
INFORMATIQUE THÉORIQUE ET APPLICATIONS

WIESLAW ZIELONKA
Notes on finite asynchronous automata
Informatique théorique et applications, tome 21, no 2 (1987),
p. 99-135
<http://www.numdam.org/item?id=ITA_1987__21_2_99_0>

© AFCET, 1987, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1987__21_2_99_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications

(vol. 21, n°2, 1987, p. 99 à 135)

NOTES ON FINITE ASYNCHRONOUS AUTOMATA (*)

by Wieslaw ZIELONKA (*)

Communicated by A. ARNOLD

Abstract. - We introducé the notion offînite asynchronous automata. Having ability of simulta-
neous exécution of independent actions, these automata are used in a natural way as recognizing
devices for subsets off ree partially commutative monoids. We prove that a subset ofafp.c. monoid
is recognizable by a jinite asynchronous automaton ijj it is recognizable by a finite automaton. As
a corollary we obtain a new characterization of the recognizable subsets of the fp.c. monoids by
means of a parallel composition and certain homomorphisms.

Résumé. - On introduit la notion d'automate fini asynchrone. Ayant la possibilité d'effectuer
simultanément des actions indépendantes, ces automates sont utilisés d'une façon naturelle pour
reconnaître des sous-ensembles d'un monoïde partiellement commutatif libre. On prouve qu'un sous-
ensemble de ce monoïde est reconnaissable par un de ces automates si et seulement s'il est
reconnaissable par un automate fini. Comme conclusion on obtient une caractérisation nouvelle
des sous-ensembles reconnaissables des monoïdes partiellement commutatifs libres à l'aide d'une
composition parallèle et de certains homomorphismes.

1. INTRODUCTION

Let S be a finite alphabet on which a symmetrie and irreflexive relation
/c=Zx£ is defined. Intuitively, ƒ is a concurrency relation and (a, b)el
indicates that the actions a and b can be executed simultaneously. With the
concurrent alphabet (E, I) there is associated the congruence relation ~ over
X* generated by {ab = ba: (a, b)el}. The free partially commutative monoid
over (S, I), denoted by E(L, I), is the quotient of Z* by the congruence ~
and traces are éléments of this monoid.

The study of the free partially commutative monoids was initiated by
Cartier and Foata [3] in 1969, but only in 1977 traces were used by Mazurkie-
wiez [12] as a tool for describing the behaviour of concurrent Systems. Since
then a number of papers has been devoted to various aspects of the theory

(*) Received August 1986, Revised October 1986.
O Institute of Mathematics, Warsaw Technical University, PL Jednosci Robotniczej 1, 00-

661 Warsaw, Poland.

Informatique théorique et Applications/Theoretical Informaties and Applications
0296-1598 87/02 99 36/85.60'© Gauthier-Villars

100 W. ZIELONKA

of traces [1, 2, 4 to 7, 13]. On the other hand very little is known about
parallel devices accepting traces. In fact, after the pioneering paper of Mazur-
kiewicz only a few papers, e. g. [10, 17], dealt to some extent with this
problem. This situation is even more surprising if we compare it with the
development of the theory of formai languages, which has been inspired in
great part by the automata theory.

The aim of this paper is to study parallel finite state devices recognizing
traces. The paper is organized as follows. After some preliminary results in
Sections 2 and 3, we introducé in Section 4 a class of finite asynchronous
automata and we prove our main resuit that they recognize exactly all regular
trace languages. In Section 5 we present another class of parallel automata,
with a simpler synchronization mechanism. In Section 6 we use results of the
two previous sections to obtain a new characterization of regular trace
languages.

Throughtout the paper we shall use the following notation. card(X) will
stand for the cardinality of a set X, é?(X) for the family of all subsets of X,
the empty word will be represented by £, #au is the number of occurrences
of a letter a e l in a word ue l* , whereas #u is the length of u. For a
positive integer n by h we dénote the set { 1,. . ., n}. The shuffle opération is
defined on E* as follows.

Vu, Ü Ê P , sh(u, v) = {ulv1. . .unvn:\fien, M£Ï u£eE*,

1 * * " n ' 1 * * * H J *

If Ll9 L 2 ^Z* then

sh(Ll5 L2)= U sh(w, v).
U G L] , u e L2

If ,R is a binary relation over a finite set X then by Cliques (X) we dénote the
family of ail cliques of R, A e Cliques (R) if V a, b e >4, (a, b) e R and V c e X— A,
3aeA, (a, c)$R, while R\ Y will stand for the restriction of R to a subset Y
of X

2. TRACES AND TRACE LANGUAGES

In this section we describe elementary properties of traces. None of the
presented hère results seems to be original, in fact, most of them are folklore.
Proofs are for the most part very simple, so we decided to sketch them only
in a few cases.

Informatique théorique et Applications/Theoreticat Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 101

A pair (Z, ƒ) is a concurrent alphabet if Z is a finite and nonernpty set of
actions and J c I x E is a symmetrie and irreflexive relation over Z (the
independency relation).

Two words u and v are congruent, u~jV, or u~v if I fixed, if there
exist words wl9 . . ., wk + l such that M = W1S v = wk + 1 and Viefc, Elx,
3 (a, b) e /, w, = xa6y and w(- +,

PROPOSITION 2. 1 [6]: Le£ hah be the projection of Z* onto {a, &}*.
two words u, v are equivalent, u~v, iff

(i) VaeZ, #au=#avand

By définition, the quotient £(Z, /) = Z*/~ of the free monoid Z* by ~ is
the free partially commutative monoid over (Z, ƒ). Its éléments are called
traces. In the sequel [w]/5 or [u] if I fixed, will stand for the trace represented
by the word weZ*, if w = £ or u = a, aeZ, then we shall write e and a to
dénote the traces [e] = {e} and [a] = {a}. t, p, r with or without subscripts
will dénote traces. By définition, trace languages are subsets of £(Z, ƒ). For
T ci £(Z, I) by lin T we dénote the language.

, wet}.

The following property of traces proved to be very useful.

PROPOSITION 2 . 2 [11]: The monoid £ (Z , ƒ) is cancellative, Le.

Vf, £ls

t1t = t2t => £i = t2. D

The number of occurrences of an action aeZ in a trace £e£(Z, 7) and the
length of t are defined as follows #at= #au and #t= #u for wet.

Every word weZ* générâtes a linear order ^w over the set

of action occurrences. For instance, if u = abbacc then

= U = tt = M = U =

Formally, al^ub
j if either a — b and l^i^j^#au or a#b and u = 1

where #av~i— 1, #hvaw=j—\. On the other hand every trace te£(Z, /)

vol. 21, n° 2, 1987

102 W. ZIELONKA

générâtes the canonical partial order <̂ r over the set

of action occurrences:

aLStb
j o V u e t , alSub

j, i. e. £t= H Û*.
uet

This partial order has the following properties.

