INFORMATIQUE THÉORIQUE ET APPLICATIONS

WIESLAW ZIELONKA

Notes on finite asynchronous automata

Informatique théorique et applications, tome 21, no 2 (1987), p. 99-135
http://www.numdam.org/item?id=ITA_1987_21_2_99_0

© AFCET, 1987, tous droits réservés.
L'accès aux archives de la revue « Informatique théorique et applications » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

NOTES ON FINITE ASYNCHRONOUS AUTOMATA (*)

by Wieslaw Zielonka (${ }^{1}$)

Communicated by A. Arnold

Abstract

We introduce the notion of finite asynchronous automata. Having ability of simultaneous execution of independent actions, these automata are used in a natural way as recognizing devices for subsets of free partially commutative monoids. We prove that a subset of a f.p.c. monoid is recognizable by a finite asynchronous automaton iff it is recognizable by a finite automaton. As a corollary we obtain a new characterization of the recognizable subsets of the f.p.c. monoids by means of a parallel composition and certain homomorphisms.

Résumé. - On introduit la notion d'automate fini asynchrone. Ayant la possibilité d'effectuer simultanément des actions indépendantes, ces automates sont utilisés d'une façon naturelle pour reconnaître des sous-ensembles d'un monoïde partiellement commutatif libre. On prouve qu'un sousensemble de ce monoïde est reconnaissable par un de ces automates si et seulement s'il est reconnaissable par un automate fini. Comme conclusion on obtient une caractérisation nouvelle des sous-ensembles reconnaissables des monoïdes partiellement commutatifs libres à l'aide d'une composition parallèle et de certains homomorphismes.

1. INTRODUCTION

Let Σ be a finite alphabet on which a symmetric and irreflexive relation $I \subset \Sigma \times \Sigma$ is defined. Intuitively, I is a concurrency relation and $(a, b) \in I$ indicates that the actions a and b can be executed simultaneously. With the concurrent alphabet (Σ, I) there is associated the congruence relation \sim over Σ^{*} generated by $\{a b \equiv b a:(a, b) \in I\}$. The free partially commutative monoid over (Σ, I), denoted by $E(\Sigma, I)$, is the quotient of Σ^{*} by the congruence \sim and traces are elements of this monoid.

The study of the free partially commutative monoids was initiated by Cartier and Foata [3] in 1969, but only in 1977 traces were used by Mazurkiewicz [12] as a tool for describing the behaviour of concurrent systems. Since then a number of papers has been devoted to various aspects of the theory

[^0]of traces [1, 2, 4 to 7, 13]. On the other hand very little is known about parallel devices accepting traces. In fact, after the pioneering paper of Mazurkiewicz only a few papers, e.g. [10, 17], dealt to some extent with this problem. This situation is even more surprising if we compare it with the development of the theory of formal languages, which has been inspired in great part by the automata theory.

The aim of this paper is to study parallel finite state devices recognizing traces. The paper is organized as follows. After some preliminary results in Sections 2 and 3, we introduce in Section 4 a class of finite asynchronous automata and we prove our main result that they recognize exactly all regular trace languages. In Section 5 we present another class of parallel automata, with a simpler synchronization mechanism. In Section 6 we use results of the two previous sections to obtain a new characterization of regular trace languages.

Throughtout the paper we shall use the following notation. card (X) will stand for the cardinality of a set $X, \mathscr{P}(X)$ for the family of all subsets of X, the empty word will be represented by $\varepsilon, \#_{a} u$ is the number of occurrences of a letter $a \in \Sigma$ in a word $u \in \Sigma^{*}$, whereas $\# u$ is the length of u. For a positive integer n by \bar{n} we denote the set $\{1, \ldots, n\}$. The shuffle operation is defined on Σ^{*} as follows.
$\forall u, v \in \Sigma^{*}, \quad \operatorname{sh}(u, v)=\left\{u_{1} v_{1} \ldots u_{n} v_{n}: \forall i \in \bar{n}, u_{i}, v_{i} \in \Sigma^{*}\right.$,

$$
\left.u=u_{1} \ldots u_{n}, v=v_{1} \ldots v_{n}\right\}
$$

If $L_{1}, L_{2} \subset \Sigma^{*}$ then

$$
\operatorname{sh}\left(L_{1}, L_{2}\right)=\bigcup_{u \in L_{1}, v \in L_{2}} \operatorname{sh}(u, v) .
$$

If R is a binary relation over a finite set X then by Cliques (R) we denote the family of all cliques of $R, A \in \operatorname{Cliques}(R)$ if $\forall a, b \in A,(a, b) \in R$ and $\forall c \in X-A$, $\exists a \in A,(a, c) \notin R$, while $R \mid Y$ will stand for the restriction of R to a subset Y of X.

2. TRACES AND TRACE LANGUAGES

In this section we describe elementary properties of traces. None of the presented here results seems to be original, in fact, most of them are folklore. Proofs are for the most part very simple, so we decided to sketch them only in a few cases.

A pair (Σ, I) is a concurrent alphabet if Σ is a finite and nonempty set of actions and $I \subset \Sigma \times \Sigma$ is a symmetric and irreflexive relation over Σ (the independency relation).

Two words u and v are congruent, $u \sim_{1} v$, or $u \sim v$ if I fixed, if there exist words w_{1}, \ldots, w_{k+1} such that $u=w_{1}, v=w_{k+1}$ and $\forall i \in k, \exists x, y \in \Sigma^{*}$, $\exists(a, b) \in I, w_{i}=x a b y$ and $w_{i+1}=x b a y$.

Proposition 2.1 [6]: Let $h_{a, b}$ be the projection of Σ^{*} onto $\{a, b\}^{*}$. Then two words u, v are equivalent, $u \sim v$, iff
(i) $\forall a \in \Sigma, \#_{a} u=\#_{a} v$ and
(ii) $\forall(a, b) \notin I, h_{a, b}(u)=h_{a, b}(v)$.

By definition, the quotient $E(\Sigma, I)=\Sigma^{*} / \sim$ of the free monoid Σ^{*} by \sim is the free partially commutative monoid over (Σ, I). Its elements are called traces. In the sequel $[u]_{I}$, or $[u]$ if I fixed, will stand for the trace represented by the word $u \in \Sigma^{*}$, if $u=\varepsilon$ or $u=a, a \in \Sigma$, then we shall write ε and a to denote the traces $[\varepsilon]=\{\varepsilon\}$ and $[a]=\{a\}$. t, p, r with or without subscripts will denote traces. By definition, trace languages are subsets of $E(\Sigma, I)$. For $T \subset E(\Sigma, I)$ by lin T we denote the language.

$$
\cup T=\left\{u \in \Sigma^{*}: \exists t \in T, u \in t\right\}
$$

The following property of traces proved to be very useful.
Proposition 2.2 [11]: The monoid $E(\Sigma, I)$ is cancellative, i.e.

$$
\forall t, t_{1}, t_{2} \in E(\Sigma, I), \quad t t_{1}=t t_{2} \quad \Rightarrow \quad t_{1}=t_{2}
$$

and

$$
t_{1} t=t_{2} t \Rightarrow t_{1}=t_{2}
$$

The number of occurrences of an action $a \in \Sigma$ in a trace $t \in E(\Sigma, I)$ and the length of t are defined as follows $\#_{a} t=\#_{a} u$ and $\# t=\# u$ for $u \in t$.

Every word $u \in \Sigma^{*}$ generates a linear order $\leqq{ }_{u}$ over the set

$$
O(u)=\left\{a^{i}: a \in \Sigma, 1 \leqq i \leqq \#_{a} u\right\}
$$

of action occurrences. For instance, if $u=a b b a c c$ then

$$
a^{1} \leqq_{u} b^{1} \leqq_{u} b^{2} \leqq_{u} a^{2} \leqq_{u} c^{1} \leqq_{u} c^{2}
$$

Formally, $a^{i} \leqq{ }_{u} b^{j}$ if either $a=b$ and $1 \leqq i \leqq j \leqq \#_{a} u$ or $a \neq b$ and $u=v a w b z$, where $\#_{a} v=i-1, \#_{b} v a w=j-1$. On the other hand every trace $t \in E(\Sigma, I)$
generates the canonical partial order \leqq_{t} over the set

$$
O(t)=\left\{a^{i}: a \in \Sigma, \quad 1 \leqq i \leqq \#_{a} t\right\}
$$

of action occurrences:

$$
a^{i} \leqq_{t} b^{j} \Leftrightarrow \forall u \in t, \quad a^{i} \leqq_{u} b^{j}, \quad \text { i. e. } \leqq_{t}=\bigcap_{u \in t} \leqq{ }_{u}
$$

This partial order has the following properties.
Proposition 2.3 [5]: Let $v \in \Sigma^{*}$ and $t \in E(\Sigma, I)$. Then $v \in t$ iff $O(t)=O(v)$ and \leqq_{v} is an extension of \leqq_{t} to a linear order, i.e. $\leqq_{t} \subset \leqq_{v}$.

Coroliary 2.4: Traces t and r are equal iff $\leqq_{t}=\leqq_{r}$.
As usual, $a^{i}<_{t} b^{j}$ will denote that $a^{i} \leqq b^{j}$ and $a^{i} \neq b^{j}$. If the trace t is fixed then we shall simply write \leqq and $<$.

The representation of traces by partial orders will be extensively used in the next sections. For this reason we introduce further notational conventions.

$$
O(\Sigma)=\left\{a^{i}: a \in \Sigma, i \in N\right\}
$$

will be the set of all action occurrences. Evidently, $O(t) \subset O(\Sigma)$ for any trace t.
name: $O(\Sigma) \rightarrow \Sigma$ is a projection of $O(\Sigma)$ onto Σ defined as follows

$$
\forall a \in \Sigma, \quad \forall i \in N, \quad \text { name }\left(a^{i}\right)=a
$$

In the sequel x, y, z will stand for elements of $O(\Sigma)$. We now give properties that completely characterize the partial order \leqq_{r}.

Fact 2.5: Let $t \in E(\Sigma, I), x, y \in O(t)$ such that $x<{ }_{t} y$ and $\neg \exists z \in O(t)$, $x<_{t} z<_{t} y$. Then (name (x), name $\left.(y)\right) \in D$. On the other hand if (name (x), name $(y)) \in D$ then $x \leqq_{t} y$ or $y \leqq{ }_{t} x$.

A trace r is a subtrace of t if there exist traces t_{1}, t_{2} such that $t=t_{1} r t_{2}$. If $t_{1}=\varepsilon$ then r is a prefix of t, whereas if $t_{2}=\varepsilon$ then r is a suffix of t.

The following notions will be extensively used in the next sections.
Let $t \in E(\Sigma, I)$ and $H \subset O(t)$. Then H is
(1) initial in t if

$$
\forall x \in H, \quad \forall z \in O(t), \quad z \leqq_{t} x \Rightarrow z \in H
$$

(2) final in t if

$$
\forall x \in H, \quad \forall z \in O(t), \quad x \leqq_{t} z \quad \Rightarrow \quad z \in H .
$$

Fact 2.6: H is initial in t iff there exists a prefix r of t such that $H=O(r)$ and then $\leqq_{r}=\leqq_{t} \mid H . H$ is final in t iff there exists a suffix r in t and an isomorphism $\varphi: H \rightarrow O(r)$ of partial orders $\leqq_{t} \mid H$ and \leqq_{r} such that

$$
\forall x \in H, \quad \text { name }(\varphi(x))=\operatorname{name}(x)
$$

Clearly, if H is empty then $r=\varepsilon$.
If H_{1}, H_{2} are initial (final) in t then $H_{1} \cup H_{2}$ and $H_{1} \cap H_{2}$ are initial (final).

The representation of traces by partial orders was already noticed by Mazurkicwicz. [12]. Detailed analysis of these connections was made by Shields [15].

We now introduce a special kind of trace homomorphisms. Let (Σ_{1}, I_{1}) and $\left(\Sigma_{2}, I_{2}\right)$ be concurrent alphabets. A homomorphism $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ is consistent with I_{1} and I_{2} if
(i) f is strictly alphabetic, i. e. $f\left(\Sigma_{1}\right) \subset \Sigma_{2}$ and
(ii) $\forall a, b \in \Sigma_{1},(a, b) \in I_{1} \Leftrightarrow(f(a), f(b)) \in I_{2}$.

Thus f preserves both dependency and independency between actions.
Lemma 2.7: Let f be consistent with I_{1} and I_{2}. Then, for all

$$
t_{1} \in E\left(\Sigma_{1}, I_{1}\right), \quad f\left(t_{1}\right)=\left\{f(u): u \in t_{1}\right\} \in E\left(\Sigma_{2}, I_{2}\right)
$$

Proof: Immediate from Proposition 2. 1.
Corollary 2.8: Let f be consistent with I_{1} and I_{2}. Then
(i) if $t=[u]_{I_{1}} \in E\left(\Sigma_{1}, I_{1}\right)$ then $f(t)=[f(u)]_{I_{2}}$
(ii) the mapping $f: E\left(\Sigma_{1}, I_{1}\right) \rightarrow E\left(\Sigma_{2}, I_{2}\right)$ defined by $f(t)=\{f(u): u \in t\}$, $t \in E\left(\Sigma_{1}, I_{1}\right)$, is a homomorphism of free partially commutative monoids.

Proof: (i) Obvious by Lemma 2.7.
(ii) Let $t_{1}, t_{2} \in E\left(\Sigma_{1}, I_{1}\right), u_{1} \in t_{1}, u_{2} \in t_{2}$. Then

$$
f\left(t_{1}\right) f\left(t_{2}\right)=\left[f\left(u_{1}\right)\right]_{I_{2}}\left[f\left(u_{2}\right)\right]_{I_{2}}=\left[f\left(u_{1}\right) f\left(u_{2}\right)\right]_{I_{2}}=\left[f\left(u_{1} u_{2}\right)\right]_{I_{2}}=f\left(t_{1} t_{2}\right)
$$

The last equality holds because $u_{1} u_{2} \in t_{1} t_{2}$.
A trace homomorphism generated by a consistent homomorphism of words will be called elementary. Let us describe the elementary homomorphisms in terms of partial orders.

Corollary 2.9: Let f be an elementary homomorphism of traces. Then for all $t_{1} \in E\left(\Sigma_{1}, I_{1}\right), t_{2}=f\left(t_{1}\right)$ there exists an isomorphism $i: O\left(t_{1}\right) \rightarrow O\left(t_{2}\right)$ of
partial orders $\leqq_{t_{1}}$ and $\leqq_{t_{2}}$ such that

$$
\forall x \in O\left(t_{1}\right), \quad f(\operatorname{name}(x))=\operatorname{name}(i(x)) .
$$

Proof: Obvious.

Corollary 2.8 implies that an elementary homomorphism changes only names of actions but maintains the partial order between them. A similar concept was previously introduced by Tarlecki [17].

The next operation we shall present, a parallel composition of trace languages, is of great importance. It enables us to construct parallel systems from sequential components.

Let $\left(\Sigma_{i}, I_{i}\right), D_{i}=\Sigma_{i} \times \Sigma_{i}-I_{i}, i \in \bar{n}$, be concurrent alphabets, and their dependency relations, where Σ_{i} are not necessarily disjoint. Let $\Sigma=\bigcup_{i=1} \Sigma_{i}$,

$$
D=\bigcup_{i=1}^{n} D_{i}, I=\Sigma \times \Sigma-D
$$

The concurrent alphabet (Σ, I) is said to be the parallel composition of the alphabets $\left(\Sigma_{i}, I_{i}\right), i \in \bar{n}$, and is denoted by $\|_{i=1}^{n}\left(\Sigma_{i}, I_{i}\right)$. Obviously, the parallel composition of alphabets is commutative and associative.

Proposition 2.10: Let

$$
\forall i \in \bar{n}, \quad t_{i} \in E\left(\Sigma_{i}, I_{i}\right), \quad(\Sigma, I)=| |_{i=1}^{n}\left(\Sigma_{i}, I_{i}\right)
$$

and let h_{i} be projections of Σ^{*} onto Σ_{i}^{*}. Then the set

$$
R=\left\{u \in \Sigma^{*}: \forall i \in \bar{n}, h_{i}(u) \in t_{i}\right\}
$$

either is a trace over (Σ, I) or is empty.
Proof: Suppose that $R \neq \varnothing$. Let $u \in R$ and $v \sim_{I} u$. Then it is easy to observe that $\forall i \in n, h_{i}(v) \sim_{I_{i}} h_{i}(u)$ and hence $v \in R$. On the other hand, let $u, v \in R$. It is obvious that $\forall a \in \Sigma, \#_{a} u=\#_{a} v$. Let $(a, b) \in D$. Then there exists $i \in \bar{n}$ such that $(a, b) \in D_{i}$. Moreover

$$
\forall w \in t_{i}, \quad h_{a, b}(u)=h_{a, b}(w)=h_{a, b}(v)
$$

where $h_{a, b}$ is the projection onto $\{a, b\}^{*}$. Thus by Proposition $2.1 u \sim_{I} v . \quad \square$
The set R from Proposition 2.10, henceforth denoted by $\|_{i=1}^{n} t_{i}$, will be called the parallel composition of traces.

