/)=Xœ, i. e. is a continuous mapping from I e 0 to Y°\

To this end we study in more detail the relations between extensions and
restrictions of sequential mappings. First we introducé the following notion.

DÉFINITION: A sequential mapping cp is called totally unbounded provided
for every infinité subset U S dom(cp) the image cp(L0 is also infinité.

PROPERTY 22: Let \|/ be an extension o f a sequential mapping cp: X* -> Y*
(or short: \|/ ^ (p). Then the following assertions are true:

\j/ ^ 9

if domÜf) = Xa> then \ j / ; X" -• Y" is continuous,
and (p is totally unbounded if\\f is totally unbounded.

Proof: The first and third assertion are immédiate, and the second one
follows from theorem 10. •

Remark: In particular, as it was noted in corollary 6.22 of [LS] (see also
lemma 8 of [BN]), it follows from theorem 21 that if \(/ and \j/ are fully
defined, then \|/ is totally unbounded. As a first approximation to équation (I)
we mention the following easily verified inequaiity [being a counterpart to
équation (12)]:

(13)

Next we prove our first extension resuit.

THEOREM 23: If dom((p)=ls dom(cp) then there is afully defined extension
y\f 2 cp such that dom(\|/) =ZÜ>.
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160 L. STAIGER

Proof: We define i|/: X* -• Y* by induction as follows:

e, otherwise,

and

I ep (wi), if wx e dom (9)

\|/ (w), if wx G A (dom (cp))\dom (9)

\|/ (w) jy, if wx $ A (dom (cp)),

where w G X*, x G X and ^ is a fixed letter in Y.

Clearly \|/ is a fully defined sequential mapping extending (p. Hence,
(3 e dom (9) implies \j/(P) =cp((3). If (3 <£ dom (<p) = Is dom (cp) then there is a
we^4(P) not in ^(dom(cp)). Consequently, we have a longest uGA(fi) contai-
ned in {e} U /l(dom(cp)). In that case, we have

and \j)((3) is also defined. D

Three remarks are in order here

Remark 1; By the construction of \|/ we have

for every W ^ A (dom (9)).

Remark 2: One easily vérifies that by dropping the factor y in the third
line of the définition of \|/(wx) we obtain a fully defined sequential mapping
\|/ extending 9 which satisfies \J> = cp.

Remark 3: The extension resuit of theorem 23 is in particular applicable
to the totally unbounded sequential mappings satisfying dom (9) — A (dom (9))
(which readily implies dom (9) = Is dom (9)) investigated in section V of [BN].

Now we obtain the condition guaranteeing the validity of équation (I).

THEOREM 24: It holds dom (9)= Is dom (9) ijfq> is totally unbounded and

q>(hW) = \sy(A(W)) (I)

for all W g X*.

Proof: First, suppose dom(cp) ^ lsdom(9), i. e. dom(cp) c lsdom(9), and
consider an arbitrary Pelsdom(9)\dom(9). According to properties 1 and
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2 there is an infinité subset [/gdom(cp) such that {p}=lsl7. Since cp(P) is
not defined, ip (Is U) = 0. Now, if cp ( (7) is finite then cp is not totally unboun-
ded; and if cp (U) is infinité we have cp (Is U) = 0 ^ Is <p (A (U)).

In the case dom((p)=lsdom((p) we apply theorem 23 and consider the
extension \|/ => cp defined there. Since dom(\pr)=Xû), \|/ is totally unbounded.
Hence, cp is also totally unbounded, by property 22. In order to prove
équation (I) we start from the identity

cp (Is W) = $ (Is W O dom (cp))

implied by \|/ ü cp. Utilizing the hypothesis and équation (5) we obtain

isWn dom (cp) =ls (A (W) O A (dom (<p))).

Now, we can apply theorem 21 which yields

and the assertion follows from the above équation (14). •

The following example shows that the condition "totally unbounded" and
"équation (I)" in theorem 24 are likewise independent.

Example 3: Let L7: = {()}*• {1} and let cpls <p2 be defined via

dom (cpx): = Ui dom (cp2): = X*

cpj (u):=u if M6dom((p1) = (7,

cp2 (M): = e if u e dom (<p2) = X*.

Moreover cpx = cp2 = 0 (the empty mapping).

The mapping cpi is totally unbounded, but for

équation (I) does not hold. On the other hand lscp2(PF) = 0 for ail W g X*.
So (p2 satisfies équation (I), but cp2 is not totally unbounded. •

In order to get rid of the bycondition "cp is totally unbounded", which
guarantees that there is no influence onto Is cp (A (W)) from outside A (dom (cp-
)) = /4(lsdom(cp)), we have to confine our équation (I) to the essential part
X(dom(cp)). Therefore, we consider the following concept of restriction of
sequential mappings.