PROPOSITION 2.3 [5]: Let v e E* and teEÇL, I). Then vet iffO(t) = O(v)
and Sv is an extension of ^t to a linear order, i. e. g t c <;„. •

COROLLARY 2.4; Traces t and r are equal iff iît=Sr. •
As usual, al<tb

j will dénote that a1^^ and al^bK If the trace t is fixed
then we shall simply write ^ and <.

The représentation of traces by partial orders will be extensively used in
the next sections. For this reason we introducé further notational conventions.

0(Z) = {a ' :a62, ieN}

will be the set of all action occurrences. Evidently, O (t)<~ O (L) for any
trace t.

name: O (£) -> Z is a projection of O (L) onto Z defined as follows

V a G E, V i e JV, name (a*) = a.

In the sequel x, _y, z will stand for éléments of O (E). We now give properties
that completely characterize the partial order ^ r

Fact 2.5: Let te£(L, ƒ), x, yeO(t) such that x<ty and ~i3zeO(0,
x< rz< (>y. Then (name(x), name(j/))eD. On the other hand if (name(x),
name(j;))6i) then xSty

 OT y = tx- •
A trace r is a subtrace of t if there exist traces tu t2 such that t = tirt2. If

£, =c then r is a prefix of t, whereas if t2=z then r is a suffix of t.
The following notions will be extensively used in the next sections.
Let te E (E, I) and H<=O(t). Then H is
(1) initial in t if

Vxe/f, VzeO(0, z^tx => zeH

(2) final in t if

Vxetf,

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 103

Fact 2.6; H is initial in t iff there exists a prefix r of t such that H = O (r)
and then ^ r = ^ , | / / . ƒƒ is final in t iff there exists a suffix r in t and an
isomorphism (p : H -> O (r) of partial orders ^ , | H and ^ r such that

V x e ƒƒ, name (cp (x)) = name (x). •

Clearly, if H is empty then r = 8.
If Hv H2 are initial (final) in t then / ^ U H2 and i ^ O H2 are initial

(final).
The représentation of traces by partial orders was already noticed by

Mazurkicwicz [12], Detailed analysis of these connections was made by Shields
[15].

We now introducé a special kind of trace homomorphisms. Let (S l5 / J
and (S2, l2) be concurrent alphabets. A homomorphism ƒ: X* —> S* is consis-
tent with 7X and 72 if

(i) / is strictly alphabetic, i.e. /(E1)c:Z2 and
(ii) Va, beZl9 (a, fyel^i f(a\ f(b))el2.
Thus ƒ preserves both dependency and independency between actions.

LEMMA 2. 7: Let fbe consistent with Ix and I2. Then, for ail

Proof: Tmmediate from Proposition 2 . 1 . •

COROLLARY 2.8: Let fbe consistent with lx and I2. Then

(i) ift^lu^eEÇL» h) thenf(t) = [f(u)]l2

(ii) the mapping f: EÇEl9 / t) ^ £ (E 2 , I2) defined by f(t) = {f(u):u€t}9

teEil*!, I)), is a homomorphism offree partially commutative monoids.

Proof: (i) Obvious by Lemma 2. 7.
(ii) Let tu t2eE(Hu / r), u, e^ , u2et2. Then

f(ti) f (h) = \f{u{)}l2 \f(u2)]l2 = [f(Ul) f(u2)]l2 = \f(ux u2)]l2 =f(tt t2).

The last equality holds because u1u2et112. Q
A trace homomorphism generated by a consistent homomorphism of words

will be called elementary. Let us describe the elementary homomorphisms in
terms of partial orders.

COROLLARY 2.9: Let f be an elementary homomorphism of traces. Then f or
ail £16JB(Z1, /A), t2=f(t1) there exists an isomorphism i: O (t^) -• O (t2) of

vol. 21, n" 2, 1987

104 W. ZIELONKA

partial orders ^ M and St2
 sucn ^ a t

V x e O O J , /(name (x)) = name (i(x)).

Proof: Obvious. G

Corollary 2 .8 implies that an elementary homomorphism changes only
names of actions but maintains the partial order between them. A similar
concept was previously introduced by Tarlecki [17].

The next opération we shall present, a parallel composition of trace langua-
ges, is of great importance. It enables us to construct parallel Systems from
sequential components.

Let (£•, ƒ;), Di = Hixlii — Ib ien, be concurrent alphabets, and their depen-
n

dency relations, where Sf are not necessarily disjoint. Let 2 = U S i 5

The concurrent alphabet (L, I) is said to be the parallel composition of
the alphabets (£., ƒ,.), ien, and is denoted by | |"=1(Z£, /J. Obviously, the
parallel composition of alphabets is commutative and associative.

PROPOSITION 2.10: Let

Vieh, r, e E (£„ƒ,), (E, I) = \ |?=1(Z„ It)

and let h(be projections o/D* onto Sf. Then the set

either is a trace over (S, /) or is empty.

Proof: Suppose that K # 0 . Let UGR and v~{u. Then it is easy to observe
that Vïen, ht(v)~/.^(w) and hence veR. On the other hand, let M, VBR. It
is obvious that V a e l , # a w = # a ü . Let (a, 6) G D . Then there exists ieh such
that (a, £>)GD;. Moreover

V w e t(-, /iö) b (M) = fcflf ft (w) = fcflt fc (r),

where ha b is the projection onto {a, b}*. Thus by Proposition 2.1 M ~ , u . D

The set R from Proposition 2.10, henceforth denoted by 11?=!^, will be
called the parallel composition of traces.

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 105

COROLLARY 2. 11: /ƒ £; e £ (£,., ƒ;), i= l , 2, then

PROPOSITION 2. 12: Let teE(L, ƒ), Cliques (D)= { I l 5 . . ., £„} am/ to/or
a// len/ij fo the projection o/S* onto £f. TTiew * = | j " = 1 ^ (0 .

Proof: First observe that Vu, Î;G£, hi(u) = hi(v) thus ^(ï) is a one element
set. Tt may be viewed as a trace over the concurrent alphabet (Z(-, 0) with
the empty independency relation. The thesis follows then from Proposi-
tions 2.1 and 2.10. •

Let T,<=£(!„ Q for ien, (ï, 7) = | |?_x (Z(, /,).
We define the parallel composition of trace languages to be the set

The parallel composition is associative and commutative.

COROLLARY 2.13: Let T^E (Lif It), i=\, 2. Then

j l - Z a) * , lin T2).

The parallel composition of traces can be described in terms of partial
orders in the following way.

PROPOSITION 2.14: Let Vîen, t^EÇL^ It). Then t = \ | ? = 1 t £ # 0 if the follo-
wing conditions holà

(i) VU

f \
(ii) U ^ (. 1* /s a partial order, where * dénotes the transitive closure o f a

\Î=I 7
binary relation.

Moreovcr, thc partial ordcr computed in (ii) is cqual to ^t.

Proof: Elementary. •
The presented hère parallel composition relates closely to the opération of

restriction examined by Starke [16] in connection with Pétri net languages.