Corollary 2.11: If $t_{i} \in E\left(\Sigma_{i}, I_{i}\right), i=1,2$, then

$$
t_{1} \| t_{2}=\operatorname{sh}\left(\left(\Sigma_{2}-\Sigma_{1}\right)^{*}, t_{1}\right) \cap \operatorname{sh}\left(\left(\Sigma_{1}-\Sigma_{2}\right)^{*}, t_{2}\right)
$$

Proposition 2.12: Let $t \in E(\Sigma, I)$, Cliques $(D)=\left\{\Sigma_{1}, \ldots, \Sigma_{n}\right\}$ and let for all $i \in \bar{n} h_{i}$ be the projection of Σ^{*} onto Σ_{i}^{*}. Then $t=| |_{i=1}^{n} h_{i}(t)$.

Proof: First observe that $\forall u, v \in t, h_{i}(u)=h_{i}(v)$ thus $h_{i}(t)$ is a one element set. It may be viewed as a trace over the concurrent alphabet (Σ_{i}, \varnothing) with the empty independency relation. The thesis follows then from Propositions 2.1 and 2. 10 .

Let $T_{i} \subset E\left(\Sigma_{i}, I_{i}\right)$ for $i \in \bar{n},(\Sigma, I)=| |_{i-1}^{n}\left(\Sigma_{i}, I_{i}\right)$.
We define the parallel composition of trace languages to be the set

$$
\left|\left.\right|_{i=1} ^{n} T_{i}=\left\{t \in E(\Sigma, I): \forall i \in \bar{n}, \exists t_{i} \in T_{i}, t=| |_{i=1}^{n} t_{i}\right\}\right.
$$

The parallel composition is associative and commutative.
Corollary 2.13: Let $T_{i} \subset E\left(\Sigma_{i}, I_{i}\right), i=1,2$. Then

$$
\operatorname{lin} T_{1} \| T_{2}=\operatorname{sh}\left(\left(\Sigma_{2}-\Sigma_{1}\right)^{*}, \operatorname{lin} T_{1}\right) \cap \operatorname{sh}\left(\left(\Sigma_{1}-\Sigma_{2}\right)^{*}, \operatorname{lin} T_{2}\right)
$$

The parallel composition of traces can be described in terms of partial orders in the following way.

Proposition 2. 14: Let $\forall i \in \bar{n}, t_{i} \in E\left(\Sigma_{i}, I_{i}\right)$. Then $t=| |_{i=1}^{n} t_{i} \neq \varnothing$ if the following conditions hold
(i) $\forall i, j \in \bar{n}, \forall a \in \Sigma_{i} \cap \Sigma_{j}, \#_{a} t_{i}=\#_{a} t_{j}$
(ii) $\left(\bigcup_{i=1}^{n} \leqq_{t_{i}}\right)$ * is a partial order, where $*$ denotes the transitive closure of a binary relation.

Moreover, the partial order computed in (ii) is equal to \leqq_{t}.

Proof: Elementary.

The presented here parallel composition relates closely to the operation of restriction examined by Starke [16] in connection with Petri net languages.

3. REGULAR TRACE LANGUAGES

Let $T \subset E(\Sigma, I)$ be a trace language. The syntactic congruence \sim_{T} of T is defined by $\forall t, r \in E(\Sigma, I), t \sim_{r} r$ iff

$$
\forall t_{1}, t_{2} \in E(\Sigma, I), \quad t_{1} t t_{2} \in T \quad \Leftrightarrow \quad t_{1} r t_{2} \in T
$$

The fact that \sim_{T} is really a congruence can be deduced in exactly the same way as in case of the syntactic congruence of string languages, see e.g. [11].

Lemma 3.1: Let $u, v \in \Sigma^{*}, T \subset E(\Sigma, I), L=\operatorname{lin} T$. Then $[u] \sim_{T}[v]$ iff $u \sim_{L} v$, where \sim_{L} is the syntactic congruence of the language L.

Proof:

$$
\begin{aligned}
& u \sim_{L} v \quad \text { iff } \forall x, y \in \Sigma^{*}, \\
& x u y \in L \Leftrightarrow \quad x v y \in L \quad \text { iff } \forall x, y \in \Sigma^{*}, \\
& {[x u y] \in T } \Leftrightarrow \quad[x v y] \in T \quad \text { iff } \forall x, y \in \Sigma^{*}, \\
& {[x][u][y] \in T } \Leftrightarrow[x][v][y] \in T \quad \text { iff }[u] \sim_{T}[v] .
\end{aligned}
$$

A trace language T is said to be regular iff the syntactic congruence \sim_{T} is of finite index. The family of regular trace languages over (Σ, I) will be denoted by Reg (Σ, I). The preceding Lemma shows that the syntactic congruences of T and lin T are isomorphic. This implies

Corollary 3.2: $T \in \operatorname{Reg}(\Sigma, I)$ iff $\operatorname{lin} T$ is a regular language over $\Sigma . \quad \square$
Proposition 3. 3 [6]:If $T_{1}, T_{2} \subset \operatorname{Reg}(\Sigma, I)$ then

$$
\begin{gathered}
T_{1} \cup T_{2}, \quad T_{1} \cap T_{2}, \quad T_{1} \cdot T_{2}=\left\{t_{1} t_{2}: t_{1} \in T_{1}, t_{2} \in T_{2}\right\} \\
E(\Sigma, I)-T_{1} \in \operatorname{Reg}(\Sigma, I) .
\end{gathered}
$$

As it is well-known, in general, the family $\operatorname{Reg}(\Sigma, I)$ is not closed under star operation and therefore, contrary to free monoids, in partially commutative monoids regularity does not coincide with rationality.

Lemma 3.4: If $T_{i} \in \operatorname{Reg}\left(\Sigma_{i}, I_{i}\right), i=1,2$, then

$$
T_{1} \| T_{2} \in \operatorname{Reg}(\Sigma, I), \quad \text { where } \quad(\Sigma, I)=\left(\Sigma_{1}, I_{1}\right) \|\left(\Sigma_{2}, I_{2}\right)
$$

Proof: The family of regular languages is closed under the shuffle operation thus by Corollary $2.13 \operatorname{lin} T_{1} \| T_{2}$ is regular.

Lemma 3.5: If $f: E\left(\Sigma_{1}, I_{1}\right) \rightarrow E\left(\Sigma_{2}, I_{2}\right)$ is an elementary homomorphism and $T \in \operatorname{Reg}\left(\Sigma_{1}, I_{1}\right)$ then $f(\mathrm{~T}) \in \operatorname{Reg}\left(\Sigma_{2}, I_{2}\right)$.

Proof: By Lemma $2.7 \operatorname{lin} f(T)=f(\operatorname{lin} T)$ but regular languages are closed under homomorphism.

At the end let us observe that if we have any parallel device with a finite number of global configurations recognizing a trace language T then it can
be simulated sequentially by a finite state acceptor of $\operatorname{lin} T$. Therefore trace languages outside $\operatorname{Reg}(\Sigma, I)$ could not be recognized by such devices.

According to Eilenberg [9] regular trace languages should be called recognizable and, in fact, this name is usually used in literature, but in our paper recognizable, while applied to traces, will always mean "recognizable by a parallel device".

4. FINITE ASYNCHRONOUS AUTOMATA

A finite asynchronous automaton ASYN with n processes is a tuple $\mathbb{A}=\left(\mathbb{P}_{1}, \ldots, \mathbb{P}_{n}, \Delta, \mathbb{F}\right)$. For every $i \in \bar{n} \mathbb{P}_{i}=\left(\Sigma_{i}, S_{i}, s_{i}^{0}\right)$ is an i-th process, Σ_{i} is a finite and nonempty alphabet of \mathbb{P}_{i}, S_{i} is a finite and nonempty set of states, $s_{i}^{0} \in S_{i}$ is an initial state of \mathbb{P}_{i}.
$S=\underset{i \in \bar{n}}{\times} S_{i}$ is the set of global states of \mathbb{A} and $\mathbb{F} \subset S$ is the set of final states. $\Sigma=\bigcup_{i \in \bar{n}} \Sigma_{i}$ is the alphabet of \mathbb{A}. In the following we denote by Proc the set $\{1, \ldots, n\}$ and we shall often identify every process \mathbb{P}_{i} with its index $i \in$ Proc. Moreover, $s^{0}=\left(s_{1}^{0}, \ldots, s_{n}^{0}\right) \in S$ will denote the initial state of \mathbb{A}. The set Dom $(a)=\left\{i \in\right.$ Proc : $\left.a \in \Sigma_{i}\right\}$ of processes synchronously executing an action $a \in \Sigma$ will be called the domain of a. Intuitively, every action a acts only on the domain Dom (a) during its execution and this execution can be interpreted as a "hand shaking" communication between the processes from Dom (a).

Formally this is described by the next-state functions from the set $\Delta=\left\{\delta_{a}: a \in \Sigma\right\}$. For all $a \in \Sigma$

$$
\delta_{a}: \underset{i \in \operatorname{Dom}(a)}{\times} S_{i} \rightarrow \mathscr{P}\left(\underset{i \in \operatorname{Dom}(a)}{\times} S_{i}\right)
$$

A is deterministic if

$$
\forall a \in \Sigma, \quad \forall s \in \underset{i \in \operatorname{Dom}(a)}{\times} S_{i}, \quad \operatorname{card}\left(\delta_{a}(s)\right) \leqq 1 .
$$

We now define the transition relation between global states of \mathbb{A} :
let

$$
\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right),\left(s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}\right) \in S, \quad a \in \Sigma
$$

then

$$
\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \stackrel{a}{\Rightarrow}\left(s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}\right)
$$

iff
(i) $s_{i}^{\prime}=s_{i}^{\prime \prime}$ for $i \notin \operatorname{Dom}(a)$, and
(ii) $\left(s_{i_{1}}^{\prime \prime}, \ldots, s_{i_{k}}^{\prime \prime}\right) \in \delta_{a}\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{k}}^{\prime}\right)$, where

$$
\left\{i_{1}, \ldots, i_{k}\right\}=\operatorname{Dom}(a)
$$

We extend this relation to words in the standard way. Let $s^{\prime}, s^{\prime \prime} \in S$. Then $s^{\prime} \stackrel{u}{\Rightarrow} \mathrm{~s}^{\prime \prime}$ if either
(i) $u=\varepsilon$ and $s^{\prime}=s^{\prime \prime}$, or
(ii) $u=a_{1} \ldots a_{m}, \forall i \in \bar{m}, a_{i} \in \Sigma$ and there exists a sequence $s^{1}, \ldots, s^{m+1} \in S$ such that

$$
s^{\prime}=s^{1}, \quad s^{\prime \prime}=s^{m+1}, \quad \forall j \in \bar{m}, \quad s^{j} \stackrel{a_{j}}{\Rightarrow} s^{j+1} .
$$

We define the language recognized by \mathbb{A} as

$$
L(\mathbb{A})=\left\{u \in \Sigma^{*}: \exists s \in \mathbb{F}, s^{0} \stackrel{u}{\Rightarrow} s\right\} .
$$

Now we shall show how \mathbb{A} can recognize traces. It is clear that if actions a, b operate on disjoint sets of processes then they may be executed concurrently, thus

$$
I_{\mathrm{A}}=\{(a, b) \in \Sigma \times \Sigma: \operatorname{Dom}(a) \cap \operatorname{Dom}(b)=\varnothing\}
$$

is the independency relation for \mathbb{A}.
Lemma 4.1: If $(a, b) \in I_{A}, s^{\prime}, s^{\prime \prime} \in S$ then

$$
s^{\prime} \stackrel{a b}{\Rightarrow} s^{\prime \prime} \quad \Leftrightarrow \quad s^{\prime} \quad \stackrel{b a}{\Rightarrow} s^{\prime \prime}
$$

Let $u, v \in \Sigma^{*}$. Then

$$
u \sim_{I_{\mathrm{A}}} v \Rightarrow\left(s^{\prime} \stackrel{u}{\Rightarrow} s^{\prime \prime} \Leftrightarrow s^{\prime} \stackrel{v}{\Rightarrow} s^{\prime \prime}\right)
$$

Proof: Obvious.
We define the trace language recognized by \mathbb{A} as

$$
T(\mathbb{A})=\left\{t \in E\left(\Sigma, I_{\mathbb{A}}\right): \forall u \in t, \exists s \in \mathbb{F}, s^{0} \stackrel{u}{\Rightarrow} s\right\} .
$$

From Lemma 4.1 it follows that

$$
T(\mathbb{A})=\left\{t \in E\left(\Sigma, I_{\mathbb{A}}\right): \exists u \in t, \exists s \in \mathbb{F}, s^{0} \stackrel{u}{\Rightarrow} s\right\} .
$$

Example 4.2: Let $\mathbb{A}=\left(\mathbb{P}_{1}, \mathbb{P}_{2}, \Delta, \mathbb{F}\right)$, where

$$
\begin{array}{cl}
\mathbb{P}_{i}=\left(\Sigma_{i},\left\{s_{i}^{0}, s_{i}^{1}, s_{i}^{2}\right\}, s_{i}^{0}\right), & i=1,2, \\
\Sigma_{1}=\{a, c\}, \quad \Sigma_{2}=\{b, c\}, \quad \mathbb{F}=\left\{\left(s_{1}^{0}, s_{2}^{0}\right)\right\} .
\end{array}
$$

The next-state functions are defined as follows

$$
\begin{array}{cl}
\delta_{a}\left(s_{1}^{0}\right)=s_{1}^{1}, \quad \delta_{a}\left(s_{1}^{1}\right)=s_{1}^{2}, & \delta_{b}\left(s_{2}^{0}\right)=s_{2}^{1}, \\
\delta_{b}\left(s_{2}^{1}\right)=s_{2}^{2}, \quad \delta_{c}\left(s_{1}^{1}, s_{2}^{1}\right)=\left(s_{1}^{0}, s_{2}^{0}\right), & \delta_{c}\left(s_{1}^{2}, s_{2}^{2}\right)=\left(s_{1}^{0}, s_{2}^{0}\right)
\end{array}
$$

We assume that for other possible arguments $\delta_{a}, \delta_{b}, \delta_{c}$ produce empty sets. This automaton is deterministic and it is easy to establish that

$$
T(\mathbb{A})=\left[\left(\left(a b \cup a^{2} b^{2}\right) c\right)^{*}\right]_{I_{\mathbb{A}}}, I_{\mathbb{A}}=\{(a, b),(b, a)\}
$$

Every $\mathbb{A} \in A S Y N$ has a nice graphical representation as a labelled Petri net (see [14]). The set of all places of the net is equal to the disjoint union of $S_{i}, i \in$ Proc. For a given action a and every pair

$$
s^{\prime}=\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{k}}^{\prime}\right), \quad s^{\prime \prime}=\left(s_{i_{1}}^{\prime \prime}, \ldots, s_{k}^{\prime \prime}\right) \in \underset{i \in \operatorname{Dom}(a)}{\times} S_{i}
$$

such that $s^{\prime \prime} \in \delta_{a}\left(s^{\prime}\right)$ we create a transition labelled by a, with the input places $\left\{s_{i_{1}}^{\prime}, \ldots, s_{i_{k}}^{\prime}\right\}$ and the output places $\left\{s_{i_{1}}^{\prime \prime}, \ldots, s_{i_{k}}^{\prime \prime}\right\}$. As the initial marking we take $\left\{s_{1}^{0}, \ldots, s_{n}^{0}\right\}$. Figure 1 presents the net representation of the ASYN automaton from Example 4.2.

Figure 1.

Petri nets play here the same role as transition graphs for finite state acceptors. They are useful as pictures but rather clumsy in formal constructions.

Let

$$
D_{\mathbb{A}}=\Sigma \times \Sigma-I_{\mathrm{A}}=\{(a, b) \in \Sigma \times \Sigma: \operatorname{Dom}(a) \cap \operatorname{Dom}(b) \neq \varnothing\}
$$

be the dependency relation of an $\mathbb{A} \in A S Y N$.
We say that \mathbb{A} is in the normal form if

$$
\begin{gathered}
\forall i \in \operatorname{Proc}, \quad \Sigma_{i} \in \operatorname{Cliques}\left(D_{A}\right) \quad \text { and } \quad \forall i, j \in \operatorname{Proc}, \\
i \neq j \Rightarrow \Sigma_{i} \neq \Sigma_{j} .
\end{gathered}
$$

Proposition 4.3: For every $\mathbb{A} \in \mathrm{ASYN}$ there exists $\tilde{A} \in \mathrm{ASYN}$ in the normal form such that $I_{\mathbb{A}}=I_{\mathbb{A}}$ and $T(\mathbb{A})=T(\widetilde{\mathbb{A}})$.