Let U g X* and define the restriction cp̂  of cp to U via

pu): =dom(cp) H U
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and

f 9 (w), if we dom (9) O U
9 a (w): = <

( undefined, otherwise.

Clearly, q)v(W) = (p(WH U).
The domain dom(9t;) satisfies the following équation.

in(dom(9)n tO s . (15)

Proof: The inclusion " £ " is obvious.
Suppose (3 e dom (9) Pi (dom (9) H £/)0. Then cp(/4(p)) is infinité, and A ((3)

contains an infinité subset of dom (<p) O t/. Now, the assertion fotlows with
property 5. •

Consider the case U: = U9 (Y*). Equations (6) and (7) show that

dom((pü) = dom (q>) = C/s.

Hence, cpü = cp.
This example and the fully defined mapping \|/ of remark 2 (after theo-

rem 23) above show that the set {\|/: ^ = 9} contains as well mappings having
large (dom(v|/) —X*) as mappings having small (dom(vjz) ^dom(\|/)5) domains.

Since dom(cp) gdom(cp)8, we obtain with proposition 13 in the special
case when dom(cp) or U is a (a, Ô)-subset of X* the following corollary to
équation (15).

COROLLARY 25: If one of the sets dom(cp) or U is a (a, b)-subset of X*
then

dom(9 t /) — dom(cp) H f/5.

The next corollary follows immediately.

COROLLARY 26:

dom(cpa)=dom((p) whenever A(dom(q>)) g U.

In the sequel the case U: =y4(dom((p)) will be of importance. Therefore we
introducé the following notation

cp :̂ = q>A (dom (-JJ.

By corollary 26 this canonical restriction (pA of cp has the following properties

9 = 9^. (16)
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PROPERTY 27: The domain dom (9) is closed if and only if dom (9) = Is-
domfcpj.

Proof: The if-part is immédiate from corollary 4. To prove the converse,
we mention that équation (16) readily implies dom(cp) £ lsdom(cp^).
Now, let dom(cp) be closed, i. e. ls/4(dom(cp))=dom((p). Since dom(cp^) ç= A-
(dom(cp)), the assertion follows. •

Inserting <pA instead of cp into theorem 23 and taking notice of the preceding
considérations weobtain another sufficient condition for the extëmiâbilïty of
a sequential mapping cp to a continuous mapping.

LEMMA 28: If dom(<p) is closed, then there is a fully defined extension \|/ of
<pA such that dom(\j>) ^ Z w .

Remark 1; Now theorem 24, in particular, shows that if dom(cp) is closed
the canonical restriction cp̂  is totally unbounded and ty(X&) is also closed.
The converse, however, need not be true. We give an example.

Example 4: Let

Y:=X: = {0, 1}, dom(cp): = {()}*• {1}-X*

and

0 | w | + r t , if neven,

l | w | + n , if nodd.

Then cp is totally unbounded, q>{X&) = {O}0 U {l}" is closed, and
dom(9)=Xu > \{0} ( ö is open but not closed.

Moreover, it is impossible to extend cp to a continuous mapping defined
on the whole space X®. •

Remark 2: In lemma 28 we have dealt only with the extension of mappings
<p having a closed domain. We could follow this line farther by utilizing the
oscillation approach indicated by theorem 1 (§35, I) of [Ku], but this would
lead beyond the scope of this paper.

Instead, we conclude this section by returning to the restricted version of
équation (I).

THEOREM 29: Let cp be a sequential mapping. Then the following three
conditions are equivalent:

1. dom(cp) is closed.

2. For all infinité subsets U of A (dom ((p)) the image q>(A(U)) is also
infinité.
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3. For all subsets W g A (dom(cp)) we have

(I)

Before proceeding to the proof, we mention that condition 2 is a stronger
version of the statement, that yA be totally unbounded. Moreover, we have
to dérive an auxiliary property.

PROPERTY 30: It holds weA(dom(<p)) iff there is a

such that wCti and | cp (u) | ^ w |.

Proof: Clearly, the condition is sufficient. Now, let weA(dom(<p)). Then
there is a pedom(cp) such that w C P- Since cp(^(P)) is infinité, there is a
M G A( P) such that w C u and | (p (M) | §: | w |. •

Proof of theorem 29; First we show that 1 implies 2 and 3. If dom(cp) is
closed, in view of équation (16) and property 27 we have dom(cp)=dom((p-
A) = Is dom (cpj, and according to theorem 24 this yields <p (Is W) = 1-
§q>A(A(W)). Let W != A (dom(cp)). Then, by définition of (p ,̂ we have
9(A (W)) = q>A(A(W)), what proves 3. If moreover W c= A (dom(cp)) is infi-
nité, then 0 # Is W £ dom(cp).