3. REGULAR TRACE LANGUAGES

Let TcJE(Z) ƒ) be a trace language. The syntactic congruence ~ r of Tis
defined by Vf, re£(Z, 7), t~Tr iff

, /) , t l t t 2 e T <=> t l r t 2 e T

vol. 21, n° 2, 1987

106 W. ZÏELONKA

The fact that ~ T is really a congruence can be deduced in exactly the
same way as in case of the syntactic congruence of string languages, see e. g.
[11].

LEMMA 3.1: Let u, ye l* , T^£(E, ƒ), L = lin T. Then [u]~T[v] iffu~Lv,
where ~ L is the syntactic congruence of the language L.

Proof:

u~Lv iff Vx,

xuyeL <=> xvyeL iff Vx, _yeZ*5

[xuy] e T o [xvy] eT iff V x, y e E*,

M [#] e T ^ M M M e T iff [u]~T[v). G

A trace language T is said to be regular iff the syntactic congruence ~T is
of finite index. The family of regular trace languages over (E, ƒ) will be
denoted by Reg (E, ƒ). The preceding Lemma shows that the syntactic
congruences of T and lin T are isomorphic. This implies

COROLLARY 3. 2: Te Reg (E, ƒ) i// lin T is a regular language over E. G

PROPOSITION. 3 [6]:ƒƒ Tl9 T2^Reg(E, ƒ)

£(E, / J - ^ e R e g ^ , I). •

As it is well-known, in gênerai, the family Reg (E, ƒ) is not closed under star
opération and therefore, contrary to free monoids, in partially commutative
monoids regularity does not coincide with rationality.

LEMMA 3.4: If T-GReg(Ei5 /;), i= l , 2, then

, ƒ), where (E, /)=(E l5 Ix)\\{J:2t 72).

Proof: The family of regular languages is closed under the shuffle opération
thus by Corollary 2.13 lin 7^ || T2 is regular. G

LEMMA 3.5: Iff: E{^i> Ii)^E(E2, I2) is an elementary homomorphism
and TeReg(Ei, ƒ,) then f (T)eReg (E2, I2).

Proof: By Lemma 2.7 lin ƒ (T)= ƒ (lin 7) but regular languages are closed
under homomorphism. •

At the end let us observe that if we have any parallel device with a finite
number of global configurations recognizing a trace language T then it can

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON HN1TL ASYNC HRONOUS AUTOMATA 107

be simulated sequentially by a finite state acceptor of lin T. Therefore trace
languages outside Reg(E, ƒ) could not be recognized by such devices.

According to Eilenberg [9] regular trace languages should be called recogni-
zable and, in fact, this name is usually used in literature, but in our paper
recognizable, while applied to traces, will always mean "recognizable by a
parallel device".

4. FINITE ASYNCHRONOUS AUTOMATA

A finite asynchronous automaton ASYN with n processes is a tuple
A = (Pl9 . . ., Pn, A, F). For every ienP—^^ Sh s?) is an i-th process, Ef is
a finite and nonempty alphabet of Ph St is a finite and nonempty set of
states, s?eSt is an initial state of Pt.

S = x St is the set of global states of A and Fc=5 is the set of final states.
(e n

Z= U Z- is the alphabet of A. In the following we dénote by Proc the set
ien

{1, . . . , « } and we shall often identify every process PL with its index / G Proc.
Moreover, so = (s?s . . ., S„)ES will dénote the initial state of A. The set
Dom (a) = {ie Proc : a e l j of processes synchronously executing an action
aeH will be called the domain of a. Intuitively, every action a acts only on
the domain Dom (a) during its exécution and this exécution can be interpreted
as a "hand shaking" communication between the processes from Dom (a).

Formally this is described by the next-state functions from the set
A = {öa : aeX}. For ail

Sfl: x S.-><?»(x St)
i e Dom («) i e Dom (a)

A is deterministic if

V a G S, V s e x S., card (5a (s)) ̂ 1.
i e Dom (a)

We now define the transition relation between global states of A:
let

(s;, . . ., s;), (s'/, . . ., s'JeS, a e S,

then

(s'i, • • -, O =* (si', - . ., O

vol. 21, n° 2, 1987

108 W. ZIELONKA

iff

(i) s'i=s" for ï^Dom(a), and

(ii) (s;;, . . ., S ^ Ê S , ^ , . . ., s;k), where

{ii, . . ., i k}=Dom(4

We extend this relation to words in the standard way. Let s', s"eS. Then

s' 4 s" if either

(i) w —e and s' = s", or
(ii) u = a1 . . . am, Viem, af6 2 and there exists a séquence s1, . . ., sm+1eS

such that

We define the language recognized by A as

Now we shall show how A can recognize traces. It is clear that if actions a,
b operate on disjoint sets of processes then they may be executed concurrently,
thus

/A={(a, fo)eZxZ : Dom (a) pi Dom (b) = 0}

is the independency relation for A.

LEMMA 4 . 1 : If (a, b)eIA9 s'9 s" e S then

ab ba

s' => s" o s' => s"

Let u, Î/GZ*. Then

Proof: Obvious. •
We define the trace language recognized by A as

T (A) = { £ G £ (£ , 7A) : Vuet, 3seF, s ° 4 s } .

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA Î 0 9

From Lemma 4.1 it follows that

: 3uet,

Example 4 .2: Let A = (P l s P2 , A, F), where

^ = (2,, {s?, s,1, s?},*?), î = l , 2 ,

Z1 = {o,c}> Z2 = {£>, c}, F = {(s?,

The next-state functions are defined as follows

We assume that for other possible arguments 5OS 5d, §c produce empty sets.
This automaton is deterministic and it is easy to establish that

/A = {(o, fe), (5, a)}.

Every AeASYN has a nice graphical représentation as a labelled Pétri net
(see[14]). The set of ail places of the net is equal to the disjoint union of
St, zeProc. For a given action a and every pair

i e Dom (

such that s / /eSfl(s /) we create a transition labelled by a, with the input places
{s-lS . . ., s-fc} and the output places {s[[9 . . ., s^}. As the initial marking
we take {s?, . . ., s°}. Figure 1 présents the net représentation of the ASYN
automaton from Example 4.2.

vol. 21, n° 2, 1987

110 W. ZIELONKA

Figure I.

Pétri nets play hère the same rôle as transition graphs for finite state
acceptors. They are useful as pictures but rather clumsy in formai construc-
tions.

Let

be the dependency relation of an AeASYN.
We say that A is in the normal form if

,- e Cliques (D A) and V z, j e Proc,V i e Proc,

PROPOSITION 4 .3 : For every AeASYN there exists AeASYN in the nor-
mal form such that 7A = /A and T(A) = T(Â).

Proof: Let Cliques (DA) = {£ l 9 . . . , £ k } . Then Vie Proc, 3 j ek , S^czX .̂
For ail Je^" we create a new process PJ = (EJ, Sj-, If) with the following set of
states ^, = 5,- x . . . x S,- and the initial state

where

Za changes these components of Sj that would be changed by 5fl during the
exécution of a in A, while the rest remains unaltered. According to this

Tnforrrutlique théorique el Applicalions/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 1 11

(sls . . ., sfc)eF if there exists SE F such that every s/? iek, is a projection of s
onto adequate coordinates. We leave details to the reader. •

Now we are ready to formulate the following two main theorems.