Proof: Let Cliques $\left(D_{A}\right)=\left\{\tilde{\Sigma}_{1}, \ldots, \tilde{\Sigma}_{k}\right\}$. Then $\forall i \in \operatorname{Proc}, \exists j \in \bar{k}, \Sigma_{i} \subset \tilde{\Sigma}_{j}$. For all $j \in \bar{k}$ we create a new process $\widetilde{\mathbb{P}}_{j}=\left(\widetilde{\Sigma}_{j}, \widetilde{S}_{j}, \widetilde{s}_{j}^{0}\right)$ with the following set of states $\widetilde{S}_{j}=S_{j_{1}} \times \ldots \times S_{j_{m}}$ and the initial state

$$
\widetilde{s}_{j}^{0}=\left(s_{j_{1}}^{0}, \ldots, s_{j_{m}}^{0}\right),
$$

where

$$
\left\{j_{1}, \ldots, j_{m}\right\}=\left\{i \in \operatorname{Proc}: \Sigma_{i} \subset \tilde{\Sigma}_{j}\right\} .
$$

$\tilde{\delta}_{a}$ changes these components of \tilde{S}_{j} that would be changed by δ_{a} during the execution of a in A, while the rest remains unaltered. According to this
$\left(\tilde{s}_{1}, \ldots, \tilde{s_{k}}\right) \in \tilde{\mathbb{F}}$ if there exists $s \in \mathbb{F}$ such that every $\tilde{s}_{i}, i \in \bar{k}$, is a projection of s onto adequate coordinates. We leave details to the reader.

Now we are ready to formulate the following two main theorems.
Theorem 4.4: For every finite asynchronous automaton $A \in A S Y N$ the trace language $T(\mathbb{A})$ is regular, $T(\mathbb{A}) \in \operatorname{Reg}\left(\Sigma, I_{\mathbb{A}}\right)$.

Proof: It suffices to prove that $L(\mathbb{A})$ is regular. Let \mathbb{A} be as in the preceding definition. We build the finite state acceptor $B=\left(\Sigma, S, s^{0}, \delta, \mathbb{F}\right)$, where the next-state function is defined as follows

$$
\begin{array}{cc}
\delta: \quad S \times \Sigma \rightarrow \mathscr{P}(S), \quad \forall s \in S, \quad \forall a \in \Sigma, \\
\delta(s, a)=\left\{s^{\prime} \in S: s \stackrel{a}{\Rightarrow} s^{\prime}\right\} .
\end{array}
$$

clearly $L(\mathbb{A})=L(B)$.

Theorem 4.5: For every $T \in \operatorname{Reg}(\Sigma, I)$ there exists a deterministic finite asynchronous automaton \mathbb{A} such that $I_{\mathbb{A}}=I$ and $T(\mathbb{A})=T$.

Let us consider what really Theorem 4.5 states. It is clear that every regular trace language T can be implemented provided that we neglect concurrency. In this case we may build the minimal finite state acceptor A of the language lin T. In a way, A recognizes T because it recognizes all possible sequential executions of traces from T and independent actions can be executed in any order but only sequentially. This contrasts sharply with the behaviour of the finite asynchronous atomata. As in Petri nets, they have real ability of simultaneous execution of the independent actions. Thus Theorem 4.5 states that every $T \in \operatorname{Reg}(\Sigma, I)$ can be implemented by a finite state system, which is trivial, entirely preserving concurrency between independent actions, which is not so trivial. A similar problem was previously examined by Tarlecki[17]. The remainder of this section is devoted to the construction of an ASYN automaton recognizing a given regular trace language T. All proofs are shifted to Appendix at the end of the section.

Let Cliques $(D)=\left\{\Sigma_{1}, \ldots, \Sigma_{n}\right\}$. We shall build an ASYN automaton \mathbb{A} in the normal form, thus each Σ_{i} will stand for the alphabet of a process \mathbb{P}_{i}. We set $\operatorname{Proc}=\{1, \ldots, n\}$. As previously, for

$$
\begin{gathered}
a \in \Sigma, \quad x \in O(\Sigma), \quad \operatorname{Dom}(a)=\left\{i \in \operatorname{Proc}: a \in \Sigma_{i}\right\} \\
\operatorname{Dom}(x)=\operatorname{Dom}(\operatorname{name}(x)), \quad \text { for any } t \in E(\Sigma, I) \\
\operatorname{Dom}(t)=\left\{i \in \operatorname{Proc}: \exists a \in \Sigma, \#_{a} t>0, i \in \operatorname{Dom}(a)\right\} .
\end{gathered}
$$

Let $x \in O(t)$. Consider the set $\operatorname{Pref}_{x}(t)=\left\{y \in O(t): y \leqq{ }_{t} x\right\}$. It is obvious that this set is initial in $O(t)$ and therefore it determines a prefix of t which we shall denote by $P_{x}(t)$.

Let $t \in E(\Sigma, I), i \in \operatorname{Proc}$. Then last ${ }_{i}^{i}(t)$ will be the last action occurrence executed in t by the process $i \in$ Proc, i. e. the maximal element of the set $\{y \in O(t): i \in \operatorname{Dom}(y)\}$.

If $x=\operatorname{last}_{i}^{i}(t)$ then we shall write $P_{i}(t)$ and $\operatorname{Pref}_{i}(t)$ to denote the prefix $P_{x}(t)$ and its set of actions $\operatorname{Pref}_{x}(t)$. Finally, for $\alpha \subset \operatorname{Proc}, P_{\alpha}(t)$ will be a prefix of t dctermined by the initial subset $\operatorname{Pref}_{\alpha}(t)=\bigcup \bigcup_{i \in \alpha} \operatorname{Pref}_{i}(t)$ of $O(t)$. The following characterizarion of $\operatorname{Pref}_{\alpha}(t)$ will be sometimes useful.

Fact 4.6: Let $t \in E(\Sigma, I), \alpha \subset$ Proc. Then

$$
\operatorname{Pref}_{\alpha}(t)=\left\{y \in O(t): \exists x \in O(t), y \leqq_{t} x \wedge \alpha \cap \operatorname{Dom}(x) \neq \varnothing\right\} .
$$

Let $i, j \in \operatorname{Proc.}$ Then $\operatorname{last}_{j}^{i}(t)=\operatorname{last}{ }_{j}^{j}\left(P_{i}(t)\right)$, i. e.

$$
\left.\left.\begin{array}{rl}
\operatorname{last}_{j}^{i}(t)=\max \left\{y \in O(t): y \leqq \operatorname{last}_{i}^{i}(t) \wedge j \in \operatorname{Dom}(y)\right\} \\
& =\max \{y \in O(t): j \in \operatorname{Dom}(y) \wedge \exists x \in O(t), y \leqq \\
t
\end{array}\right) \times i \in \operatorname{Dom}(x)\right\} . ~ \$
$$

Intuitively, last ${ }_{j}^{i}(t)$ is the last action occurrence executed in t by the process j, $j \in \operatorname{Dom}\left(\operatorname{last}_{j}^{i}(t)\right.$), and which can be "observed" by the process i, last $_{j}^{i}(t) \leqq$ last $_{i}^{i}(t)$.

We set LAST $(t):=\left\{\operatorname{last}_{j}^{i}(t): i, j \in \operatorname{Proc}\right\}$.
Note that the value last ${ }_{j}^{i}(t)$ may be sometimes undefined, e.g. $\operatorname{last}_{j}{ }_{j}^{i}(\varepsilon)$ is undefined for all $i, j \in$ Proc.

Example 4.7: Let

$$
\begin{gathered}
\Sigma=\{a, b, c, d, e, f\}, \quad \text { Cliques }(D)=\left\{\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right\}, \\
\Sigma_{1}=\{a, b, d\}, \quad \Sigma_{2}=\{a, c, e\}, \quad \Sigma_{3}=\{f, e\}
\end{gathered}
$$

Figure 2 presents a trace t over this alphabet and its prefix $P_{1}(t)$. We have

$$
\begin{gathered}
\operatorname{last}_{1}^{1}(t)=b^{2}, \quad \operatorname{last}_{2}^{2}(t)=c^{2}, \quad \operatorname{last}_{3}^{3}(t)=f^{4}, \\
\operatorname{last}_{2}^{1}(t)=a^{2}, \quad \operatorname{last}_{3}^{1}(t)=e^{1}, \\
\operatorname{last}_{3}^{2}(t)=\operatorname{last}_{2}^{3}(t)=e^{2}, \quad \operatorname{last}_{1}^{2}(t)=\operatorname{last}_{1}^{3}(t)=a^{2} .
\end{gathered}
$$

In the sequel we shall frequently use equalities of the form $\operatorname{last}_{j}^{i}\left(t_{1}\right)=\operatorname{last}_{l}^{k}\left(t_{2}\right)$, where t_{1}, t_{2} are prefixes of a trace t. This will mean that

Figure 2.
last ${ }_{j}^{i}\left(t_{1}\right)$ is well-defined iff last ${ }_{l}^{k}\left(t_{2}\right)$ is well-defined and if that is the case then they denote the same elements of $O(t)$. Now we shall present two elementary properties of $P_{\gamma}(t)$.

Fact 4.8: (i) Let $t_{1} \in E(\Sigma, I), \quad a \in \Sigma, \quad t_{2}=t_{1} a, \quad \alpha=\operatorname{Dom}(a), \quad m=\#_{a} t_{2}$, $\gamma \subset$ Proc. Then

$$
\begin{gathered}
\operatorname{Pref}_{\gamma}\left(t_{2}\right)=\left\{\begin{array}{cc}
\operatorname{Pref}_{\gamma}\left(t_{1}\right) & \text { if } \\
\operatorname{Pref}_{\alpha \cup \gamma}\left(t_{1}\right) \cup\left\{a^{m}\right\} & \text { if } \gamma \cap \alpha \neq \varnothing
\end{array}\right. \\
\mathrm{P}_{\gamma}\left(t_{2}\right)=\left\{\begin{array}{cc}
P_{\gamma}\left(t_{1}\right) & \text { if } \quad \gamma \cap \alpha=\varnothing \\
P_{\alpha \cup \gamma}\left(t_{1}\right) \cdot a & \text { if } \quad \gamma \cap \alpha \neq \varnothing
\end{array}\right.
\end{gathered}
$$

(ii) If $i \in \gamma \subset \operatorname{Proc}, t \in E(\Sigma, I)$ then

$$
\operatorname{Pref}_{i}\left(P_{\gamma}(t)\right)=\operatorname{Pref}_{i}(t) \quad \text { and } \quad P_{i}\left(P_{\gamma}(t)\right)=P_{i}(t) .
$$

Proof: Immediate by Fact 2.5 and the definition of $P_{\gamma}(t)$.
We set LAB $=\Sigma \times$ Proc to be a set of labels. We shall present an algorithm that for every trace t constructs a labelling of t, i. e. a mapping

$$
\text { label }_{t}: O(t) \rightarrow \text { LAB }
$$

Algorithm 4.9: (i) For the first occurrence a^{1} of any action a in $O(t)$ we set label $\left(a^{1}\right)=(a, 1)$.
(ii) Suppose that the successive occurrences a^{1}, \ldots, a^{k-1} of the action a have already been labelled. Let $x=a^{k} \in O(t)$ and let

$$
G_{x}=\operatorname{LAST}\left(P_{x}(t)\right) \cap\left\{a^{1}, \ldots, a^{k}\right\}
$$

Let $m \in N$ be the least positive integer such that

$$
\forall y \in G_{x}-\{x\}, \quad \operatorname{label}_{t}(y) \neq(a, m)
$$

Then we set

$$
\operatorname{label}_{t}(x)=(a, m)
$$

The next lemma summarizes properties of label ${ }_{r}$. Recall that name: $O(\Sigma) \rightarrow \Sigma$ is a projection of $O(\Sigma)$ onto Σ.

Proposition 4.10: The function label ${ }_{t}$ constructed by Algorithm 4.9 satisfies the following conditions.
(L 1) $\forall x \in O(t)$, name $(x)=a \Rightarrow \exists i \in{\left.\operatorname{Proc}, \operatorname{label}_{t}(x)=(a, i)\right) ~}_{\text {(L) }}$
(L2) if p is a prefix of t then label $_{p}=\operatorname{label}_{t} \mid O(p)$
(L3) the mapping label ${ }_{t}$ is injective on the set $\operatorname{LAST}(t)$.
Let $\alpha \subset$ Proc. We set
$\operatorname{Suff}_{\alpha}(t)=\{x \in O(t): \operatorname{Dom}(x) \subset \alpha \wedge \forall y \in O(t)$,

$$
\left.x \leqq_{t} y \Rightarrow \operatorname{Dom}(y) \subset \alpha\right\}
$$

It is obvious that $\operatorname{Suff}_{\alpha}(t)$ is final in t and it determines a suffix of t denoted by $S_{\alpha}(t)$.

Note that $S_{\alpha}(t)$ is the greatest suffix of t such that $\operatorname{Dom}\left(S_{\alpha}(t)\right) \subset \alpha$.
In the sequel, for $\alpha \subset$ Proc, $\bar{\alpha}$ will denote the complement of α, i. e. $\bar{\alpha}=\operatorname{Proc}-\alpha$. Observe that Fact 4.6 and the definition of $\operatorname{Suff}_{\alpha}(t)$ imply that $\forall \alpha \subset$ Proc,

$$
\operatorname{Pref}_{\alpha}(t) \cap \operatorname{Suff}_{\alpha}^{-}(t)=\varnothing \quad \text { and } \quad \operatorname{Pref}_{\alpha}(t) \cup \operatorname{Suff}_{\alpha}(t)=O(t) .
$$

This yields
Fact 4. 11: $\forall \alpha \subset \operatorname{Proc}, \forall t \in E(\Sigma, I), P_{\alpha}(t) . S_{\alpha}(t)=t$.

We shall now define equivalence relations over $E(\Sigma, I)$. Their properties are crucial in our construction.

Definition 4. 12: Let $t, r \in E(\Sigma, I)$. Then $t \approx_{E} r$ if the following conditions hold
(i) The mapping $C:$ LAST $(t) \rightarrow$ LAST (r) such that

$$
\forall i, j \in \operatorname{Proc}, \quad C\left(\text { last }_{j}^{i}(t)\right)=\text { last }_{j}^{i}(r)
$$

is an isomorphism of the partial orders $\leqq_{t} \mid$ LAST (t) and $\leqq_{r} \mid$ LAST (r). This isomorphism will be called canonical. Note that the above condition implies that last ${ }_{j}^{i}(t)$ is well-defined iff last ${ }_{j}^{i}(r)$ is well-defined.
(ii) C preserves the labellings, i. e.

$$
\forall i, j \in \operatorname{Proc}^{, \operatorname{label}_{t}\left(\operatorname{last}_{j}^{i}(t)\right)=\operatorname{label}_{r}\left(\operatorname{last}_{j}^{i}(r)\right) . . . ~}
$$

Recall that \sim_{T} denotes the syntactical congruence of T.
Definition 4.13:Let $T \subset E(\Sigma, I)$. Then

$$
t \approx_{T} r \quad \text { if } \forall \alpha \subset \text { Proc, }, \quad S_{\alpha}(t) \sim_{T} S_{\alpha}(r)
$$

Definition 4.14: Let $t, r \in E(\Sigma, I)$. Then $t \approx r$ if

$$
t \approx_{E} r \quad \text { and } \quad t \approx_{T} r, \quad \text { i. e. } \quad \approx=\approx_{E} \cap \approx_{T}
$$

It is obvious that \approx_{E} is always of finite index, whereas \approx_{T}, and consequently \approx, are of finite index iff T is regular.

Henceforth $\langle t\rangle$ will stand for an equivalence class of t under \approx.
We now give two theorems that constitute a key to our construction.
Theorem 4.15: Let $t, r \in E(\Sigma, I)$ and $\alpha, \beta \subset$ Proc. If $P_{\alpha}(t) \approx P_{\alpha}(r)$ and $P_{\beta}(t) \approx P_{\beta}(r)$ then $P_{\alpha \cup \beta}(t) \approx P_{\alpha \cup \beta}(r)$.

Theorem 4.16: Let $t_{1}, r_{1} \in E(\Sigma, I), a \in \Sigma, t_{2}=t_{1} a, r_{2}=r_{1} a$ and $\forall i \in$ Do$\mathrm{m}(a), P_{i}\left(t_{1}\right) \approx P_{i}\left(r_{1}\right)$. Then $\forall i \in \operatorname{Dom}(a), P_{i}\left(t_{2}\right) \approx P_{i}\left(r_{2}\right)$.

Now we are able to present the construction of an ASYN automaton recognizing a given regular trace language T. The equivalence classes of \approx will serve as states of our automaton \mathbb{A} and \mathbb{A} will behave in such a way that, having a trace t executed, an i-th process \mathbb{P}_{i} reaches the state $\left\langle P_{i}(t)\right\rangle$.