Thus 0 # cp (Is W) = \sq>(A(W)\ and 2 follows from property 2.
Now, let condition 2 be satisfied, and let ^4(P) E X(dom((p)). Then cp(X(P))

is infinité, what proves Pedom(cp). Hence, dom (cp) is closed.
Finally, let condition 3 be satisfied, and let ^(p) g ^(dom(cp)). According

to property 30, there is an infinité subset {u^ieiV} of U^ (Y*)O>KP) such
that | cp(w£) | >i. Consequently, { P}=ls {UjijeM} for some M g N. Inserting
W: = {Uj'JeM} into condition 3 yields {(p(P) }^Iscp(H/)7t0, since cp(PF)
is infinité. Thus (p(P) is defined, i. e. dom((p) is closed. •

5. agsm-MAPPTNGS

A special type of sequential mappings, defined by generalized sequential
machines is widely investigated in connection with language theory. In the
book [Sa] a generalized sequential machine (gsm) has been combined with a
deterministic finite automaton (dfa) in order to obtain a type of transducer
capable of accepting inputs, a so called accepting generalized sequential
machine (agsm). Since any gsm defines a (fully defined) sequential mapping
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the mappings defined by agsms, as restrictions of gsm-mappings, constitute
an important class of sequential mappings. In [Au], lemma 1, it has been
mentioned, that for languages the power of agsm-mappings (or their inverses)
coïncides with the power of gsra-mappings (their inverses resp.) combined
with intersection of regular languages.

Though in the case of co-languages the behaviour of totally unbounded
gsm-mappings has been investigated in [LS], only few is known for agsm-
mappings (including the case of arbitrary gsm-mappings).Il is the aim of
this section to throw more light on the behaviour of agsm-mappings on co-
languages. In particular, we prove a statement analogous to lemma 1 of [Au].
We start with some necessary définitions and considérations concerning
regular co-languages. For all necessary background in language theory: and
finite automata we refer to a standard book, e. g. [Sa].

DÉFINITION: An agsm is a 7-tuple m=(X, Y,Z,f, g, z0, Z'), where X and
Y are the input and output alphabets resp.,

Z is a finite set of states,
zoeZ the initial state,
Z' <= Z the set of final (accepting) states,
f:ZxX^Z the next state function, and
g : Z x X -• 7* the output function.

As usual ƒ and g may be extended to Z x X* via

f(z9 e) = z, ƒ(z, w. v) =f(f{z, w), v)9

and

g (z, e) = e, g(z,wv)=g (z, w) • g (f (z, w), v).

An agsm m defines a mapping cp : X* -> y* in the following way:

dom (cp) = {w : ƒ (z0, w)eZ'}

and

<P (w) =£ (2o> w) if we dom (cp).

Clearly, an agsm-mapping is a sequential mapping. A gsm is an agsm satis-
fying Z — Z\ i. e. the domain of its mapping is X*. From the considérations
one easily observes, that we can split every agsm
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into a gsm

mo = (X9Y9ZJ9g9zO9Z)

and a dfa

a = (X,Z,fzo,Z')

accepting the language dom (cp). As usual we dénote by
T(a) : = { w :/(z0, W)GZ'} the language accepted by a, and we call a language
L c= X* regular iff it is accepted by some dfa (or equivalently by some
nondeterministic finite automaton).

Vice versa to every gsm m = (X, Y, Z, f g, z0, Z) and every dfa a = (X, S,
h, s0, S') by the usual product construction one obtains an agsm

mxa = (X,Y,Zx S,f g, (z0, sQ)9 Z x S')

such that m x a defines a mapping cp satisfying

dom(<p)=T(a)

and

cp (w) =g (zo> w) for w e dom (cp).

Similar to the language case, in the case of co-languages a subset F g X° is
called regular iff it is accepted by some nondeterministic finite automaton,
or equivalently, iff there are regular languages Wt, Ui g X* such that (cf [Bü])

n

F= U WVU?.
1 = 1

In particular, for every regular language W g X* its ô-limit W* is a regular
co-language, but not every regular co-language F ̂  X* can be represented in

The following properties hold (cf. [La, LS]).

PROPERTY 31 [La]: Art (O-language F is simultaneously regular and a Gb-set
iff there is a regular language W such that F= Wh.