THEOREM 4.4: For every finite asynchronous automaton A e ASYN the trace
îanguage T(A) is regular, T(A)eReg(Z, 7A).

Proof: It suffices to prove that L(A) is regular. Let A be as in the preceding
définition. We build the finite state acceptor B = (L, S, s0, 5, F), where the
next-state function is defined as follows

5 : S x E ^ ^ (S) , VseS,

S (s, a) = {s'eS : s^>s'}.
clearly L(A) = L(B). Q

THEOREM 4.5: For every TeReg(Z, I) there exists a deterministic finite
asynchronous automaton A such that 7A = / and T(A) = T. G

Let us consider what really Theorem 4.5 states. It is clear that every
regular trace Ianguage T can be implemented provided that we neglect
concurrency. In this case we may build the minimal finite state acceptor A
of the Ianguage lin T. In a way, A recognizes T because it recognizes ail
possible sequential exécutions of traces from T and independent actions can
be executed in any order but only sequentially. This contrasts sharply with
the behaviour of the finite asynchronous atomata. As in Pétri nets, they
have real ability of simultaneous exécution of the independent actions. Thus
Theorem 4. 5 states that every TeReg(E, î) can be implemented by a finite
state system, which is trivial, entirely preserving concurrency between indepen-
dent actions, which is not so trivial. A similar problem was previously
examined by Tarlecki[17]. The remainder of this section is devoted to the
construction of an ASYN automaton recognizing a given regular trace Ian-
guage T. Ail proofs are shifted to Appendix at the end of the section.

Let Cliques (D) = {I,l9 . . ., X„}. We shall build an ASYN automaton A
in the normal form, thus each Z- will stand for the alphabet of a process Pt.
We set Proc = { 1, . . ., n}. As previously, for

a e Z, xe O (£), Dom (a) = {ie Proc : a e X-};

Dom (x) = Dom (name (x)), for any teE(H, 7);

Dom (£) = {i E Proc : 3aeZ, # a t > 0 , f e Dom (a)}.

vol. 21, n° 2, 1987

1 1 2 W. ZIELONKA

Let xeO(t). Consider the set Pref x(t) = {y e O (t) : y^tx}. It is obvious that
this set is initial in O (t) and therefore it détermines a prefix of t which we
shall dénote by Px (t).

Let teEÇL, ƒ), ï'eProc. Then lastj(t) will be the last action occurrence
executed in t by the process leProc, i. e. the maximal element of the set
{yeO (0 : f e Dom (y)}.

If x = lastj(t) then we shall write P^t) and Preff(t) to dénote the prefix
Px(t) and its set of actions Préfet). Finally, for oc^Proc, Pa(t) will be a
prefix of t dctermined by the initial subset Prefa(0= U Pref£(t) of O (t). The

i e a

following characterizarion of Prefa(t) will be sometimes useful.

F act 4.6: Let tsE{L, ƒ), a^Proc. Then

Prefa(0 = {.yeO(0 : 3xeO(t\ j / ^ j c A a n D o m (x) ^ 0 } . Q

Let i, jePvoc. Then last}(t) = lastj(P;(£)), i. e.

last} (?) = max { y e O (t) : y S lastj (t) A j G Dom (y)}

(t):jeT)om(y) A3XEO (t), y^txA ieDom(x)}.

Intuitively, last} (t) is the last action occurrence executed in t by the process 7,
j e Dom (last)- (£)), and which can be "observed" by the process i,
last} (0 ^ last; (t).

We set LAST(t) : = {last}(t) : f9jeProc}.
Note that the value lastj(f) may be sometimes undefined, e. g. last}(s) is

undefined for all i, jeProc.

Example 4. 7: Let

Z = { o, fcjC,d, <?,ƒ}, Cliques (D) = {Z1 ,Z2 ,S3},

Figure 2 présents a trace t over this alphabet and its prefix P1 (t).
We have

last} (t) = b2, last| (t) = c2
? last^ (t) = ƒ 4,

last2 (t) - lasti (0 - e\ last2 (t) = lastl (t) - a2. •

In the sequel we shall frequently use equalities of the form
}(t1) = last5c(t2), where tï9 t2 are préfixes of a trace t. This will mean that

Informatique théorique et Applications/Theoretical Informaties and Applications

NO7TS ON I INI! I ASYNCHUONOI S U'TOMATA 113

OL

I af I LE] [CL

Figure 2.

J is well-defined iff lastf (r2) is well-defined and if that is the case then
they dénote the same éléments of 0 (t). Now we shall present two elementary
properties of Py (t).

Fact 4. 8: (i) Let txeE (X, 7), a e S, t2 = t1 a , a = Dom (a), m=#at2,
y c Proc. Then

PrefY(t2) =
PrefT(tx) if

if

if

if

(ii) If ieycProc, te£(£ , /) then

Prefi(Pv(O) = Prefi(f) and P£ (Py (t)) = P, (t).

Proof: Immédiate by Fact 2. 5 and the définition of Py (t). Q
We set LAB = S x Proc to be a set of labels. We shall present an algorithm

that for every trace t constructs a labelling of t, i. e. a mapping

label, : 0 (t) ̂ LAB.

vol. 21, n° 2, 1987

114 W. ZIELONKA

ALGORITHM 4.9: (i) For the first occurrence a1 of any action a in O (t) we
set label, (a1) = (a, 1).

(ii) Suppose that the successive occurrences a1, . . ., ak~l of the action a
have already been labelled. Let x = ake0 (t) and let

Let m e AT be the least positive integer such that

VyeGx-{x}, label,(y)#(a, m).
Then we set

label, (x) = (a, m). •

The next lemma summarizes properties of label,. Recall that name:
O (E) -> E is a projection of O (E) onto E.

PROPOSITION 4 . 10: The funcüon label, constructed by Algorithm 4 . 9 satis-

/ ïes the following conditions.

(LI) V x e O (t), name (x) = a => 3 i e Proc, labelr (x) = (a, i)
(L2) (/*/> is a prefix of t then labelp = label, | O (p)
(L3) the mapping label, is injective on the set LAST(t). Q
Let a c= Proc. We set

Suffa(0 = {xeO(t) : Dom(x)ca^MyeO (t),

x ̂ ,3; => Dom O') c ot}

It is obvious that Suffa (t) is final in t and it détermines a suffix of t denoted
byS.(t).

Note that Sa(t) is the greatest suffix of t such that Dom(Sa(t))cza.
In the sequel, for a c Proc, â will dénote the complement of a, i. e.

S = Proc — a. Observe that Fact 4.6 and the définition of Suffa(t) imply that
Vac Proc,

Prefa (0 H Suff-(0 = 0 and Prefa (t) U Suf f -(t) - O (t).

This yields

Fact 4. 11: Vac:Proc, Vre£(£, ƒ), Pa(t).S-(t) = t. •

We shall now define équivalence relations over £(£, /). Their properties
are crucial in our construction.