Formally, $\mathbb{A}=\left(\mathbb{P}_{1}, \ldots, \mathbb{P}_{n}, \Delta, \mathbb{F}\right)$. For all $i \in \operatorname{Proc}=\{1, \ldots, n\}$ we set $\mathbb{P}_{i}=\left(\Sigma_{i}, S_{i}, s_{i}^{0}\right), S_{i}=\left\{\left\langle P_{i}(t)\right\rangle: t \in E(\Sigma, I)\right\}, s_{i}^{0}=\langle\varepsilon\rangle$.

Let $a \in \Sigma$, $\operatorname{Dom}(a)=\left\{i_{1}, \ldots, i_{k}\right\}, t_{2}=t_{1} a$. Then we set

$$
\delta_{a}\left(\left\langle P_{i_{1}}\left(t_{1}\right)\right\rangle, \ldots,\left\langle P_{i_{k}}\left(t_{1}\right)\right\rangle\right)=\left(\left\langle P_{i_{1}}\left(t_{2}\right)\right\rangle, \ldots,\left\langle P_{i_{k}}\left(t_{2}\right)\right\rangle\right)
$$

Theorem 4.16 ensures that this definition is sound. Moreover, Fact 4.8 (i) implies that for $i \notin \operatorname{Dom}(a) P_{i}\left(t_{2}\right)=P_{i}\left(t_{1}\right)$. Using this fact and Theorem 4.16, one can verify by trivial induction on the number of action occurrences in t that the following condition holds

Proposition 4.17: $\forall t \in E(\Sigma, I)$,

$$
(\langle\varepsilon\rangle, \ldots,\langle\varepsilon\rangle) \stackrel{t}{\Rightarrow}\left(\left\langle P_{1}(t)\right\rangle, \ldots,\left\langle P_{n}(t)\right\rangle\right) \text { in } A
$$

In order to accomplish the construction we have to define the set of final states:

$$
\mathbb{F}=\left\{\left(\left\langle P_{1}(t)\right\rangle, \ldots,\left\langle P_{n}(t)\right\rangle\right): t \in T\right\} .
$$

By definition, for all $r \in E(\Sigma, I)$, if $r \approx t$ then

$$
r=S_{\text {Proc }}(r) \sim_{T} S_{\text {Proc }}(t)=t
$$

hence $r \in T$ iff $t \in T$. This fact and Proposition 4.17 prove that $T(\mathbb{A})=T$. Finally observe that the construction presented here can be carried out effectively. For any two traces t_{1}, t_{2} we can establish effectively if $t_{1} \approx t_{2}$. Thus by simple inspection, starting with the empty trace ε, we can find an oriented graph $G=(V, E)$ such that every vertex $v \in V$ is labelled by a trace $t \in E(\Sigma, I)$ and every edge $e \in E$ is labelled by an action $a \in \Sigma$ and fulfilling the following conditions
(1) if two different vertices v_{1}, v_{2} are labelled by t_{1} and t_{2} respectively then $t_{1} \not \approx t_{2}$;
(2) $\forall a \in \Sigma, \forall v \in V$ there is an edge outgoing from v and labelled by a;
(3) an edge labelled by $a \in \Sigma$ joins vertices labelled by t_{1} and t_{2} iff $t_{2} \approx t_{1} a$.

It is obvious that the graph G is isomorphic with the transition graph of A. G enables us to define δ_{a} effectively for all $a \in \Sigma$, namely for every two vertices v_{1}, v_{2} labelled by t_{1} and t_{2} and connected by an edge labelled by $a \in \Sigma$ we set

$$
\delta_{a}\left(\left\langle P_{i_{1}}\left(t_{1}\right)\right\rangle, \ldots,\left\langle P_{i_{k}}\left(t_{1}\right)\right\rangle\right)=\left(\left\langle P_{i_{1}}\left(t_{2}\right)\right\rangle, \ldots,\left\langle P_{i_{k}}\left(t_{2}\right)\right\rangle\right)
$$

where $\left\{i_{1}, \ldots, i_{k}\right\}=\operatorname{Dom}(a)$.

Appendix:

The following lemma gives a list of elementary properties of last ${ }_{j}^{i}(t)$.
Lemma 4.18: Let $t_{1} \in E(\Sigma, I), \alpha \subset$ Proc. Then
(i) If $i \in \alpha$ then

$$
\forall \beta \subset \operatorname{Proc}, \quad \operatorname{last}_{j}^{i}\left(\mathrm{P}_{\alpha}\left(t_{1}\right)\right)=\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}\left(t_{1}\right)\right)=\operatorname{last}_{j}^{i}\left(t_{1}\right)
$$

(ii) $\forall j \in \operatorname{Proc}, \operatorname{last}_{j}^{j}\left(\mathrm{P}_{\alpha}\left(\mathrm{t}_{1}\right)\right)=\max \left\{\operatorname{last}_{j}^{i}\left(t_{1}\right): i \in \alpha\right\}$.

Let moreover $t_{2}=t_{1} a, a \in \Sigma, \operatorname{Dom}(a)=\alpha, m=\#_{a} t_{2}$. Then
(iii)

$$
\operatorname{last}_{i}^{i}\left(t_{2}\right)=\left\{\begin{array}{c}
\operatorname{last}_{i}^{i}\left(t_{1}\right) \\
a^{m}
\end{array} \text { if } i \notin \alpha\right.
$$

(iv)

$$
\operatorname{last}_{j}^{i}\left(t_{2}\right)=\left\{\begin{array}{c}
\operatorname{last}_{j}^{i}\left(t_{1}\right) \quad \text { if } i \notin \alpha, \quad j \in \operatorname{Proc} \\
a^{m} \quad \text { if } i, j \in \alpha \\
\max \left\{\operatorname{last}_{j}^{k}\left(t_{1}\right): k \in \alpha\right\} \quad \text { if } i \in \alpha, j \notin \alpha
\end{array}\right.
$$

Proof: (i) By Fact 4.8 (ii) $i \in \gamma \subset$ Proc implies

$$
\operatorname{last}_{j}^{i}\left(P_{\gamma}\left(t_{1}\right)\right)=\operatorname{last}_{j}^{j}\left(P_{i}\left(P_{\gamma}\left(t_{1}\right)\right)\right)=\operatorname{last}_{j}^{j}\left(P_{i}\left(t_{1}\right)\right)=\operatorname{last}_{j}^{i}\left(t_{1}\right) .
$$

Now it suffices to take $\gamma=\alpha$ and $\gamma=\alpha \cup \beta$.
(ii) Since $\operatorname{Pref}_{\alpha}\left(t_{1}\right)=\bigcup \operatorname{Pref}_{i}\left(t_{1}\right)$, we have

$$
\operatorname{last}_{j}^{j}\left(P_{\alpha}\left(t_{1}\right)\right)=\max \left\{\operatorname{last}_{j}^{j}\left(P_{i}\left(t_{1}\right)\right): i \in \alpha\right\}=\max \left\{\operatorname{last}_{j}^{i}\left(t_{1}\right): i \in \alpha\right\}
$$

(iii) This is just another formulation of the property described by Fact 4.8 (i).
(iv) In case $i \in \alpha$, by Fact 4.8 (i), we get

$$
\operatorname{last}_{j}^{i}\left(t_{1} a\right)=\operatorname{last}_{j}^{j}\left(P_{i}\left(t_{1} a\right)\right)=\operatorname{last}_{j}^{j}\left(P_{\alpha}\left(t_{1}\right) a\right)
$$

and now it suffices to apply (iii) and (ii) to obtain a^{m} for $j \in \alpha$ and

$$
\operatorname{last}_{j}^{j}\left(P_{\alpha}\left(t_{1}\right)\right)=\max \left\{\operatorname{last}_{j}^{k}\left(t_{1}\right): k \in \alpha\right\} \quad \text { for } \quad j \notin \alpha .
$$

In case $i \notin \alpha$ we argue analogously.
Lemma 4.19: Let $t \in E(\Sigma, I)$ and $i \in$ Proc. Then the mapping name: $O(\Sigma) \rightarrow \Sigma$ is injective on the set

$$
\left\{\operatorname{last}_{j}^{i}(t): j \in \operatorname{Proc}\right\} \subset \operatorname{LAST}(t) .
$$

Proof: Let $\operatorname{last}_{j}^{i}(t)=x$, $\operatorname{last}_{k}^{i}(t)=z$ and name $(x)=$ name $(z)=a$. Then $j, \mathrm{k} \in \operatorname{Dom}(a)$. But $j \in \operatorname{Dom}(z)$ implies $z \leqq{ }_{t} \operatorname{last}{ }_{j}^{i}(t)$, whereas $k \in \operatorname{Dom}(x)$ implies $x \leqq{ }_{t} \operatorname{last}_{k}^{i}(t)$. Thus $x=z$.

Lemma 4.20: Let t be a trace and t_{1} its prefix. If last ${ }_{j}^{i}(t) \in O\left(t_{1}\right)$ for some $i, j \in \operatorname{Proc}$ then there exists $k \in \operatorname{Proc}$ such that $\operatorname{last}_{j}^{k}\left(t_{1}\right)=\operatorname{last}_{j}^{i}(t)$. In particular, $\operatorname{LAST}(t) \cap O\left(t_{1}\right) \subset \operatorname{LAST}\left(t_{1}\right)$.

Proof: Let $t=t_{1} t_{2}$. If $\# t_{2}=1$ then the thesis follows immediately from Lemma 4.18 (iv). In general, it suffices to apply an elementary induction on $\# t_{2}$.

Now we are able to prove the properties (L1) - (L3) of label ${ }_{t}$.
Proof of Proposition 4. 10: First note that if p is a prefix of t and $x \in O(p)$ then $P_{x}(t)=P_{x}(p)$, which proves L 2 .

In order to prove L1 it suffices to show that the number m chosen in the step (ii) of Algorithm 4.9 belongs to Proc. If $i \in \operatorname{Dom}(a), x=a^{k}$, then either

$$
\operatorname{last}_{j}^{i}\left(P_{x}(t)\right)=x \quad \text { for } \quad j \in \operatorname{Dom}(a)
$$

or

$$
\operatorname{name}\left(\operatorname{last}_{j}^{i}\left(P_{x}(t)\right)\right) \neq a \quad \text { for } \quad j \in \operatorname{Proc}-\operatorname{Dom}(a)
$$

Thus

$$
\begin{aligned}
& G_{x}-\{x\}=\operatorname{LAST}\left(P_{x}(t)\right) \cap\left\{a^{1}, \ldots, a^{k-1}\right\} \\
& \quad=\left\{\operatorname{last}_{j}^{i}\left(P_{x}(t)\right): i \in \operatorname{Proc}-\operatorname{Dom}(a), j \in \operatorname{Proc}\right\} \\
& \cap\left\{a^{1}, \ldots, a^{k-1}\right\}=\underset{i \in \operatorname{Proc}-\operatorname{Dom}(a)}{\cup}\left\{\operatorname{last}_{j}^{i}\left(P_{x}(t)\right): j \in \operatorname{Proc}\right\} \\
& \cap\left\{a^{1}, \ldots, a^{k-1}\right\} .
\end{aligned}
$$

But from Lemma 4.19 it follows that

$$
\operatorname{card}\left(\left\{\operatorname{last}_{j}^{i}\left(P_{x}(t)\right): j \in \operatorname{Proc}\right\} \cap\left\{a^{1}, \ldots, a^{k-1}\right\}\right) \leqq 1
$$

for all $i \in$ Proc. Therefore

$$
\operatorname{card}\left(G_{x}-\{x\}\right) \leqq \operatorname{card}(\operatorname{Proc}-\operatorname{Dom}(a))<\operatorname{card}(\text { Proc })
$$

and m really belongs to Proc.
We prove L3 by a contradiction. Let us suppose that for a trace t there exist $x, y \in \operatorname{LAST}(t), x \neq y$, such that $\operatorname{label}_{t}(x)=\operatorname{label}_{t}(y)$. Then by L1 name $(x)=$ name (y). We may assume that $y \leqq{ }_{t} x$. Then $x, y \in \operatorname{Pref}_{x}(t)$ and by Lemma $4.20 x, y \in \operatorname{LAST}\left(P_{x}(t)\right)$. But then Algorithm 4.9 would have ensured that label $(x) \neq \operatorname{label}_{t}(y)$.

[^1]Henceforth $\operatorname{Max}(t)=\left\{x \in O(t): \neg \exists z \in O(t), x<_{t} z\right\}$ will stand for the set of maximal elements of a trace t.

In the next two lemmas we complete a list of useful properties of last ${ }_{j}^{i}(t)$.
Lemma 4.21: Let $\alpha \subset$ Proc, $t \in E(\Sigma, I)$. Then
(i) for every $j \in$ Proc there exists $i \in \alpha$ such that

$$
\operatorname{last}_{j}^{j}\left(P_{\alpha}(t)\right)=\operatorname{last}_{j}^{i}(t)=\operatorname{last}_{j}^{i}\left(P_{\alpha}(t)\right)
$$

(ii) if $x \in \operatorname{Max}\left(P_{\alpha}(t)\right)$ then there exists $i \in \alpha$ such that

$$
x=\operatorname{last}_{i}^{i}(t)=\operatorname{last}_{i}^{i}\left(P_{\alpha}(t)\right) .
$$

Proof: (i) To obtain (i) it suffices to take $i \in \alpha$ for which the maximum in Lemma 4.18 (ii) is reached and since $i \in \alpha$, again by Lemma 4.18 (i), $\operatorname{last}_{j}^{i}(t)=\operatorname{last}_{j}^{i}\left(P_{\alpha}(t)\right)$.
(ii) This statement follows from Lemma 4.18 (i) and from the obvious inclusion $\operatorname{Max}\left(P_{\alpha}(t)\right) \subset\left\{\operatorname{last}_{i}^{i}(t): i \in \alpha\right\}$.

Lemma 4.22: Let $\gamma, \eta \subset \operatorname{Proc}, t \in E(\Sigma, I)$. If $x \in \operatorname{Max}\left(P_{\gamma}\left(P_{\eta}(t)\right)\right)$ then there exist $i \in \eta, j \in \gamma$ such that

$$
x=\operatorname{last}_{j}^{j}\left(P_{\gamma}\left(P_{\eta}(t)\right)\right)=\operatorname{last}_{j}^{j}\left(P_{\eta}(t)\right)=\operatorname{last}_{j}^{i}\left(P_{\eta}(t)\right) .
$$

Proof: If $x \in \operatorname{Max}\left(P_{\gamma}\left(P_{\eta}(t)\right)\right)$ then by Lemma 4.21 (ii)

$$
x=\operatorname{last}_{j}^{j}\left(P_{\gamma}\left(P_{\eta}(t)\right)\right)=\operatorname{last}_{j}^{j}\left(P_{\eta}(t)\right) \quad \text { for some } j \in \gamma,
$$

and again by Lemma 4.21 (i)

$$
\operatorname{last}_{j}^{j}\left(P_{\eta}(t)\right)=\operatorname{last}_{j}^{i}\left(P_{\eta}(t)\right) \quad \text { for some } i \in \eta .
$$

The next two lemmas contain basic properties of $P_{\alpha}(t)$ and $S_{\alpha}(t)$.
Lemma 4.23: Let $t \in E(\Sigma, I), \alpha, \beta, \gamma, \delta \subset$ Proc. Then
(i) $S_{\alpha}\left(S_{\beta}(t)\right)=S_{\alpha \cap \beta}(t)$;
(ii) If $\gamma \subset \delta \subset$ Proc then

$$
P_{\gamma}\left(P_{\delta}(t)\right)=P_{\gamma}(t) \quad \text { and } \quad P_{\delta}\left(P_{\gamma}(t)\right)=P_{\gamma}(t) .
$$

Later on the first condition will be used in the form

$$
P_{\alpha}\left(P_{\alpha \cup \beta}(t)\right)=P_{\alpha}(t) .
$$

Proof: (i) follows immediately from the definition of $S_{\alpha}(t)$.
(ii) Since $\gamma \subset \delta$ by Fact 4.8 (ii) we get
$\operatorname{Pref}_{\gamma}(P(t))=\bigcup_{i \in \gamma} \operatorname{Pref}_{i}\left(P_{\delta}(t)\right)=\bigcup_{i \in \gamma} \operatorname{Pref}_{i}(t)=\operatorname{Pref}_{\gamma}(t)$, thus $P_{\gamma}\left(P_{\delta}(t)\right)=P_{\gamma}(t)$.
$P_{\delta}\left(P_{\gamma}(t)\right)$ is a prefix of $P_{\gamma}(t)$ thus $\operatorname{Pref}_{\delta}\left(P_{\gamma}(t)\right) \subset \operatorname{Pref}_{\gamma}(t)$. On the other hand by Fact 4.8 (ii)

$$
\operatorname{Pref}_{\delta}\left(P_{\gamma}(t)\right)=\bigcup_{i \in \delta} \operatorname{Pref}_{i}\left(P_{\gamma}(t)\right) \supset \bigcup_{i \in \gamma} \operatorname{Pref}_{i}\left(P_{\gamma}(t)\right)=\bigcup_{i \in \gamma} \operatorname{Pref}_{i}(t)=\operatorname{Pref}_{\gamma}(t)
$$

which concludes the proof.
Lemma 4.24: Let $\alpha \subset$ Proc, $t_{1}, t_{2} \in E(\Sigma, I)$. Then

$$
P_{\alpha}\left(t_{1} t_{2}\right)=P_{\alpha \cup \gamma}\left(t_{1}\right) \cdot P_{\alpha}\left(t_{2}\right)
$$

and

$$
S_{\beta}\left(t_{1} t_{2}\right)=S_{\delta}\left(t_{1}\right) \cdot S_{\beta}\left(t_{2}\right)
$$

where

$$
\gamma=\operatorname{Dom}\left(P_{\alpha}\left(t_{2}\right)\right), \quad \delta=\beta-\gamma, \quad \alpha-\bar{\beta} .
$$

Proof: Let $t_{1} t_{2}$. We shall argue by induction on $\# t_{2}$. If $t_{2}=c, c \in \Sigma$ then the formula for $P_{\alpha}\left(t_{1} t_{2}\right)$ follows from Fact 4.8 (i) since $P_{\alpha}(c)=c$ if $\alpha \cap \operatorname{Dom}(c) \neq \varnothing$, and $P_{\alpha}(c)=\varepsilon$ otherwise.