PROPERTY 32 [Bü, La]: The family of regular (ù-languages is closed under
Boolean opérations, and the family of regular G6-sets is closed under union and
intersection but not under complémentation.
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Now, we are going to investigate the inverse cp"1 of an agsm-mapping. To
this end we return to the upper quasiinverse Uv of cp and prove that U^ (7*)
is regular. [In f act, we could even prove that U^ ( V) is regular provided only
that V is regular, but for the sake of simplicity and, since in the sequel we
do not need the more gênerai resuit, we confine to the former case.]

PROPOSITION 33: If <p is an agsm-mapping, then U^ (7*) is a regular language.

Proof: Let nt = (X, 7, Z, ƒ, g, z0, Z) be an agsm defining cp. We define an
automaton a accepting U^ (7*) as follows

where

S = Z x { O , l }

f(zo,0), if
{(z0,1), otherwise

and

x), 0), if (zeZ' or a = 0) and
l if a=\ or

Informally, the construction splits Z into two sets Z x {0} and Z x { 1}
according to whether the state f(z, x) is reached from the latest accepting
state z''eZ' via an e-labelled path or not. By this much explanation utilizing
équation (6) it is readily seen that

, { o } . D

Equation (7) and property 31 yield the following.

COROLLARY 34: ƒƒ cp is an agsm-mapping, then dom (9) is a regular co-
language.

If v|/ is a sequential mapping extending cp, then

9"1(i0 = v|/"1(i0ndom(9) (17)

holds for every F £ 7°\ In particular, if \|/ is a gsm-mapping extending an
agsm-mapping cp corollary 34 and équation (17) imply a statement analogous
to lemma 1 in [Au].
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COROLLARY 35: The sets of opérations {cp~x : cp an agsm-mapping} and
{\(/~* : \\r a gsm-mapping} U { Pi E : E a regular G6-set} have exactly the same
power.

But we can dérive a stronger connection between the inverses of related
agsm- and gsm-mappings, more exactly, between cp"1 and \|/~x. To this end
consider the following property of gsm-mappings.

Every gsm-mapping \|/ has the property that

|\|/(wx)|-|\|/(w)|^m (18)

for some meN and arbitrary weX*9 xeX. Hence, if WGU^(V) then
| v|/(w)| — | v\^m. This observation shows, that for every gsm-mapping \|/ there
is an m e N such that

(19)

for arbitrary V g 7*.

These considérations yield the following.

LEMMA 36: Let \|/ be a gsm-mapping. Then there is an meN such that for
all V <= 7* the équation

holds true.

Proof: It is readily seen that V6 = {V' A(X™))6.

Thus, équations (6) and (12) prove the first inclusion « 3 » the second
« =2 » being obvious.

On the other hand, by theorem 8, vj/"1 (Kfi)=U^(K)s, and due to équation
(i9)u^(F)£^"1(F^(ym))nu^(y*). •

Utilizing the above mentioned splitting of an agsm into a gsm and a dfa
we obtain for agsm-mappings the following strengthening of équation (12).

THEOREM 37: If 9 zs an agsm-mapping, then there are a gsm-mapping \|/
extending 9 and an meN such that

/or arbitrary V g 7*.

Proo/- Since \|/^<p, we have 9"1(7ô)=\j/"1 (F5) pi dom(cp), and the result
follows from the previous lemma. •
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Our theorem 37 may be used to show that inverse agsm-mappings preserve
several classes of co-languages. We shall return to this point in the next
section.

We conclude this section by reconsidering the extension results of theorem
23 and lemma 28 in the case of agsm-mappings. To this end let us note the
following properties of agsm-mappings.

PROPERTY 38: Let cp be an agsm-mapping. Then v4(dom((p)) is a regular
language and the restriction cpA of (p to A (dom(cp)) is also an agsm-mapping.

Proof: The first assertion follows from the obvious fact that A (F) is a
regular language whenever F is a regular co-language, and the second one is
readily verified from the first one. G

THEOREM 39: If cp is an agsm-mapping and dom (cp) = Is dom (9), then there
is a totally unbounded gsm-mapping \|/ such that cp ü \|/.

Proof. We start from an arbitrary gsm-mapping \|/' extending cp and define

\|/(w): =\|//(w) if W6v4(dom(cp)) U {^},

and

v|/(wx): = v|/(w)*>' if wx$A(dom(q>)), xeX,

where y is a fixed letter in Y. Clearly, \|/ is a gsm-mapping. Now the rest of
the proof is the same as for theorem 23. Q

In the same way as lemma 28 was derived from theorem 23, we obtain
from theorem 39 and property 38 the following.

LEMMA 40: If cp is an agsm-mapping and dom(cp) is closed, then there is a
gsm-mapping \|/ extending q>A such that dom (\j/) = X*".