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 115

DÉFINITION 4.12: Let t, re£(L, 7). Then t » £ r if the following conditions
hold

(i) The mapping C : LAST (t) -> LAST (r) such that

V i, j e Proc, C (last) (t)) = last} (r)

is an isomorphism of the partial orders <;, | LAST(r) and ^ r | LAST(r). This
isomorphism will be called canonical. Note that the above condition implies
that last}(f) is well-defined iff lastj(r) is well-defined.

(ii) C preserves the labellings, i. e.

V U j e Proc, label, (last} (0) = label, (last} (r)). Q

Recall that ~ r dénotes the syntactical congruence of T.

DÉFINITION 4.13:Let T <=£(!, 7). Then

tvTr ifVa<=Proc, S8 (f) - r S. (r). D

DÉFINITION 4.14: Let £, re£(E, 7). Then *«r if

f^ £ r and t « r r , i. e. » = ^ £ P i » r - •

It is obvious that ^ £ is always of finite index, whereas œT, and consequently
« , are of finite index iff T is regular.

Henceforth < t > will stand for an équivalence class of t under » .

We now give two theorems that constitute a key to our construction.

THEOREM 4.15: Let t,rsE(L9I) and a, pcrProc. If P a (0 - ^ a W and

THEOREM 4.16: Let tu r1eE(I,,I), aeZ, 2̂ = ̂ ^ r2=r1a and VteDo-
m(a), ^ (t J^P^rJ . ThenVieDom(a), Pi{t2)^Pi{r2). D

Now we are able to present the construction of an ASYN automaton
recognizing a given regular trace language T, The équivalence classes of »
will serve as states of our automaton A and A will behave in such a way
that, having a trace t executed, an f-th process Pt reaches the state < Pt (t) >.

Formally, A = (P>
1, . . ., Pn, A, F). For ail zeProc = {l, . . ., n} we set

P^ÇL,S,sf), S,.= {<P i(0> : te£(Z, 7)}, 5? = <e>.
Let aeE, Dom(a) = {ilJ . . ., ik}, t2 = t1 a. Then we set

vol. 21, n° 2, 1987

116 W. ZIELONKA

Theorem 4.16 ensures that this définition is sound. Moreover, Fact 4.8 (i)
implies that for f £ Dom (a) p.(t2) = P1.(t1). Using this fact and Theorem 4.16,
one can verify by trivial induction on the number of action occurrences in t
that the following condition holds

PROPOSITION 4.17: VteECL, ƒ),

t

« 6 > , . . . , < e » = > « / > i (0 > , . . . , < / > „ « » in Ik. D

In order to accomplish the construction we have to define the set of final
states:

By définition, for all r e £ (L , ƒ), if rxt then

hence reT iff t e l This fact and Proposition 4.17 prove that T(A) = T.
Finally observe that the construction presented here can be carried out
effectively. For any two traces tl9 t2 we can establish effectively if t1^t2.
Thus by simple inspection, starting with the empty trace s, we can find an
oriented graph G = (V, E) such that every vertex veV is labelled by a trace
t e £ (E , I) and every edge eeE is labelled by an action aeX and fulfilling
the following conditions

(1) if two different vertices vu v2 are labelled by t± and t2 respectively then

(2) V Ö Ê S , VyeK there is an edge outgoing from v and labelled by a;

(3) an edge labelled by aeE joins vertices labelled by tx and t2 iff t2^t1 a.

It is obvious that the graph G is isomorphic with the transition graph of
A. G enables us to define ba effectively for all a e E, namely for every two
vertices vl7 v2 labelled by t± and t2 and connected by an edge labelled by

e set

5 0 « P h (t1) > , . . . , < P k (h) » = « P t l (t2) > , . : . , < P i k (t2

where {zl5 . . ., /fc}=

APPENDIX:

The following lemma gives a list of eiementary properties of

LEMMA 4. 18: Let ^ £ £ (2 , i), aczProc. Then

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 117

(i) If iea. then

VpcProc, lastJ(P.(t1)) = lastJ(P.u(l(t1)) = lastJ(t1)

(ii) V/eProc, lastj(Pût(t1))=max{last}(t1) : i ea} .
Let moreover t2

 = tl a, ae£ , Dom (a) = a, m= #a£2. Then

(90 l-fW-C-îi''» ƒ " "

(iv)

f: (i) By Fact 4.8 (ii) £ey<=Proc implies

am if i ea

if i £ a, jeProc
am if ijea

j (tx) : k e a} if i e a, j $ a

Now it suffices to take y = a and y = a U P*

(ii) Since Prefa(t1)= U Préfet J, we have
i e a.

lastj(Pa(t1)) = max{lastj(P i(t1)) : i e a } = max{last^(t1) : i e a }

(iii) This is just another formulation of the property described by Fact 4. 8

(i).
(iv) In case i ea , by Fact 4.8 (i), we get

and now it suffices to apply (iii) and (ii) to obtain am for je a and

j 5 for j£a.

In case i^otwe argue analogously. •

LEMMA 4.19: Let teEÇE, I) and îeProc. Then the mapping name:
O (£) —• Z is injective on the set

{last}(0 :yePtoc}cLAST(t).

Proof: Let last} (r) = x, lastj (t) = z and name (x) = name (z) = a. Then
j9 k e Dom (a). But j e Dom (z) implies z ̂ f lastj. (t), whereas k e Dom (x)
implies x£t last[(t). Thus x = z. D

vol. 21, n°2, 1987

118 W. ZIELONKA

LEMMA 4. 20: Let t be a trace and tx its prefix. If last} (0 e O (t4) for some
i, 7 e Proc then there exists keProc such that lastj(£1) = last|-(t). In particular,

Proof: Let t = t1t2. If #t2=\ then the thesis follows immediately from
Lemma 4.18 (iv). In gênerai, it suffices to apply an elementary induction on
#t2. D

Now we are able to prove the properties (LI)—(L3) of label,.

Proof of Proposition 4. 10: First note that if p is a prefix of t and xeO (p)
then Px (t) = Px (p\ which proves L2.

In order to prove LI it suffices to show that the number m chosen in the
step (ii) of Algorithm 4.9 belongs to Proc. If ie Dom (a), x = a\ then either

last} (Px (0) = x for j e Dom (a)

or

name (last} (Px (t))) # a for j e Proc — Dom (a).

Thus

Gx-{x} = LAST(Px(t))C\{a\ o*" 1 }

= {last} (Px (0) : ï e Proc - Dom (a), j e Proc}

n { a \ . - - , a f c - 1 }= U {last}(Px(0):;
i G Proc — Dom (a)

But from Lemma 4.19 it follows that

for all i e Proc. Therefore

card(Gx — {x})^card(Proc — Dom (a))<card (Proc)

and m really belongs to Proc.
We prove L3 by a contradiction. Let us suppose that for a trace t there

exist x, y e LAST (t), x^y, such that label, (x) = label, (y). Then by LI name
(x) = name (y). We may assume that ySt

x< T n e n x> ^ePrefx(t) and by
Lemma 4. 20 x9 y e LAST (Px(t)). But then Algorithm 4.9 would have ensured
that label, (x) ̂ label, (y). •

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 119

Henceforth Max(r) = {xeO (t) : ~"|3zeO(t)s x<tz} will stand for the set
of maximal éléments of a trace t.