Assume that the formula for $P_{\alpha}\left(t_{1} t_{2}\right)$ is valid for all factorizations $t=t_{1} t_{2}$ with $\# t_{2}<m$.

Let $t=t_{1} t_{2}$ and $\# t_{2}=m>1$. Then t_{2} can be factorized in such a way that $t_{2}=t_{2}^{\prime} t_{2}^{\prime \prime}$ and $\# \mathrm{t}_{2}^{\prime}<m$, \# $t_{2}^{\prime \prime}<\mathrm{m}$. Let

$$
\gamma_{2}=\operatorname{Dom}\left(P_{\alpha}\left(t_{2}^{\prime \prime}\right)\right), \quad \gamma_{1}=\operatorname{Dom}\left(P_{\alpha \cup \gamma_{2}}\left(t_{2}^{\prime}\right)\right) .
$$

Then using three times the inductive hypothesis, for $\left(t_{1} t_{2}^{\prime}\right) t_{2}^{\prime \prime}, t_{1} t_{2}^{\prime}$ and $t_{2}^{\prime} t_{2}^{\prime \prime}$, we get

$$
\begin{aligned}
P_{\alpha}\left(t_{1} t_{2}\right)=P_{\alpha}\left(t_{1} t_{2}^{\prime} t_{2}^{\prime \prime}\right)= & P_{\alpha \cup \gamma_{2}}\left(t_{1} t_{2}^{\prime}\right) \cdot P_{\alpha}\left(t_{2}^{\prime \prime}\right) \\
= & P_{\alpha \cup \gamma_{1} \cup \gamma_{2}}\left(t_{1}\right) \cdot P_{\alpha \cup \gamma_{2}}\left(t_{2}^{\prime}\right) \cdot P_{\alpha}\left(t_{2}^{\prime \prime}\right) \\
& =P_{\alpha \cup \gamma_{1} \cup \gamma_{2}}\left(t_{1}\right) \cdot P_{\alpha}\left(t_{2}^{\prime} t_{2}^{\prime \prime}\right)=P_{\alpha \cup \gamma_{1} \cup \gamma_{2}}\left(t_{1}\right) \cdot P_{\alpha}\left(t_{2}\right) .
\end{aligned}
$$

But
$\left.\gamma_{1} \cup \gamma_{2}=\operatorname{Dom}\left(P_{\alpha \cup \gamma_{2}}\left(t_{2}^{\prime}\right)\right) \cup \operatorname{Dom} P_{\alpha}\left(t_{2}^{\prime \prime}\right)\right)$

$$
=\operatorname{Dom}\left(P_{\alpha \cup \gamma_{2}}\left(t_{2}^{\prime}\right) \cdot P_{\alpha}\left(t_{2}^{\prime \prime}\right)\right)=\operatorname{Dom}\left(P_{\alpha}\left(t_{2}^{\prime} t_{2}^{\prime \prime}\right)\right)=\operatorname{Dom}\left(P_{\alpha}\left(t_{2}\right)\right)=\gamma
$$

We have used above the obvious property

$$
\operatorname{Dom}\left(t_{1} t_{2}\right)=\operatorname{Dom}\left(t_{1}\right) \cup \operatorname{Dom}\left(t_{2}\right), \quad \text { for all } t_{1}, t_{2} \in E(\Sigma, I)
$$

Now we shall compute $S_{\beta}\left(t_{1} t_{2}\right)$. First note that $\operatorname{Dom}\left(P_{\alpha}\left(t_{2}\right)\right)=\gamma$ and Dom $\left(S_{\delta}\left(t_{1}\right)\right) \subset \delta=\beta-\gamma$, whence
$\operatorname{Dom}\left(P_{\alpha}\left(t_{2}\right)\right) \cap \operatorname{Dom}\left(S_{\delta}\left(t_{1}\right)\right)=\varnothing \quad$ and $\quad P_{\alpha}\left(t_{2}\right) \cdot S_{\delta}\left(t_{1}\right)=S_{\delta}\left(t_{1}\right) \cdot P_{\alpha}\left(t_{2}\right)$.
Therefore using the formula for $P_{\alpha}\left(t_{1} t_{2}\right)$ and Fact 4.11 we obtain

$$
\begin{aligned}
& P_{\alpha}\left(t_{1} t_{2}\right) \cdot S_{\delta}\left(t_{1}\right) \cdot S_{\beta}\left(t_{2}\right)=P_{\alpha \cup \gamma}\left(t_{1}\right) \cdot P_{\alpha}\left(t_{2}\right) \cdot S_{\delta}\left(t_{1}\right) \cdot S_{\beta}\left(t_{2}\right) \\
&= P_{\alpha \cup \gamma}\left(t_{1}\right) \cdot S_{\delta}\left(t_{1}\right) \cdot P_{\alpha}\left(t_{2}\right) \cdot S_{\beta}\left(t_{2}\right)= \\
&=P_{\alpha \cup \gamma}\left(t_{1}\right) \cdot S_{\delta}\left(t_{1}\right) \cdot t_{2} \\
&=P_{\alpha \cup \gamma}\left(t_{1}\right) \cdot S_{\bar{\alpha} \cap \gamma}\left(t_{1}\right) \cdot t_{2}=t_{1} t_{2} .
\end{aligned}
$$

Since by Fact 4.11 $P_{\alpha}\left(t_{1} t_{2}\right) \cdot S_{\beta}\left(t_{1} t_{2}\right)=t_{1} t_{2}$, we have

$$
P_{\alpha}\left(t_{1} t_{2}\right) \cdot S_{\beta}\left(t_{1} t_{2}\right)=P_{\alpha}\left(t_{1} t_{2}\right) \cdot S_{\delta}\left(t_{1}\right) \cdot S_{\beta}\left(t_{2}\right),
$$

which implies by the cancellation property $S_{\beta}\left(t_{1} t_{2}\right)=S_{\delta}\left(t_{1}\right) . S_{\beta}\left(t_{2}\right)$.
The next lemma describes a factorization of $P_{\alpha \cup \beta}(t)$.
Lemma 4.25: Let $\alpha, \beta \subset \operatorname{Proc}, t \in E(\Sigma, I)$. Then there exist $t_{0}, t^{\prime}, t^{\prime \prime}$, $\gamma=\operatorname{Dom}\left(t^{\prime}\right), \delta=\operatorname{Dom}\left(t^{\prime \prime}\right)$ such that
(i) $\gamma \cap \delta=\varnothing$;
(ii) $P_{\alpha \cup \beta}(t)=t_{0} t^{\prime} t^{\prime \prime}=t_{0} t^{\prime \prime} t^{\prime}$;
(iii) $\mathrm{P}_{\alpha}(t)=t_{0} t^{\prime}, P_{\beta}(t)=t_{0} t^{\prime \prime}$;
(iv) $\left\{\begin{array}{c}t_{0}=P_{\gamma}\left(\mathbf{P}_{\alpha}(t)\right)=P_{\bar{\delta}}\left(P_{\beta}(t)\right), \\ t^{\prime}=S_{\gamma}\left(P_{\alpha}(t)\right), t^{\prime \prime}=S_{\delta}\left(P_{\beta}(t)\right)\end{array}\right.$
(v) $O\left(P_{\alpha}(t)\right) \cap O\left(P_{\beta}(t)\right)=O\left(t_{0}\right)$.

Proof: Using Lemma 4.23 (ii) and Fact 4.11 we obtain the following factorization

$$
P_{\alpha \cup \beta}(t)=P_{\alpha}\left(P_{\alpha \cup \beta}(t)\right) \cdot S_{\alpha}^{-}\left(P_{\alpha \cup \beta}(t)\right)=P_{\alpha}(t) \cdot S_{\alpha}\left(P_{\alpha \cup \beta}(t)\right)
$$

and similarly

$$
P_{\alpha \cup \beta}(t)=P_{\beta}(t) \cdot S_{\bar{\beta}}\left(P_{\alpha \cup \beta}(t)\right) .
$$

Let

$$
\left.\begin{array}{c}
t^{\prime}=S_{\bar{\beta}}\left(P_{\alpha \cup \beta}(t)\right), \quad t^{\prime \prime}=S_{\alpha}^{-\left(P_{\alpha \cup \beta}(t)\right),} \tag{1}\\
\gamma=\operatorname{Dom}\left(t^{\prime}\right), \\
\delta=\operatorname{Dom}\left(t^{\prime \prime}\right) .
\end{array}\right\}
$$

Note that

$$
\begin{equation*}
\gamma \subset \bar{\beta} \quad \text { and } \quad \delta \subset \bar{\alpha} \tag{2}
\end{equation*}
$$

We shall show that $\gamma \cap \delta=\varnothing$. Suppose the contrary, $\gamma \cap \delta \neq \varnothing$. Then there exist
$x \in \operatorname{Pref}_{\alpha \cup \beta}(t)-\operatorname{Pref}_{\alpha}(t)=\left(\operatorname{Pref}_{\alpha}(t) \cup \operatorname{Pref}_{\beta}(\mathrm{t})\right)-\operatorname{Pref}_{\alpha}(t)=\operatorname{Pref}_{\beta}(t)-\operatorname{Pref}_{\alpha}(t)$
and

$$
y \in \operatorname{Pref}_{\alpha \cup \beta}(t)-\operatorname{Pref}_{\beta}(t)=\operatorname{Pref}_{\alpha}(t)-\operatorname{Pref}_{\beta}(t)
$$

such that $\varnothing \neq \operatorname{Dom}(x) \cap \operatorname{Dom}(y) \subset \gamma \cap \delta$. Thus either $x \leqq \varliminf_{t} y \in \operatorname{Pref}_{\alpha}(t)$ or $y \leqq t=\operatorname{Pref}_{\beta}(t)$, which implies $x \in \operatorname{Pref}_{\alpha}(t)$ or $y \in \operatorname{Pref}_{\beta}(t)$ and both these cases yield a contradiction, which concludes the proof of (i).

Using Lemma 4.24 we compute

$$
S_{\delta}\left(P_{\alpha \cup \beta}(t)\right)=S_{\delta}\left(P_{\beta}(t) \cdot t^{\prime}\right)=S_{\delta-\xi}\left(P_{\beta}(t)\right) \cdot S_{\delta}\left(t^{\prime}\right),
$$

with $\xi=\operatorname{Dom}\left(P_{\bar{\delta}}\left(t^{\prime}\right)\right)$. But $\operatorname{Dom}\left(t^{\prime}\right) \cap \delta=\varnothing$ implies $S_{\delta}\left(t^{\prime}\right)=\varepsilon$ and $P_{\bar{\delta}}\left(t^{\prime}\right)=t^{\prime}$, whence $\xi=\operatorname{Dom}\left(t^{\prime}\right)=\gamma$. Since by (i) $\delta \cap \gamma=\varnothing, \delta-\xi=\delta-\gamma=\delta$. Therefore

$$
\begin{equation*}
S_{\delta}\left(P_{\alpha \cup \beta}(t)\right)=S_{\delta}\left(P_{\beta}(t)\right) . \tag{3}
\end{equation*}
$$

On the other hand

$$
S_{\delta}\left(P_{\alpha \cup \beta}(t)\right)=S_{\delta}\left(P_{\alpha}(t) \cdot t^{\prime \prime}\right)=S_{\delta-\xi}\left(P_{\alpha}(t)\right) \cdot S_{\delta}\left(t^{\prime \prime}\right),
$$

with $\xi=\operatorname{Dom}\left(P_{\bar{\delta}}\left(t^{\prime \prime}\right)\right)$. But $\operatorname{Dom}\left(t^{\prime \prime}\right)=\delta$ implies $S_{\delta}\left(t^{\prime \prime}\right)=t^{\prime \prime}$ and $P_{\bar{\delta}}\left(t^{\prime \prime}\right)=\varepsilon$, thus $\xi=\varnothing$. Therefore

$$
S_{\delta}\left(P_{\alpha \cup \beta}(t)\right)=S_{\delta}\left(P_{\alpha}(t)\right) \cdot t^{\prime \prime}
$$

We claim that $S_{\delta}\left(P_{\alpha}(t)\right)=\varepsilon$. Indeed, we have the factorization

$$
P_{\alpha}(t)=P_{\bar{\delta}}\left(P_{\alpha}(t)\right) \cdot S_{\delta}\left(P_{\alpha}(t)\right)
$$

but by (2) $\bar{\delta} \supset \alpha$, thus by Lemma 4.23 (ii) $P_{\delta}^{-}\left(P_{\alpha}(t)\right)=P_{\alpha}(t)$, whence $P_{\alpha}(t)=P_{\alpha}(t) . S_{\delta}\left(P_{\alpha}(t)\right)$ and by Proposition $2.2 S_{\delta}\left(P_{\alpha}(t)\right)=\varepsilon$. Thus finally
$S_{\delta}\left(P_{\alpha \cup \beta}(t)\right)=t^{\prime \prime}$. The last formula combined with (1) and (3) gives

$$
\begin{equation*}
t^{\prime \prime}=S_{\delta}\left(P_{\alpha \cup \beta}(t)\right)=S_{\delta}\left(P_{\beta}(t)\right)=S_{\alpha}^{-}\left(P_{\alpha \cup \beta}(t)\right) . \tag{4}
\end{equation*}
$$

In the same way we obtain

$$
t^{\prime}=S_{\gamma}\left(P_{\alpha \cup \beta}(t)\right)=S_{\gamma}\left(P_{\alpha}(t)\right)=S_{\bar{\beta}}\left(P_{\alpha \cup \beta}(t)\right) .
$$

Let $t_{0}^{\prime}=P_{\bar{\gamma}}\left(P_{\alpha}(t)\right), t_{0}^{\prime \prime}=P_{\bar{\delta}}\left(P_{\beta}(t)\right)$.
To complete the proof we must show (ii) and $t_{0}^{\prime}=t_{0}^{\prime \prime}$.
Using Fact 4.11, Lemma 4.23 (ii) and (4), we obtain

$$
\begin{aligned}
t_{0}^{\prime} t^{\prime} t^{\prime \prime}=P_{\gamma}^{-}\left(P_{\alpha}(t)\right) & \cdot S_{\gamma}\left(P_{\alpha}(t)\right) \cdot S_{\bar{\alpha}}^{-}\left(P_{\alpha \cup \beta}(t)\right) \\
& \left.=P_{\alpha}(t) \cdot S_{\alpha}^{-}\left(P_{\alpha \cup \beta}(t)\right)=P_{\alpha}\left(P_{\alpha \cup \beta}(t)\right) \cdot S_{\bar{\alpha}}\left(P_{\alpha \cup \beta}(t)\right)=P_{\alpha \cup \beta}(t)\right) .
\end{aligned}
$$

Analogously we get $t_{0}^{\prime \prime} t^{\prime \prime} t^{\prime}=P_{\alpha \cup \beta}(t)$.
But by (i) $\operatorname{Dom}\left(t^{\prime}\right) \cap \operatorname{Dom}\left(\mathrm{t}^{\prime \prime}\right)=\varnothing$, which implies $t^{\prime} t^{\prime \prime}=t^{\prime} t^{\prime \prime}$, thus $P_{\alpha \cup \beta}(t)=t_{0}^{\prime} t^{\prime} t^{\prime \prime}=t_{0}^{\prime \prime} t^{\prime \prime} t^{\prime}=t_{0}^{\prime \prime} t^{\prime} t^{\prime \prime}$ and by the cancellation property $t_{0}^{\prime}=t_{0}^{\prime \prime}$.