6. APPLICATIONS TO FAMILIES OF co-LANGUAGES

Tn this section we investigate the closure of several families of co-languages
under inverses agsm-mappings and related opérations. It will turn out that
the closure properties of the families of ©-languages are already implied by
several closure properties of the underlying families of languages. Here we
consider families of co-languages defined via the 8-limit in the following way:
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where if g { W: W g X* and X finite and X g S} is a family of languages
[Z —being an infinité (universal) alphabet]. Similar investigations have been
carried out in [SW 1].

As a first simple closure property, from équation (13) it follows that Aif
is closed under union whenever <£ is closed under union.

Lemma 36 implies the next closure property.

PROPERTY 41: If <£ is closed under *A{Ym) (Y g S finite and meN arbi-
trary), inverse gsm-mapping and intersection with regular languages, then
Àif is closed under inverse gsm-mapping.

Now, in view of corollary 35, we are interested in an opération for
languages which implies that Aif is closed under intersection with regular
Gô-sets.

To this end we introducé the continuation L>U of a language L to a
language U:

n w P (weX*,U <=

and

L>U:= U

The term continuation becomes clear from the first line of the définition,
where w> U dénotes the set of all smallest with respect to « \Z » words in U

which have w as an initial word.

This opération looks somehow artificially, but the following informai consi-
dération shows that most classes of languages defined by (deterministic)
accepting devices are closed under continuation to regular languages:

Take the device 0 accepting L and let it be conveyed during the accepting
process by a dfa a and a controlling unit having an active and a dormant
state.

Whenever 9 accepts an initial part of the input word, the controlling unit
switches to "active" and remains there until a reaches a final state. After
leaving this final state the controlling unit becomes dormant. An input word
w is accepted if and only if w is accepted by a and the controlling unit is
active.

Moreover, for the continuation we have

(L>Uf = Lhr\Uà. (20)
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Before proceeding to the proof of équation (20) we mention the following
easily verified properties of the continuation.

PROPERTY 42: Let WCM, weL, and ueU. Then there is a u'eL>U such

that w C w' C M.

PROPERTY 43: Let u\Zu', and u, U'EL>U. Then there is aweL such that

Proof of équation (20): By définition L>U^U, hence (L>Uf g t/5. If,
moreover, (L>U)C)A($) is infinité, property 43 shows that also LOA(fi)
is infinité, which finishes the proof of (L > Uf g Lô O Ub.

Now, let L n A ((3) and 1/ O A (p) both be infinité. Then for infinitely many
w e L we have w \Z u C P for some wet/; and property 42 implies

(L>U)r\A(fi) is infinité. Hence L 5 n ^ 8 i ( L > t / ) 5 , and the assertion is
proved. G

As an immédiate conséquence of équation (20) we obtain that the family
Ai? is closed under intersection with regular G5-sets whenever the family JÖP
is closed under continuation to regular languages. Applying now theorem 37
yields the following closure property for inverse agsm-appings.

LEMMA 44: If i? is closed under -AiY™) (Y g Z flnite and meN arbitrary),
inverse gsm-mapping and continuation to regular languages, then AJS? is closed
under inverse agsm-mapping.

Finally, we consider the special case y? = fflS<£ where $$<€ is the family of
recursive languages. The family A 2̂<f̂  has been investigated in detail in [CG],
[SW2] and [St4] where closure under union and intersection and the identity
biStê^ = &0tê (0lê being the family of recursively enumerable languages)
were shown. In [SW2] and [St4], moreover, it has been shown that &$$<$ is
closed under y\f~x when \|/ is a totally unbounded recursive (as a function)
sequential mapping. We shall extend this result to arbitrary partial recursive
sequential mappings (or processes, as they were called in [Sc 2]), which are
interesting in connection with complexity questions for infinité séquences
[Sc 1,2].

To this end we quote lemma 6. 3 from [Sc l].

LEMMA 45: If cp is a partial recursive function being a sequential mapping.
Then there is a (fully defined) recursive sequential mapping \|/ such that (p = \j/.
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Remark: It should be mentioned that the extension \|/ of remark 2 after
theorem 23 need not be a recursive function if cp is a partial recursive
function.

We get our result.

LEMMA 46: bMS^ is closed under cp"1, when the sequential mapping cp is
also a partial recursive function.

Proof: In view of lemma 45 we may assume cp to be a recursive function.
Since weU9(K) iff there is a ueFsuch that ud<p(w) and for all u[Zw we

have v >|(p(u)|, one easily vérifies that JJ9(V) is a recursive language
whenever V is recursive. Now, an application of theorem 8 ends the
proof. •
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