In the next two lemmas we complete a list of useful properties of last}(r).

LEMMA 4.21: Let aciProc, teE{X9 /). Then
(i) for every jeProc there exists i e a such that

(ii) ifx G Max (Pa (t)) then there exists i e a such that

0 = last{(Pa(0).

Proof: (i) To obtain (i) it suffices to take i e a for which the maximum in
Lemma 4.18 (ii) is reached and since iea , again by Lemma 4.18 (i),

(ii) This statement follows from Lemma 4.18 (i) and from the obvious
inclusion Max(Pa (£))<={last\(t) : i ea} . D

LEMMA 4.22: Let y, TjcrProc, te£(S, ƒ). If xe Max (Py (Pn (t))) then there
exist ierj, j e y such that

x = last j (Py (Pn (0)) = last j (P, (0) = last} (P^ (t)).

Proo/- If xeMax(Py(P11(0)) then by Lemma 4. 21 (ii)

x - lastj (Py (Pn (0)) = lastj (Pn (0) for some ; e y,

and again by Lemma 4. 21 (i)

lastj (Pn (0) = lastj. (Pn (t)) for some i er|. D

The next two lemmas contain basic properties of Pa(t) and Sa(i).

LEMMA 4.23: Let te£(Z, /), a, p, y, 8cProc. T/ien

(i) s.(sp(0)=soinp(0;
(ii) J/ycôczProc then

Py (P, (0) = J\ (0 fl"d Pô (P, (0) = PY (O-

Later on the first condition will be used in the form

P«(P«uv(t)) = PM

Proof: (i) follows immediately from the définition of 5a(t).

vol. 21, n° 2, 1987

120 W. ZIELONKA

(ü) Since y c 8 by Fact 4. 8 (ii) we get

PrefY (P (0) = U Pref, (P6 (t)) = U Pref, (t) = PrefY (t), thus Py (Pô (0) = Py (0-
t e y i e y

Ps(Py(t)) is a prefix of PY(0 thus Prefó (Py (£))<= Pref Y(£). On the other hand
by Fact 4 .8 (ii)

Prefs(PY(t))=U Pref.CP^r^^U Pref, (Py (f)) - U
i e 5 i e y i e y

which concludes the proof. •

LEMMA 4.24: Let a<=Proc, tl9 t2eE(L, I). Then

and

where

Y = Dom(Pa02)), 5 = p-Y, a-p.

Proof: Let tit2. We shall argue by induction on #t2. If t2 = c, c e l !
then the formula for PaL(t1t2) follows from Fact 4.8 (i) since Pa(c) = c if
a n D o m (c) ^ 0 , and Pa(c) = z otherwise.

Assume that the formula for P0L(ti t2) is valid for all factorizations t = tit2

with # t 2 < m .

Let t = tlt2 and #t2 = m>\. Then t2 can be factorized in such a way that
t2 = t2t2 and # t2<m, #t2<m. Let

y2 = Dom (Pa (r2')), Y! = Dom (Pa u y2 (t2)).

Then using three times the inductive hypothesis, for (tlt'2)t'2\ ttt2 and t2t2,
we get

^ a (M 2) - ^ (Ma Q = f W (M i) • ̂ (O

But

Y l U Y2 = Dom (Pa u Y2 (t2)) U Dom Pa (t'2'))

Informatique théorique el Applications/Theoretical Informaties and Applications

NO'I'LS ON KIM TL- ASVNCMRONOUS AUTOMATA 121

= Dom (P. u V2 (t'2). Pa (O) = Dom (P. (t'2t'2')) = Dom (P. (t2)) = Y.

We have used above the obvious property

Dom((1 t2) = Dom(t1) UDom(t2), for all tl9 t2eE(L, I).

Now we shall compute Sfi(t1t2). First note that Dom(Pa(t2)) = y and Dom
(Ss(*i))c:8 = P —y, whence

Dom(P,(t2))nDom(S8(t1)) = 0 and Pa(t2)-S6(t1) = S6(tl). P„(t2).

Therefore using the formula for Pa(t112) and Fact 4.11 we obtain

Since by Fact 4.11 Pa(tj t2)-Sp(t, t2)
 = ti r2> w e n a v e

Pa (fi h). Sp (t, t2) = Pa ax t2). S6 (t j . Sp (t2),

which implies by the cancellation property S^(tl t2) = Sb(ti).Sp(t2). •
The next lemma describes a factorization of Pa u p (t).

LEMMA 4.25: Let a, pczProc, teE(L, I). Then there exist t0, t', t",
y = Dom(i')s 8 = Dom(f

(i)

(iii) Pa(t) = tot',

(iv)

(v)

/- Using Lemma 4.23 (ii) and Fact 4.11 we obtain the following
factorization

P« u P (0 = ^ (P . . p (0). s- (P a , p (0)=Pa (0. s-(Pa u p (0)

and similarly

vol. 21, n° 2, 1987

122 W. ZIELONKA

Let

y -Dom (O, 8 = Dom (O-

Note that

y c p and 8c:a. (2)

We shall show that y O 8 = 0 . Suppose the contrary, y Pi 5 # 0 . Then there
exist

xe Prefa „ p (t) - Pref„(t)-(Pref J t) U Prefp(t)) - Prefa(t)- Prefp(t)- Prefa(t)

and

ƒ e Prefa u p (0 - Prefp (0 = Pref. (t) - Pref p (t)

such that 0^Dom(x) H Dom (y) <= y O 5. Thus either x^t<yePrefa(£) or
y g txePrefp(t), which implies xePrefa(t) or j>ePrefp(t) and both these cases
yield a contradiction, which concludes the proof of (i).

Using Lemma 4. 24 we compute

with ^ = Dom(Pg-(O). But D o m (O n 5 = 0 implies Ss(£') = e and PE-(t/) = t\
whence Ç - Dom (O = y. Since by (i) 8 D J = 0, S - ^ - 8 - y = 5. Therefore

S5(PaüPa)) = S6(Pp(t)). (3)

On the other hand

with ^ = Dom(P6-(r)). But Dom (£") = 8 implies S5(O = r and P5-(r) = e, thus
^ = 0 . Therefore

We claim that S5(PŒ (£)) = £. Indeed, we have the factorization

but by (2) 8^ot, thus by Lemma 4 . 2 3 (ii) P~b(POi(t)) = PQi(
t)> whence

Pa(t) = Pat(t).S&(Ptt(t)) and by Proposition 2 . 2 S ô (P a (t)) = e. Thus finally

Informatique théorique et Applications/Theoretical Tnformatics and Applications

NOTES ON F1NITE ASYNCHRONOUS AUTOMATA 123

S6(Paup(t)) = f. The last formula combined with (1) and (3) gives

t" = s* (P.. P (0)=sô (pp (0) = s-(pa u p (t)). (4)

In the same way we obtain

t' - sy (P. „ p (0)=s y (Pa (0)=sp-(Pa w p (0).