Finally note that (v) is an immediate consequence of (i) and (iii).
Lemma 4.26: Let $t, r \in E(\Sigma, I), \quad P_{\alpha}(t) \approx_{E} P_{\alpha}(r), P_{\beta}(t) \approx_{E} P_{\beta}(r)$ for α, $\beta \subset$ Proc. Moreover, let $P_{\alpha \cup \beta}(t)=t_{0} t^{\prime} t^{\prime \prime}, P_{\alpha \cup \beta}(r)=r_{0} r^{\prime} r^{\prime \prime}$ be the factorizations of $P_{\alpha \cup \beta}(t)$ and $P_{\alpha \cup \beta}(r)$ defined in Lemma 4.25. And finally let C_{α}, C_{β} be the canonical isomorphisms of LAST $\left(P_{\alpha}(t)\right)$, LAST $\left(P_{\alpha}(r)\right)$ and LAST $\left(P_{\beta}(t)\right)$,$\operatorname{LAST}\left(P_{\beta}(r)\right)$. Then
(i) $\operatorname{Max}\left(t_{0}\right) \subset \operatorname{LAST}\left(P_{\alpha}(t)\right) \cap \operatorname{LAST}\left(P_{\beta}(t)\right) \cap \operatorname{LAST}\left(P_{\alpha \cup \beta}(t)\right)$;
(ii) $\forall x \in \operatorname{Max}\left(t_{0}\right), C_{\alpha}(x)=C_{\beta}(x) \in \operatorname{Max}\left(r_{0}\right)$;
(iii) $\operatorname{Dom}\left(t^{\prime}\right)=\operatorname{Dom}\left(r^{\prime}\right), \operatorname{Dom}\left(t^{\prime \prime}\right)=\operatorname{Dom}\left(r^{\prime \prime}\right)$.

Proof: Let $\gamma=\operatorname{Dom}\left(t^{\prime}\right), \delta=\operatorname{Dom}\left(t^{\prime \prime}\right)$. By Lemma 4.25 (iv)

$$
t_{0}=P_{\bar{\gamma}}\left(P_{\alpha}(t)\right)=P_{\bar{\delta}}\left(P_{\beta}(t)\right)
$$

and therefore by Lemma 4.22 if $x \in \operatorname{Max}\left(t_{0}\right)$ then

$$
\exists i \in \alpha, \quad \exists j \in \bar{\gamma}, \quad x=\operatorname{last}_{j}^{j}\left(P_{\alpha}(t)\right)=\operatorname{last}_{j}^{i}\left(P_{\alpha}(t)\right)
$$

Now, since $i \in \alpha$, we can apply Lemma 4.18 (i) to obtain $\operatorname{last}_{j}^{i}\left(P_{\alpha}(t)\right)=\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(\mathrm{t})\right)$. In the same way we obtain that

$$
\exists k \in \beta, \quad \exists l \in \bar{\delta}, \quad x=\operatorname{last}_{l}^{l}\left(P_{\beta}(t)\right)=\operatorname{last}_{l}^{k}\left(P_{\beta}(t)\right)=\operatorname{last}_{l}^{k}\left(P_{\alpha \cup \beta}(t)\right),
$$

which proves (i). We shall now prove that

$$
\begin{equation*}
\text { if } \quad x \in \operatorname{Max}\left(t_{0}\right) \text { then } C_{\alpha}(x)=C_{\beta}(x) . \tag{1}
\end{equation*}
$$

Let i, j, k, l be as in the preceding part of the proof. Then, since $P_{\alpha}(t) \approx_{E} P_{\alpha}(r)$ and $P_{\beta}(t) \approx_{E} P_{\beta}(r)$, we get
$\operatorname{label}_{r}\left(\operatorname{last}_{j}^{i}\left(P_{\alpha}(r)\right)\right)=\operatorname{label}_{t}\left(\operatorname{last}_{j}^{i}\left(P_{\alpha}(t)\right)\right)=\operatorname{label}_{t}(x)$

$$
=\operatorname{label}_{t}\left(\operatorname{last}_{l}^{k}\left(P_{\beta}(t)\right)\right)=\operatorname{label}_{r}\left(\operatorname{last}_{l}^{k}\left(\mathrm{P}_{\beta}(\mathrm{r})\right)\right)
$$

But, since $i \in \alpha, k \in \beta$, applying once again Lemma 4.18 (i) we obtain

$$
\operatorname{last}_{j}^{i}\left(P_{\alpha}(r)\right)=\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(r)\right), \quad \operatorname{last}_{l}^{k}\left(P_{\beta}(r)\right)=\operatorname{last}_{l}^{k}\left(P_{\alpha \cup \beta}(r)\right) .
$$

Having the same label, the elements last ${ }_{j}^{i}\left(P_{\alpha \cup \beta}(r)\right)$ and last ${ }_{l}^{k}\left(P_{\alpha \cup \beta}(r)\right)$ must be equal, and therefore

$$
C_{\alpha}(x)=\operatorname{last}_{j}^{i}\left(P_{\alpha}(r)\right)=\operatorname{last}_{l}^{k}\left(P_{\beta}(r)\right)=C_{\beta}(x),
$$

which concludes the proof of (1).
Let $x^{\prime}:=C_{\alpha}(x)=C_{\beta}(x)$. Then

$$
x^{\prime} \in \operatorname{LAST}\left(P_{\alpha}(r)\right) \cap \operatorname{LAST}\left(P_{\beta}(r)\right) \subset O\left(P_{\alpha}(r)\right) \cap O\left(P_{\beta}(r)\right)
$$

and by Lemma $4.25(\mathrm{v}) x^{\prime} \in O\left(r_{0}\right)$.
To achieve (ii) is remains to prove that $x^{\prime} \in \operatorname{Max}\left(r_{0}\right)$. Suppose the contrary, $x^{\prime} \notin \operatorname{Max}\left(r_{0}\right)$. Then for some $z^{\prime} \in \operatorname{Max}\left(r_{0}\right), x^{\prime}<_{r} z^{\prime}$. We now apply point (i) of the thesis and (1) substituting $z^{\prime}, C_{\alpha}^{-1}, C_{\beta}^{-1}, r$ for $x, C_{\alpha}, C_{\beta}, t$. Then we obtain

$$
z^{\prime} \in \operatorname{LAST}\left(P_{\alpha}(r)\right) \cap \operatorname{LAST}\left(P_{\beta}(r)\right) \cap \operatorname{LAST}\left(\mathrm{P}_{\alpha \cup \beta}(r)\right)
$$

and $z:=C_{\alpha}^{-1}\left(z^{\prime}\right)=C_{\beta}^{-1}\left(z^{\prime}\right)$. Therefore

$$
z \in \operatorname{LAST}\left(\mathrm{P}_{\alpha}(\mathrm{t})\right) \cap \operatorname{LAST}\left(P_{\beta}(t)\right) \subset O\left(P_{\alpha}(t)\right) \cap O\left(P_{\beta}(t)\right)=O\left(t_{0}\right)
$$

But since C_{α}^{-1} is an isomorphism,

$$
x=C_{\alpha}^{-1}\left(x^{\prime}\right)<t C_{\alpha}^{-1}\left(z^{\prime}\right)=z, \quad x, z \in O\left(t_{0}\right)
$$

in contradiction with the assumption $x \in \operatorname{Max}\left(t_{0}\right)$.
(iii) By (i) $\operatorname{Max}\left(t_{0}\right) \subset \operatorname{LAST}\left(\mathrm{P}_{\alpha}(t)\right)$ and by Lemma 4.25 (ii) $P_{\alpha}(t)=t_{0} \cdot t^{\prime}$. Therefore $i \in \operatorname{Dom}\left(t^{\prime}\right)$ iff

$$
\begin{equation*}
\neg \exists x \in \operatorname{Max}\left(t_{0}\right), \operatorname{last}_{i}^{i}\left(P_{\alpha}(t)\right) \leqq{ }_{t} x \tag{2}
\end{equation*}
$$

By (ii) $C_{\alpha}\left(\operatorname{Max}\left(t_{0}\right)\right) \subset \operatorname{Max}\left(r_{0}\right)$. On the other hand, applying (ii) to C_{α}^{-1} we obtain $C_{\alpha}^{-1}\left(\operatorname{Max}\left(r_{0}\right)\right) \subset \operatorname{Max}\left(t_{0}\right)$, thus $C_{\alpha}\left(\operatorname{Max}\left(t_{0}\right)\right)=\operatorname{Max}\left(r_{0}\right)$. Moreover
$\operatorname{LAST}\left(P_{\alpha}(t)\right)$ and LAST $\left(P_{\alpha}(r)\right)$ are canonically isomorphic. Thus the condition (2) above holds for $P_{\alpha}(t)$ iff it holds for $P_{\alpha}(r)$ and therefore $\operatorname{Dom}\left(t^{\prime}\right)=$ $\operatorname{Dom}\left(r^{\prime}\right)$. For the same reasons $\operatorname{Dom}\left(t^{\prime \prime}\right)=\operatorname{Dom}\left(r^{\prime \prime}\right)$.

Proposition 4.27: Let $t, r \in E(\Sigma, I)$. If $P_{\alpha}(t) \approx_{E} P_{\alpha}(r)$ and $P_{\beta}(t) \approx_{E} P_{\beta}(r)$, $\alpha, \beta \subset \operatorname{Proc}$, then $P_{\alpha \cup \beta}(t) \approx_{E} P_{\alpha \cup \beta}(r)$.

Proof: Let $P_{\alpha \cup \beta}(t)=t_{0} t^{\prime} t^{\prime \prime}, P_{\alpha \cup \beta}(r)=r_{0} r^{\prime} r^{\prime \prime}$ be the factorizations defined in Lemma 4.25. By Lemma 4.26 (iii)

$$
\gamma:=\operatorname{Dom}\left(t^{\prime}\right)=\operatorname{Dom}\left(r^{\prime}\right), \quad \delta:=\operatorname{Dom}\left(t^{\prime \prime}\right)=\operatorname{Dom}\left(r^{\prime \prime}\right)
$$

First we prove that
$\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(t)\right)=\left\{\begin{array}{l}\operatorname{last}_{j}^{i}\left(P_{\alpha}(t)\right) \quad \text { if } \quad i \in \gamma \\ \operatorname{last}_{j}^{i}\left(P_{\beta}(t)\right) \quad \text { if } \quad i \in \delta \\ \operatorname{last}_{j}^{i}\left(P_{\alpha}(t)\right)=\operatorname{last}_{j}^{i}\left(P_{\beta}(t)\right) \quad \text { if } \quad i \notin \gamma \cup \delta\end{array}\right.$
Consider the case $i \in \gamma$. Using Lemmas 4.24 and 4.25 , we obtain

$$
P_{i}\left(P_{\alpha \cup \beta}(t)\right)=P_{i}\left(P_{\alpha}(t) \cdot t^{\prime \prime}\right)=P_{i \cup \xi}\left(P_{\alpha}(t)\right) \cdot P_{i}\left(t^{\prime \prime}\right),
$$

with $\xi=\operatorname{Dom}\left(P_{i}\left(t^{\prime \prime}\right)\right)$, but $i \in \gamma$ implies $i \notin \delta$ and $P_{i}\left(t^{\prime \prime}\right)=\varepsilon, \xi=\varnothing$, whence $P_{i}\left(P_{\alpha \cup \beta}(t)\right)=P_{i}\left(P_{\alpha}(t)\right)$. But

$$
\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(\mathrm{t})\right)=\operatorname{last}_{j}^{j}\left(P_{i}\left(P_{\alpha \cup \beta}(t)\right)\right),
$$

which implies (1) for $i \in \gamma$. In the other cases we argue analogously. Clearly, (1) also holds if we replace t by r.

We claim that

$$
\left.\begin{array}{c}
\forall i, j \in \operatorname{Proc} \tag{2}\\
\operatorname{label}_{t}\left(\operatorname{last}_{j}^{i}\left(\mathrm{P}_{\alpha \cup \beta}(t)\right)\right)=\operatorname{label}_{r}\left(\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(r)\right)\right)
\end{array}\right\}
$$

Indeed, by (1), if $i \in \gamma$ then

$$
\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(t)\right)=\operatorname{last}_{j}^{i}\left(P_{\alpha}(t)\right)
$$

and

$$
\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(r)\right)=\operatorname{last}_{j}^{i}\left(P_{\alpha}(r)\right)
$$

but $P_{\alpha}(t) \approx_{E} P_{\alpha}(r)$ yields

$$
\operatorname{label}_{t}\left(\operatorname{last}_{j}^{i}\left(P_{\alpha}(t)\right)\right)=\operatorname{label}_{r}\left(\operatorname{last}_{j}^{i}\left(P_{\alpha}(r)\right)\right)
$$

which implies (2). In the other cases we argue in the same way. We shall now verify the following condition
$\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(t)\right) \in \operatorname{LAST}\left(P_{\alpha}(t)\right)$

$$
\begin{equation*}
\Leftrightarrow \operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(r)\right) \in \operatorname{LAST}\left(P_{\alpha}(r)\right) \tag{3}
\end{equation*}
$$

Two cases arise.
In the case $i \in \gamma$, by (1),

$$
\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(t)\right)=\operatorname{last}_{j}^{i}\left(P_{\alpha}(t)\right) \in \operatorname{LAST}\left(P_{\alpha}(t)\right)
$$

and

$$
\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(r)\right)=\operatorname{last}_{j}^{i}\left(P_{\alpha}(r)\right) \in \operatorname{LAST}\left(P_{\alpha}(r)\right) .
$$

On the other hand, if $i \notin \gamma$ then $\operatorname{last}{ }_{j}^{i}\left(P_{\alpha \cup \beta}(t)\right)=\operatorname{last}{ }_{j}^{i}\left(P_{\beta}(t)\right)$. Assume in addition that last ${ }_{j}^{i}\left(P_{\beta}(t)\right) \in \operatorname{LAST}\left(P_{\alpha}(t)\right)$. Then the following implications hold $\operatorname{last}_{j}^{i}\left(P_{\beta}(t)\right) \in \operatorname{LAST}\left(P_{\alpha}(t)\right) \cap \operatorname{LAST}\left(P_{\beta}(t)\right)$

$$
\begin{aligned}
& \subset O\left(P_{\alpha}(t)\right) \cap O\left(P_{\beta}(t)\right)=O\left(t_{0}\right) \\
\Rightarrow \quad \exists x \in \operatorname{Max}\left(t_{0}\right), & \operatorname{last}_{j}^{i}\left(P_{\beta}(t)\right) \leqq_{t} x \\
& \Rightarrow \quad \operatorname{last}_{j}^{i}\left(P_{\beta}(r)\right) \leqq_{r} C_{\beta}(x) \in \operatorname{Max}\left(r_{0}\right),
\end{aligned}
$$

the last implication follows from the definition of C_{β} and from Lemma 4.26 (ii). But since $i \notin \gamma$, by (1),

$$
\operatorname{last}_{j}^{i}\left(P_{\beta}(r)\right)=\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(r)\right)
$$

and therefore

$$
\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(r)\right) \in O\left(r_{0}\right) \subset O\left(P_{\alpha}(r)\right)
$$

and finally, since $P_{\alpha}(r)$ is a prefix of $P_{\alpha \cup \beta}(r)$, by Lemma 4. 20, we get

$$
\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(r)\right) \in \operatorname{LAST}\left(P_{\alpha}(r)\right)
$$

This concludes the proof of (3) in one direction. Replacing r by t and vice versa we get the converse.

Let $x=\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(t)\right), \quad y=\operatorname{last}_{l}^{k}\left(P_{\alpha \cup \beta}(t)\right)$ and $x<_{t} y$. Then $\operatorname{Dom}\left(t^{\prime}\right) \cap-$ $\operatorname{Dom}\left(t^{\prime \prime}\right)=\varnothing$ implies that either $x, y \in O\left(P_{\alpha}(t)\right)$ or $x, y \in O\left(P_{\beta}(t)\right)$. In the first case, by Lemma $4.20, x, y \in \operatorname{LAST}\left(P_{\alpha}(t)\right)$ and by (3) the corresponding elements $x^{\prime}=\operatorname{last}_{j}^{i}\left(P_{\alpha \cup \beta}(r)\right)$ and $y^{\prime}=\operatorname{last}_{l}^{k}\left(P_{\alpha \cup \beta}(r)\right)$ belong to $\operatorname{LAST}\left(P_{\alpha}(r)\right)$. Moreover, by (2), $\operatorname{label}_{t}(x)=\operatorname{label}_{r}\left(x^{\prime}\right)$ and $\operatorname{label}_{t}(y)=\operatorname{label}_{r}\left(y^{\prime}\right)$, thus $P_{\alpha}(t) \approx_{E} P_{\alpha}(r)$ and $x<_{t} y$ imply $x^{\prime}<_{r} y^{\prime}$. The case $x, y \in O\left(P_{\beta}(t)\right)$ can be
handled in the same way. Thus we have proved that the partial orders $\leqq_{t} \mid \operatorname{LAST}\left(P_{\alpha \cup \beta}(t)\right)$ and $\leqq_{r} \mid \operatorname{LAST}\left(P_{\alpha \cup \beta}(r)\right)$ are canonically isomorphic and this fact and (2) give the thesis.

Lemma 4.28: Let $t, r \in E(\Sigma, I)$ and $t \approx_{E} r$. Then for all $\eta, \xi \subset$ Proc, $\operatorname{Dom}\left(P_{\eta}\left(S_{\xi}(t)\right)\right)=\operatorname{Dom}\left(P_{\eta}\left(S_{\xi}(r)\right)\right)$.

Proof: Let $\operatorname{Pref}_{\eta}\left(\operatorname{Suff}_{\xi}(t)\right)$ denote the following subset of $O(t)\{x \in O(t): x-$ $\left.\in \operatorname{Suff}_{\xi}(t) \wedge \exists y \in \operatorname{Suff}_{\xi}(t), \quad\left(x \leqq_{t} y \wedge \eta \cap \operatorname{Dom}(y) \neq \varnothing\right)\right\}$. Clearly, from Fact 4.6 it follows that $\operatorname{Pref}_{\eta}\left(\operatorname{Suff}_{\xi}(t)\right)$ contains the action occurrences corresponding to the subtrace $P_{\eta}\left(S_{\xi}(t)\right)$ of t. We shall show that

$$
\begin{equation*}
\operatorname{Pref}_{\eta}\left(\operatorname{Suff}_{\xi}(t)\right)=\operatorname{Suff}_{\xi}(t) \cap \operatorname{Pref}_{\eta}(t) . \tag{1}
\end{equation*}
$$

Indeed, again by Fact 4.6, $x \in \operatorname{Suff}_{\xi}(t) \cap \operatorname{Pref}_{\eta}(t)$ iff x fulfils the condition

$$
\begin{equation*}
x \in \operatorname{Suff}_{\xi}(t) \wedge \exists y \in O(t), \quad(x \leqq y \wedge \eta \cap \operatorname{Dom}(y) \neq \varnothing) . \tag{2}
\end{equation*}
$$

Clearly, $x \in \operatorname{Pref}_{\eta}\left(\operatorname{Suff}_{\xi}(t)\right)$ implies (2), since $\operatorname{Suff}_{\xi}(t) \subset O(t)$. On the other hand, $x \in \operatorname{Suff}_{\xi}(t) \wedge x \leqq y$ implies $y \in \operatorname{Suff}_{\xi}(t)$, thus y in (2) belongs to $\operatorname{Suff}_{\xi}(t)$ and (2) implies $x \in \operatorname{Pref}_{\eta}\left(\operatorname{Suff}_{\xi}(t)\right)$, which concludes the proof of (1). Replacing $\operatorname{Suff}_{\xi}(t)$ by $O(t)-\operatorname{Pref}_{\bar{\xi}}(t)$ in (1) we obtain

$$
\begin{equation*}
\operatorname{Pref}_{\eta}\left(\operatorname{Suff}_{\xi}(t)\right)=\operatorname{Pref}_{\eta}(t)-\operatorname{Pref}_{\bar{\xi}}(t) . \tag{3}
\end{equation*}
$$

From (3) it follows that

$$
\begin{equation*}
i \in \operatorname{Dom}\left(P_{\eta}\left(S_{\xi}(t)\right)\right) \quad \text { iff } \quad \operatorname{last}_{i}^{i}\left(P_{\bar{\xi}}(t)\right)<_{t} \operatorname{last}_{i}^{i}\left(P_{\eta}(t)\right) \tag{4}
\end{equation*}
$$

and by Lemma 4.18 (ii) the last condition is equivalent with

$$
\begin{equation*}
\max \left\{\operatorname{last}_{i}^{j}(t): j \in \bar{\xi}\right\}<{ }_{t} \max \left\{\operatorname{last}_{i}^{j}(t): j \in \eta\right\} . \tag{5}
\end{equation*}
$$

Obviously, formulae analogous with (3), (4) and (5) hold for the trace r. Let C be the canonical isomorphism of $\leqq_{t} \mid \operatorname{LAST}(t)$ and $\leqq_{r} \mid \operatorname{LAST}(r)$. Then

$$
\max \left\{\operatorname{last}_{i}^{j}(t): j \in \bar{\xi}\right\}<{ }_{t} \max \left\{\operatorname{last}_{i}^{j}(t): j \in \eta\right\}
$$

iff

$$
C\left(\max \left\{\operatorname{last}_{i}^{j}(t): j \in \bar{\xi}\right\}\right)<_{r} C\left(\max \left\{\operatorname{last}_{i}^{j}(t): j \in \eta\right\}\right)
$$

iff

$$
\max \left\{\operatorname{last}_{i}^{j}(r): j \in \bar{\xi}\right\}<_{r} \max \left\{\operatorname{last}_{i}^{j}(r): j \in \eta\right\}
$$

whence by (4) $i \in \operatorname{Dom}\left(P_{\eta}\left(S_{\xi}(t)\right)\right)$ iff $i \in \operatorname{Dom}\left(P_{\eta}\left(S_{\xi}(r)\right)\right)$.

Proof of Theorem 4.15: Let $P_{\alpha \cup \beta}(t)=t_{0} t^{\prime} t^{\prime \prime} ., P_{\alpha \cup \beta}(r)=r_{0} r^{\prime} r^{\prime \prime}$ be the factorizations of $P_{\alpha \cup \beta}(t)$ and $P_{\alpha \cup \beta}(r)$ defined in Lemma 4.25. By Lemma 4.26 (iii) $\gamma:=\operatorname{Dom}\left(t^{\prime}\right)=\operatorname{Dom}\left(r^{\prime}\right)$ and $\delta:=\operatorname{Dom}\left(t^{\prime \prime}\right)=\operatorname{Dom}\left(r^{\prime \prime}\right)$. By Proposition 4.27, to complete the proof of Theorem 4.15 it suffices to show that $P_{\alpha \cup \beta}(t) \approx{ }_{T} P_{\alpha \cup \beta}(r)$. Let $\eta \subset$ Proc. Then by Lemmas 4.24 and 4.25 we have

$$
S_{\eta}\left(P_{\alpha \cup \beta}(t)\right)=S_{\eta}\left(P_{\alpha}(t) \cdot t^{\prime \prime}\right)=S_{\eta-\xi_{1}}\left(P_{\alpha}(t)\right) \cdot S_{\eta}\left(t^{\prime \prime}\right)
$$

and

$$
S_{\eta}\left(P_{\alpha \cup \beta}(r)\right)=S_{\eta}\left(P_{\alpha}(r) \cdot r^{\prime \prime}\right)=S_{\eta-\xi_{2}}\left(P_{\alpha}(r)\right) \cdot S_{\eta}\left(r^{\prime \prime}\right),
$$

with

$$
\xi_{1}=\operatorname{Dom}\left(P_{\eta}^{-}\left(t^{\prime \prime}\right)\right), \quad \xi_{2}=\operatorname{Dom}\left(P_{\eta}^{-}\left(r^{\prime \prime}\right)\right)
$$

But by Lemma 4.25 (iv) $t^{\prime \prime}=S_{\delta}\left(P_{\beta}(t)\right)$ and $r^{\prime \prime}=S_{\delta}\left(P_{\beta}(r)\right)$. Thus finally

$$
\xi_{1}=\operatorname{Dom}\left(P_{\eta}-\left(S_{\delta}\left(P_{\beta}(t)\right)\right)\right) \quad \text { and } \quad \xi_{2}=\operatorname{Dom}\left(P_{\eta}-\left(S_{\delta}\left(P_{\beta}(r)\right)\right)\right) .
$$

Since $P_{\beta}(t) \approx_{E} P_{\beta}(r)$, from Lemma 4.28 it follows that $\xi:=\xi_{1}=\xi_{2}$.
Moreover $\quad P_{\alpha}(t) \approx_{T} P_{\alpha}(r)$ yields $S_{\eta-\xi}\left(P_{\alpha}(t)\right) \sim_{T} S_{\eta-\xi}\left(P_{\alpha}(r)\right)$, whereas $P_{\beta}(t) \approx{ }_{T} P_{\beta}(r)$ and Lemma 4.23 (i) yield

$$
\begin{aligned}
S_{\eta}\left(t^{\prime \prime}\right)=S_{\eta}\left(S_{\delta}\left(P_{\beta}(t)\right)\right)=S_{\eta \cap \delta}\left(P_{\beta}(t)\right) \sim_{T} S_{\eta \cap \delta}\left(P_{\beta}(r)\right) & \\
& =S_{\eta}\left(S_{\delta}\left(P_{\beta}(r)\right)\right)=S_{\eta}\left(r^{\prime \prime}\right) .
\end{aligned}
$$

Therefore

$$
S_{\eta}\left(P_{\alpha \cup \beta}(t)\right)=S_{\eta-\xi}\left(P_{\alpha}(t)\right) \cdot S_{\eta}\left(t^{\prime \prime}\right) \sim_{T} S_{\eta-\xi}\left(P_{\alpha}(r)\right) \cdot S_{\eta}\left(r^{\prime \prime}\right)=S_{\eta}\left(P_{\alpha \cup \beta}(r)\right),
$$

which concludes the proof.
Proposition 4.29: Let $t_{1}, \quad r_{1} \in E(\Sigma, I), \quad a \in \Sigma, \quad t_{2}=t_{1} a, \quad r_{2}=r_{1} a \quad$ and $\forall i \in \operatorname{Dom}(a), P_{i}\left(t_{1}\right) \approx_{E} P_{i}\left(r_{1}\right)$. Then

$$
\forall i \in \operatorname{Dom}(a), \quad P_{i}\left(t_{2}\right) \approx_{E} P_{i}\left(r_{2}\right) .
$$

Proof: Let $\operatorname{Dom}(a)=\alpha$. Then by Proposition $4.27 P_{\alpha}\left(t_{1}\right) \approx_{E} P_{\alpha}\left(r_{1}\right)$.
Let $i \in \alpha$. Then by Fact 4.8 (i), $P_{i}\left(t_{2}\right)=P_{\alpha}\left(t_{2}\right)=P_{\alpha}\left(t_{1}\right) . a$ and $P_{i}\left(r_{2}\right)=P_{\alpha}\left(r_{2}\right.$ $)=P_{\alpha}\left(r_{1}\right) \cdot a$.

Let $\#{ }_{a} t_{2}=m, \#_{a} r_{2}=k, x=a^{m} \in O\left(t_{2}\right), y=a^{k} \in O\left(r_{2}\right)$. By Lemma 4.18 (iv) we obtain

$$
\operatorname{last}_{j}^{i}\left(P_{\alpha}\left(t_{2}\right)\right)=\left\{\begin{array}{c}
\operatorname{last}_{j}^{i}\left(P_{\alpha}\left(t_{1}\right)\right) \quad \text { if } i \notin \alpha, \quad j \in \operatorname{Proc} \tag{1}\\
x \quad \text { if } i, j \in \alpha \\
\max \left\{\operatorname{last}_{j}^{k}\left(P_{\alpha}\left(t_{1}\right)\right): k \in \alpha\right\} \quad \text { if } \quad i \in \alpha, \quad j \notin \alpha
\end{array}\right.
$$

The same formula holds for the trace r_{2} if we replace x by y. Moreover, $\forall z \in O\left(P_{\alpha}\left(t_{1}\right)\right), z<_{t_{2}} x$ and $\forall z \in O\left(P_{\alpha}\left(r_{1}\right)\right), z<_{r_{2}} y$. Let C_{1} be the canonical isomorphism of $\leqq_{t_{1}} \mid \operatorname{LAST}\left(P_{\alpha}\left(t_{1}\right)\right)$ and $\leqq r_{1} \mid \operatorname{LAST}\left(P_{\alpha}\left(r_{1}\right)\right)$. Then the arguments above show that C_{2} defined by

$$
\begin{gathered}
C_{2}(x)=y, \quad \forall z \in \operatorname{LAST}\left(P_{\alpha}\left(t_{2}\right)\right)-\operatorname{LAST}\left(P_{\alpha}\left(t_{1}\right)\right), \\
C_{2}(z)=C_{1}(z)
\end{gathered}
$$

is the canonical isomorphism of $\leqq_{t_{2}} \mid \operatorname{LAST}\left(P_{\alpha}\left(t_{2}\right)\right)$ and $\leqq_{r_{2}} \mid \operatorname{LAST}\left(P_{\alpha}\left(r_{2}\right)\right)$. Moreover, since

$$
\begin{gathered}
\forall z \in \operatorname{LAST}\left(P_{\alpha}\left(t_{2}\right)\right)-\{x\} \\
\operatorname{label}_{t_{1}}(z)=\operatorname{label}_{r_{1}}\left(C_{1}(z)\right)=\operatorname{label}_{r_{2}}\left(C_{2}(z)\right)
\end{gathered}
$$

and

$$
P_{x}\left(t_{2}\right)=P_{\alpha}\left(t_{2}\right), \quad P_{y}\left(r_{2}\right)=P_{\alpha}\left(r_{2}\right)
$$

Algorithm 4.9 will attach the same label to x in t_{2} and to y in r_{2}.
Proof of Theorem 4.16: Let $\operatorname{Dom}(a)=\alpha$. Then by Theorem 4.15 $P_{\alpha}\left(t_{1}\right) \approx P_{\alpha}\left(r_{1}\right)$ and by Proposition $4.29 P_{\alpha}\left(t_{2}\right) \approx_{E} P_{\alpha}\left(r_{2}\right)$. Let $i \in \alpha$. Then Fact 4.8 (i) yields

$$
P_{i}\left(t_{2}\right)=P_{\alpha}\left(t_{2}\right)=P_{\alpha}\left(t_{1}\right) \cdot a
$$

and

$$
P_{i}\left(r_{2}\right)=P_{\alpha}\left(r_{2}\right)=P_{\alpha}\left(r_{1}\right) \cdot a .
$$

Thus it remains to prove that $P_{\alpha}\left(t_{2}\right) \approx_{T} P_{\alpha}\left(r_{2}\right)$. Let $\eta \subset$ Proc. Then by Lemma 4.24

$$
S_{\eta}\left(P_{\alpha}\left(t_{2}\right)\right)=S_{\eta}\left(P_{\alpha}\left(t_{1}\right) \cdot a\right)=S_{\eta-\gamma}\left(P_{\alpha}\left(t_{1}\right)\right) \cdot S_{\eta}(a)
$$

and similarly

$$
S_{\eta}\left(P_{\alpha}\left(r_{2}\right)\right)=S_{\eta-\gamma}\left(P_{\alpha}\left(r_{1}\right)\right) \cdot S_{\eta}(a)
$$

vol. $21, \mathrm{n}^{\circ} 2,1987$
where $\gamma=\operatorname{Dom}\left(P_{\eta}^{-}(a)\right)$.
Since $P_{\alpha}\left(t_{1}\right) \approx_{T} P_{\alpha}\left(r_{1}\right)$, we have

$$
S_{\eta-\gamma}\left(P_{\alpha}\left(t_{1}\right)\right) \sim_{T} S_{\eta-\gamma}\left(P_{\alpha}\left(r_{1}\right)\right)
$$

Multiplying both sides by $S_{\eta}(a)$ we get $S_{\eta}\left(P_{\alpha}\left(t_{2}\right)\right) \sim_{T} S_{\eta}\left(P_{\alpha}\left(r_{2}\right)\right)$.

5. LOOSLY COOPERATING FINITE ASYNCHRONOUS AUTOMATA

The synchronization mechanism used in finite asynchronous automata is rather complicated. We may ask if it can be simplified without loss of computability power. In ASYN automata when we perform an action $a \in \Sigma$, the next state of a process $i \in \operatorname{Dom}(a)$ depends on a and it depends on current states of all other processes from $\operatorname{Dom}(a)$. In this section we examine parallel automata with a simpler synchronization mechanism.