Let ti = Pf(PB(t)), tj; = Pö-(Pp(O).
To complete the proof we must show (ii) and t'Q = tQ.

Using Fact 4.11, Lemma 4. 23 (ii) and (4), we obtain

t'o ï f = P-(Pa (0). sy (p. (0). 5-(Pa u p (0)

= Pa (0.5-(Pa u p (0) = P a (P a , p (0). s-(Pa u p (0) = Pa u p (0).

Analogously we get t'ó t" t/ = POiU^ (t).

But by (i) Dom(t')riDom(t//) = 0 , which implies t*'t' = t''t", thus
pa u p(t) = ^ t' f " — ÏQ f t' = tó' f' t7/ and by the cancellation property t'o = f ó' •

Finally note that (v) is an immédiate conséquence of (i) and (iii). •

LEMMA 4.26: Lef t, re£(L, J), P a (0« £ ^«W, ^ W ^ E ^ W / ^ ot,
P c Proc. Moreover, let PaKJ$ (t) = t0 t

f t'\ Pa ^ p (r) = r0 r' r" be the factorizations
o/P a u p(0 and P a u P(r) defined in Lemma 4.25. And finally let Ca, Cp b^ tfce
canonical isomorphisms of LAST(Pa(0), LAST(Pa(r)) and LAST(Pp(0), -
LAST(Pp(r)). Then

(i) Max(£0) c LAST (P„ (0) H LAST(Pp (*)) p| LAST (Pa y p (t));
(ii) VxeMax(t0X Ca(x) = Cp(x)6Max(r0);
(iii) Dom (t') = Dom (O, Dom (O = Dom (r").

/- Let y = Dom (O, S = Dom(r). By Lemma 4.25 (iv)

and therefore by Lemma 4.22 if xeMax(t0) then

3 i e a, 37 e y, x = lastj (Pa (t)) - last} (PB (0).

Now, since iea, we can apply Lemma 4.18 (i) to obtain
lastj.(PB(O) = last}(PBuP(t)). In the same way we obtain that

3 kep, 3 lel, x-lastj(Pp(t)>= last?(Pp(t)) = lastf (P a y p(0),

which proves (i). We shall now prove that

if xeMax(t0) then Ca(x) = Cp(x). (1)

vol. 21, n° 2, 1987

124 W. ZIELONKA

Let i, j , /c, / be as in the preceding part of the proof. Then, since Pa (t)^EP^ (r)
and Pp(0~ÊPp(r), weget

labelr (last} (Pa (r))) = label, (last} (Pa (0)) = label, (x)

= label, (last? (Pp (t))) = labelr (last? (Pp (r))).

But, since iea, keft, applying once again Lemma 4.18 (i) we obtain

last} (Pa (r)) = last} (P. „ p (r)), last? (Pp (r)) = last? (Pa „ p (r)).

Having the same label, the éléments last}(Pau p(r)) and last?(Pau p(r)) must
be equal, and therefore

Ca (x) = last} (Ptt (r)) - last? (Pp (r)) = Cp (x),

which concludes the proof of (1).
Let x' : = Ca (x) = Cp (x). Then

x' 6 LAST (Pa (r)) O LAST (Pp (r)) c O (Pa (r)) O O (Pp (r))

and by Lemma 4. 25 (v) x'eO (r0).
To achieve (ii) is remains to prove that x'eMax(r0). Suppose the contrary,

x'£Max(r0). Then for some z'eMax(r0), x'<rz'. We now apply point (i) of
the thesis and (1) substituting z', C~\ C^"1, r for x, Ca, Cp, L Then we
obtain

z'G LAST (Pa(r)) pi LAST(Pp(r)) O LAST(Pau p(r))

and z : = C ~! (2') - Cp"l (z7). Therefore

zeLAST(PB(t))nLAST(Pp(0)<=O(PB(0)nO(Pp(0) = O(to).

But since Ca~
x is an isomorphism,

x = c ; * (x') < t Q : (zO = z, x, z e O (t0)
in contradiction with the assumption xeMax(£0).

(iii) By (i) Max(to)<= LAST(Pa(t)) and by Lemma 4.25 (ii) Pa(t) = t0.t'.
Therefore ie Dom (O iff

-1 3xeMax(t0), lastl(Pa(t))^(x. (2)

By (ii) Cot(Max(t0))<=Max(r0). On the other hand, applying (ii) to C"1 we
obtain C~1 (Max(r0))cMax(t0), thus Ca(Max(t0)) = Max(r0). Moreover

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON FIN1TE ASYNCHRONOUS AUTOMATA 125

LAST(Pa(t)) and LAST (Pa(r)) are canonically isomorphic. Thus the condi-
tion (2) above holds for Pa(t) iff it holds for Pa(r) and therefore Dom(t') =
Dom(r'). For the same reasons Dom(î")=Dom(r"). D

PROPOSITION 4.27: Let t, r e £ (E , i). If i ï
a (t)w £ P a (r) and

oc, PcProc, then Pau^(t)^EPau^(r).

Proof: Let Pa u p (t) = t01't*, Pa u p (r) = r0 r' r* be the factorizations defined in
Lemma 4.25. By Lemma 4.26 (iii)

y: =Dom(O = Dom(r')5 5 : =

First we prove that

lastJ(Pa(0) if iey

lastJ(P.üP(0)= lasti(Pp(t)) if ie§ (1)

lasti(Pa(O) = lastJ(Pp(O) if ^ Y U 5

Consider the case iey. Using Lemmas 4.24 and 4.25, we obtain

Pi (p. u p (0)=p t (p. (0 • n=Piut, (p. (0) • pt (o ,

with ^ = Dom(P;(t")). but iey implies i£5 and Pt(t") = 8, ^ = 0 , whence
^ (P. u 1.(0) = ^ (P . (0). But

last} (P. u „ (t)) = lastj (P, (P. „ „ (0)),

which implies (1) for iey. In the other cases we argue analogously. Clearly,

(1) also holds if we replace t by r.

We claim that

label, GastJ(PB o „(t))) = labelr (last}(P. u „ (r))) J

Indeed, by (1), if i e y then

lastj (P. „„(*)) = lastj (P. (t))

and

lastj(Paüp(r)) = lastj(P„(r)),

butP,(t)«£PB(r)yields

label, (last' (Pa (t))) = label, (lastj (P. (r))),

vol. 21, n° 2, 1987

126 W. ZJtiLONKA

which implies (2). In the other cases we argue in the same way. We shall
now verify the following condition

last}(PBuP(f))GLAST(P.(O)

^ last}(Pa,p(r))eLAST (Pa(r)). (3)

Two cases arise.
In the case iey, by (1),

lastj (PB„ p (0) = last) (PB (0) e LAST (Pa (t))

and

last} (P. „ p (r)) = last} (Pa (r)) e LAST (Pa (r)).