A loosly cooperating asynchronous automaton, LCASYN in abbreviation, is a tuple $\mathbb{A}=\left(\mathbb{P}_{1}, \ldots, \mathbb{P}_{n}, \mathbb{F}\right)$, where for $i \in \bar{n}, \mathbb{P}_{i}=\left(\Sigma_{i}, S_{i}, s_{i}^{0}, \delta_{i}\right)$ is the i-th process. $\Sigma_{i}, S_{i}, s_{i}^{0}$ have the same meaning as in the case of ASYN automata.
$\delta_{i}: S_{i} \times \Sigma_{i} \rightarrow \mathscr{P}\left(S_{i}\right)$ is the next-state function of \mathbb{P}_{i}. As previously $\mathbb{F} \subset S=\times S_{i}$ is the set of final states. \mathbb{A} is deterministic if

$$
\forall i \in \bar{n}, \quad \forall s_{i} \in S_{i}, \quad \forall a \in \Sigma_{i}, \quad \operatorname{card}\left(\delta_{i}\left(s_{i}, a\right)\right) \leqq 1
$$

The transition between global states is defined as follows, let

$$
\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right),\left(s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}\right) \in S, \quad a \in \Sigma
$$

then

$$
\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \stackrel{a}{\Rightarrow} \quad\left(s_{1}^{\prime \prime}, \ldots, s_{n}^{\prime \prime}\right)
$$

if $\forall i \notin \operatorname{Dom}(a), s_{i}^{\prime}=s_{i}^{\prime \prime}$ and $\forall i \in \operatorname{Dom}(a), s_{i}^{\prime \prime} \in \delta_{i}\left(s_{i}^{\prime}, a\right)$.
In the same way as in the case of an ASYN automaton we define how traces act on \mathbb{A}, the independency relation $I_{\mathbb{A}}$, the language $L(\mathbb{A})$ and the trace language $T(\mathbb{A})$ recognized by \mathbb{A}. Every LCASYN can be transformed to an ASYN automaton if we define

$$
\delta_{a}\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{k}}^{\prime}\right)=\left(\delta_{i_{1}}\left(s_{i_{1}}^{\prime}, a\right), \ldots, \delta_{i_{k}}\left(s_{i_{k}}^{\prime}, a\right)\right)
$$

for $\left\{i_{1}, \ldots, i_{k}\right\}=\operatorname{Dom}(a)$.

Theorem 5.1: For every finite trace language $T \subset E(\Sigma, I)$ there exists a loosly cooperating finite asynchronous automaton \mathbb{A} such that $I_{A}=I$ and $T(A)=T$.

Proof: Let $D=\Sigma \times \Sigma-I$ and Cliques $(D)=\left\{\Sigma_{1}, \ldots, \Sigma_{n}\right\}$ and let $h_{i}: \Sigma^{*} \rightarrow \Sigma_{i}^{*}$ be projections of Σ^{*} onto $\Sigma_{i}^{*}, i \in \bar{n}$. We consider the languages $L_{i}=\left\{h_{i}(t): t \in T\right\}$ (see Proposition 2.12). Every L_{i} is finite. We can build a deterministic finite state acceptor $A_{i}=\left(\Sigma_{i}, Q_{i}, q_{0}^{i}, \delta_{i}, F_{i}\right)$ of L_{i} such that

$$
\forall u, v \in L_{i}, u \neq v \quad \Rightarrow \quad \delta_{i}\left(q_{0}^{i}, u\right) \neq \delta_{i}\left(q_{0}^{i}, v\right) .
$$

Then $\mathbb{A}=\left(\mathbb{P}_{1}, \ldots, \mathbb{P}_{n}, \mathbb{F}\right)$, where for all $i \in \bar{n} \mathbb{P}_{i}=\left(\Sigma_{i}, Q_{i}, q_{0}^{i}, \delta_{i}\right)$ and

$$
\mathbb{F}=\left\{\left(q_{1}, \ldots, q_{n}\right): \exists u_{1} \in L_{1}, \ldots, \exists u_{n} \in L_{n}, \forall i \in \bar{n}, \delta_{i}\left(q_{0}^{i}, u_{i}\right)=q_{i},| |_{i=1}^{n} u_{i} \in T\right\}
$$

By Proposition 2.12 this construction is correct.
Proposition 5.2: Let \mathbb{A} be can LCASYN automaton. Then there exists a deterministic LCASYN automaton \mathbb{B} such that $T(\mathbb{A})=T(\mathbb{B})$.

Proof: We can transform every process \mathbb{P}_{i} of \mathbb{A} to a deterministic process in exactly the same way as we transform a nondeterministic finite state acceptor to a deterministic f s a, changing suitably the set of final states.

Proposition 5.3: For every LCASYN automaton A there exists an LCASYN automaton \mathbb{B} in the normal form such $T(\mathbb{A})=T(\mathbb{B})$.

Proof: As in Proposition 4.3.
Theorem 5.4: There exist regular trace languages which are not recognizable by the loosly cooperating finite asynchronous automata.

A simple proof of the above theorem will be given in the next section.
By LCReg (Σ, I) we shall denote the class of trace languages recognized by LCASYN automata.

Proposition 5.5: If $T_{i} \in \operatorname{LCReg}\left(\Sigma_{i}, I_{i}\right), i=1,2$, then

$$
T=T_{1} \| T_{2} \in \operatorname{LCReg}(\Sigma, I)
$$

where $(\Sigma, I)=\left(\Sigma_{1}, I_{1}\right) \|\left(\Sigma_{2}, I_{2}\right)$.
Proof: Let $\mathbb{A}^{\prime}=\left(\mathbb{P}_{1}^{\prime}, \ldots, \mathbb{P}_{n}^{\prime}, \mathbb{F}^{\prime}\right), \mathbb{A}^{\prime \prime}=\left(\mathbb{P}_{1}^{\prime \prime}, \ldots, \mathbb{P}_{k}^{\prime \prime}, \mathbb{F}^{\prime \prime}\right)$ be LCASYN automata recognizing T_{1} and T_{2}. Then

$$
\mathbb{A}=\left(\mathbb{P}_{1}^{\prime}, \ldots, \mathbb{P}_{n}^{\prime}, \mathbb{P}_{1}^{\prime \prime}, \ldots, P_{k}^{\prime \prime}, \mathbb{F}\right)
$$

where

$$
\mathbb{F}=\left\{\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}, s_{1}^{\prime \prime}, \ldots, s_{k}^{\prime \prime}\right):\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \in \mathbb{F}^{\prime},\left(s_{1}^{\prime \prime}, \ldots, s_{k}^{\prime \prime}\right) \in \mathbb{F}^{\prime \prime}\right\}
$$

recognizes T.
Proposition 5.6: If $T_{1}, \quad T_{2} \in \operatorname{LCReg}(\Sigma, \eta)$ then $T_{1} \cup T_{2}, \quad T_{1} \cap T_{2} \in \operatorname{L-}$ CReg ($\Sigma, I)$.

Hint. Given LCASYN automata $A^{\prime}, A^{\prime \prime}$ in the normal form recognizing T_{1} and T_{2} we can combine their corresponding processes $\mathbb{P}_{i}^{\prime}, \mathbb{P}_{i}^{\prime \prime}$ applying the standard construction known from the automata theory.

6. AN ALGEBRAIC CHARACTERIZATION OF REGULAR TRACE LANGUAGES

Theorems 4.4 and 4.5 lead immediately to a new characterization of regular trace languages, different from that given by Ochmanski [13]. While preparing the revised version of our paper we learned about two papers of C. Duboc [7, 8], where, among other things, the results of this section are presented. Thus we give here only some hints, referring the reader to [8] for full proofs. Let (Σ, I) be a concurrent alphabet. If the independency relation is empty then, for $u \in \Sigma^{*},[u]_{I}=\{u\}$. Thus the monoids $E(\Sigma, \varnothing)$ and Σ^{*} are isomorphic. Under this isomorphism, regular trace languages are equivalent with regular languages. From now on every language L will be identified with a trace language $\{\{u\}: u \in L\} \subset E(\Sigma, \varnothing)$.

Theorem 6.1: Let (Σ, I) be a concurrent alphabet and Cliques $(D)=\left\{\Sigma_{1}, \ldots, \Sigma_{n}\right\}$. For every trace language $T \in \operatorname{LCReg}(\Sigma, I)$ there exist regular languages $L_{i j}, i \in \bar{k}, j \in \bar{n}$, such that $T=\bigcup_{i=1}\left(\|_{j=1}^{n} L_{i j}\right)$.

Proof: Let $A=\left(\mathbb{P}_{1}, \ldots, \mathbb{P}_{n}, \mathbb{F}\right)$ be an LCASYN automaton in the normal form recognizing T, for all $i \in \bar{n} \quad \mathbb{P}_{i}=\left(\Sigma_{i}, S_{i}, s_{i}^{0}, \delta_{i}\right)$. For every $s=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{F}$ we create the following finite state acceptors

$$
A_{s i}=\left(\Sigma_{i}, S_{i}, s_{i}^{0}, \delta_{i},\left\{s_{i}\right\}\right), \quad i \in \bar{n} .
$$

Then

$$
T(\mathbb{A})=\bigcup_{s \in F}\left(| |_{i=1}^{n} L\left(A_{s i}\right)\right), \quad(\Sigma, I)=| |_{i=1}^{n}\left(\Sigma_{i}, \varnothing\right)
$$

As an application of the above theorem we give a proof of Theorem 5.4. Let

$$
\begin{array}{rlrl}
L & =\left(\left(a b \cup a^{2} b^{2}\right) c\right)^{*}, & I=\{(a, b),(b, a)\} \\
\Sigma & =\{a, b, c\} & \text { and } & T=\left\{[u]_{\ell}: u \in L\right\} .
\end{array}
$$

This trace language is recognized by the ASYN automaton from Example 4.2. Let $L_{1}=\left(\left(a \cup a^{2}\right) c\right)^{*}$ and let $g:\{a, c\}^{*} \rightarrow\{b, c\}^{*}$ be the homomorphism defined by $g(a)=b, g(c)=c$. There for $x \in L_{1}$ there exists exactly one $y \in\{b, c\}^{*}, y=g(x)$, such that $x \| y \in T$. Thus T cannot be decomposed in the form given by Theorem 6.1.

Let LCReg be the union of the families $\operatorname{LCReg}(\Sigma, I)$ for all concurrent alphabets (Σ, I).

Corollary 6.2: LCReg is the least family \mathscr{R} of trace languages such that
(i) every regular language belongs to \mathscr{R}
(ii) \mathscr{R} is closed under \cup and $\|$.

Here \cup is understood as a partial operation defined only for trace languages over the same alphabets.

Proof: Immediate consequence of Propositions 5.5, 5.6 and Theorem 6.1.

Theorem 6.3: Let T be a regular trace language over a concurrent alphabet (Σ, I) and let Cliques $(\mathrm{D})=\left\{\Sigma_{1}, \ldots, \Sigma_{n}\right\}$. Then there exist
(i) a concurrent alphabet $(\widetilde{\Sigma}, \widetilde{I})$,

$$
\text { Cliques }(\tilde{D}) \hat{=}\left\{\tilde{\Sigma}_{1}, \ldots, \tilde{\Sigma}_{n}\right\}
$$

(ii) an elementary homomorphism $f: E(\tilde{\Sigma}, \widetilde{I}) \rightarrow E(\Sigma, I)$ such that $\forall i \in \bar{n}$, $f\left(\widetilde{\Sigma}_{i}\right)=\Sigma_{i}$;
(iii) a family of regular languages $L_{i j}, i \in \bar{k}, j \in \bar{n}$, where $\forall i \in \bar{k}, L_{i j} \subset \tilde{\Sigma}_{j}^{*}$ such that

$$
T=f\left(\bigcup_{i=1}^{k}\left(\|_{j=1}^{n} L_{i j}\right)\right) .
$$

Proof: Let $\mathbb{A}=\left(\mathbb{P}_{1}, \ldots, \mathbb{P}_{n}, \Delta, \mathbb{F}\right)$ be an ASYN automaton recognizing T. For every $a \in \Sigma, s^{\prime}, s^{\prime \prime} \in \underset{i \in \operatorname{Dom(a)}}{\mathrm{X}} S_{i}$, such that $s^{\prime \prime} \in \delta_{a}\left(s^{\prime}\right), \delta_{a} \in \Delta$, we create a new action $\left(s^{\prime}, a, s^{\prime \prime}\right) \in \tilde{\Sigma}$. We define $f\left(\left(s^{\prime}, a, s^{\prime \prime}\right)\right)=a$. The next-state functions
are defined in the following way, for $i_{j} \in \operatorname{Dom}(a)$,

$$
\delta_{i_{j}}\left(\left(s^{\prime}, a, s^{\prime \prime}\right), s_{i_{j}}^{\prime}\right)=s_{i_{j}}^{\prime \prime}
$$

where

$$
s^{\prime}=\left(s_{i_{1}}^{\prime}, \ldots, s_{i_{j}}^{\prime}, \ldots, s_{i_{k}}^{\prime}\right), \quad s^{\prime \prime}=\left(s_{i_{1}}^{\prime \prime}, \ldots, s_{i_{j}}^{\prime \prime}, \ldots, s_{i_{k}}^{\prime \prime}\right)
$$

In this way we obtain an LCASYN automaton and applying Theorem 6.1 and the homomorphism f defined above we have the thesis.

Let Reg be the union of all families $\operatorname{Reg}(\Sigma, I)$ for all concurrent alphabets (Σ, I).

Corollary 6.4: Reg is the least family \mathscr{R} of trace languages such that
(i) every regular language belongs to \mathscr{R};
(ii) \mathscr{R} is closed under $\|$ and \cup (here \cup is understood as a partial operation defined only for trace languages over the same alphabets);
(iii) for every $T \in \mathscr{R}$ over a concurrent alphabet (Σ, I) and for every elementary homomorphism

$$
f: \quad E(\Sigma, I) \rightarrow E\left(\Sigma^{\prime}, I^{\prime}\right), \quad f(T) \in \mathscr{R}
$$

Proof: By Theorem 6.3, Proposition 3.3, Lemmas 3.4, 3.5.
Conclusing remarks: The concept of the finite asynchronous automaton arises as a natural extension of the concept of the finite state acceptor when we pass from sequential to parallel computations. For this reason all questions and problems which have been considered for $f s a$ can be posed for the ASYN automata. In particular, infinite computations seem to be very interesting from the point of view of concurrency theory. However, the development of the theory of the asynchronous automata may need considerable efforts. A nother source of problems is concurrency theory, where questions concerning deadlock and fairness seem to be of greatest interest.

ACKNOWLEDGMENTS

The autor wishes to thank Ryszard Janicki for his suggestions and encouragement.
We are also grateful to A. Arnold for his helpful criticism that led to significant improvements in the paper.

REFERENCES

1. A. Bertoni, M. Brambilla, G. Mauri and N. Sabadinı, An Application of the Theory of Tree Partially Commutative Monoids: Asymptotic Densities of Trace Languages, Lecture Notes in Comp. Sci., Vol. 117, 1981, Springer-Verlag, pp. 205215.
2. A. Bertoni, G. Mauri and N. Sabadini, A Hierarchy of Regular Trace Languages and Some Combinatorial Applications, 2nd World Conf. on Mathematics at the Service of Men, Las Palmas, 1982.
3. P. Cartier and D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Math., Vol. 85, 1969, Springer-Verlag.
4. M. Clerbout and M. Latteux, Partial Commutations and Faithful Rational Transductions, Theoretical Comp. Science, Vol. 34, 1984, pp. 241-254.
5. R. Cori and Y. Metivier, Recognizable Subsets of Partially Abelian Monoids, Theoretical Comp. Science, Vol. 35, 1985, pp. 179-189.
6. R. Cori and D. Perrin, Sur la reconnaissabilité dans les monoïdes partiellement commutatifs libres, R.A.I.R.O. Inform. Théor., Vol. 19, 1985, pp. 21-32.
7. C. Duboc, Commutations dans les monoïdes libres: un cadre théoretique pour l'étude du parallélisme, Thèse de 3^{e} cycle, also Technical Report 86-25, Laboratoire Informatique Théoretique et Programmation, 1986.
8. C. Duboc, Mixed Product and Asynchronous Automata (submitted for publication).
9. S. Eilenberg, Automata, Languages and Machines, Vol. A, 1974, Academic Press.
10. R. Janicki, Synthesis of Concurrent Schemes, Lecture Notes in Comp. Sc., Vol. 64, 1978, Springer Verlag, pp. 298-307.
11. G. Lallement, Semigroups and Combinatorial Applications, 1979, J. Wiley and Sons, New York.
12. A. Mazurkiewicz, Concurrent Program Schemes and Their Interpretations, DAIMI-PB-78, A arhus University, 1977.
13. E. Ochmański, Regular Behaviour of Concurrent Schemes, E.A.T.C.S. Bulletin, No. 27, October 1985, pp. 56-67.
14. W. Reistg, Petrinetze. Eine Einführung, 1982, Springer Verlag.
15. M. W. Shields, Non-Sequential Behaviour: 1, Report CSR-120-82, Department of Comp. Science, University of Edinburgh, 1982.
16. P. H. Starke, Free Petri Net Languages, Lecture Notes in Comp. Sc., Vol. 64, Springer Verlag, pp. 506-515.
17. A. Tarlecki, Notes on the Implementability of Formal Languages by Concurrent Systems, Institute of Computer Science of Polish Academy of Sciences, Report 481, Warsaw, 1982.

[^0]: ${ }^{(*)}$ Received August 1986, Revised October 1986.
 $\left({ }^{1}\right)$ Institute of Mathematics, Warsaw Technical University, Pl. Jedności Robotniczej 1, 00661 Warsaw, Poland.

 Informatique théorique et Applications/Theoretical Informatics and Applications
 0296-1598 87/02 99 36/\$5.60 © Gauthier-Villars

[^1]: Informatique théorique et Applications/Theoretical Informatics and Applications