On the other hand, if i$y then last*.(PBUp(0) = last}(Pp(0). Assume in addi-
tion that last;(Pp(0)eLAST(Pa(0). Then the following implications hold

last)(Pp(O)eLAST(Pa(t))nLAST(Pp(O)

cO(P a(0)nO(Pp(t)) = O(t0)

=> 3xeMax(to)5 lastj(Pp(t))gtx

=> lastJ(Pp(r))^pCp(x)eMax(r0),
the last implication follows from the définition of Cp and from Lem-
ma 4.26 (ii). But since i$y, by (1),

and therefore

last} (P a ü p (r)) e O (ro)cz O (PB(r)),

and finally, since Pa(r) is a prefix of P a u p(r) , by Lemma 4.20, we get

lastj (P. y p (r)) e LAST (P.(r)).

This concludes the proof of (3) in one direction. Replacing r by t and vice
versa we get the converse.

Let x = lastJ(PauP(0), y = last?(P.„ p(t)) and x<,j;. Then Dom(t ')n-
Dom(t") = 0 implies that either x.yeO (PB(t)) or x, ƒ 6O (Pp(t)). In the first
case, by Lemma 4.20, x, yeLAST(Pa(t)) and by (3) the corresponding
éléments x' = last}(Pa u p(r)) and / = lastf (Paup(r)) belong to LAST(Pa(r)).
Moreover, by (2), labelt (x) = labelr (x') and labelf (y) = labelr (/), thus
p

a (0 ^ £ P
a (r) and x< fy imply x ' < r / . The case x, ^eO(Pp(c)) can be

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 127

handled in the same way. Thus we have proved that the partial orders
St | LAST(Pa u p (t)) and ^ , | LAST(Pa u$(r)) are canonically isomorphic and
this fact and (2) give the thesis. •

LEMMA 4.28: Let t, reE(L,I) and t&Er. Then for all TJ, Ç a Proc,
Dom (Pn (S6 (0)) - Dom (Pn (5^ (r))).

Proof: Let Prefn (Suff̂ (t)) dénote the following subset of O (t) { x e O (t) : x -
e Suffit) A 3 y e Suffit), (x<.ty AT^D Dom (j) / 0) } . Clearly, from
Fact 4. 6 it follows that Prefn(Suff^(r)) contains the action occurrences corres-
ponding to the subtrace Py)(Sk(t)) of t. We shall show that

Prefn(Suff^(t)) = Suffit) H Préfet). (1)

Indeed, again by Fact 4.6, x e Suffit) f\ Pref̂ CO ^ x fulfils the condition

x e Suff̂ (0 A 3 y e O (t), (x Sy A T] pi Dom (y) ̂ 0) . (2)

Clearly, xePrefn(Suff^(O) implies (2), since Suffit) <= O (t). On the other
hand, x e Suffer) A x^y implies y e Suffit), thus y in (2) belongs to Suffit)
and (2) implies x e Prefn (Suffit))* which concludes the proof of (1). Replacing
Suffit) by O (t)-Preff (0 in (1) we obtain

Prefn (Suff̂ (0) = Pref, (t) - Préfet). (3)

From (3) it follows that

«e Dom (Pn(Ss(t))) iff IastS(Pl(O)<rlasti(P11(O) (4)

and by Lemma 4.18 (ii) the last condition is equivalent with

max { last/(f) : jeï, } <(max { last/(0 :jer\ }. (5)

Obviously, formulae analogous with (3), (4) and (5) hold for the trace r. Let
C be the canonical isomorphism of ^ (|LAST(t) and :gr|LAST(r). Then

max { last/(t):jeZ>}<tmax { last/(t) : jer\ }

iff

C(max { last/(t) : ; e ^ }) <rC(max { last/(0 '-jet] })

iff

max { last/O*) : je\ } <rmax { last/(r) : jer\ },

whence by (4) i e Dom (P^ (S^ (t))) iff i e Dom (Pn (S^ (r))). D

vol. 21, n° 2, 1987

128 W. ZIELONKA

Proof of Theorem 4.15: Let P a u P (0 = M''"-> P« u p 00 ='o ̂ ' " be the
factorizations of Pa u (i(t) and Pau$(r) defined in Lemma 4.25. By Lem-
ma 4. 26(iii) y:=Dom(O = Dom(r/) and ô: = D o m (0 = Dom(r//). By Pro-
position 4. 27, to complete the proof of Theorem 4.15 it suffices to show
that P a u P (t) « T P a u p (r). Let r| <= Proc. Then by Lemmas 4. 24 and 4.25 we
have

and

Sn (P. u p (r)) = Sn (P. (r). r") = S„ _ Ç2 (Pa (r)). S„ (r"),

with

^ = Dom (P-(t")), \2 = Dom (P-(r")).

But by Lemma 4.25(iv) t" = S5(Pp(0) and r" = S5(Pp(r)). Thus finally

^ 1 = Dom (Pn-(S8 (P„ (t)))) and ^2 = Dom(P-(S8(Pp(r)))).

Since Pp(ï)~£Pp(f)> from Lemma 4.28 it follows that £>: = ̂ 1 = Z,2-
Moreover Pa(t)*TPa(r) yields S^(Pa(t))~TS^^Pa(r)), whereas

Pp (t) « T Pp (r) and Lemma 4.23 (i) yield

£") = Sn (S8 (Pp (f))) = S„ n 8 (Pp (f)) ~ r S„ n 8 (Pp (r))

= Sn(S8(Pp(r))) = S„(r").

Therefore

which concludes the proof. D

PROPOSITION 4.29: Let £1; r1eE(L, I), a e E, t2 = t^a, r2 = r1a and
VieDom(a) , P j C t O w ^ P , ^) . Then

VieDom(a), Pl(t2)»EPl(r2).

Proof: Let Dom(a) = a. Then by Proposition 4.27 Pa(t1)KEPa(r1).
Let i e a. Then by Fact 4. 8 (i), P, (t2) = Pa (t2) = P. (tx). o and P, (r2) = Pa (r2

) = P a (r 1) . f l .

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 129

Let #at2 = m, #ar2 = k9 x = ame0(t2\ y = ake0(r2). By Lemma 4. 18(iv)
we obtain

lastJ(PB(t2)) =

P.^)) if i$a, jeProc

x if iJeoL (1)
max {last* (Pa (tA)) : k e a} if i e a, y' £ a

The same formula holds for the trace r2 if we replace x by y. Moreover,
VzeO(FB(t1)), z<t2

x a n d V z G°(^ a(r i))> 2<r2^- L e t ci b e t h e canonical
isomorphism of ^ (1 |LAST(Pa(t1)) and ^ M ILASTCP.^)). Then the argu-
ments above show that C2 defined by

C2(x)=y, VzeLAST(Pa(t2))-LAST(Pa(t1))î

C2(2)=C1(Z)

is the canonical isomorphism of gf2 |LAST(Pa(t2)) and g r2 |LAST(Pa(r2)).
Moreover, since

VzGLAST(Pa(t2))-{x}5

labeltl (z) = labelri (Cx (z)) = labelr2 (C2 (z))

and

Algorithm 4. 9 will attach the same label to x in t2 and to y in r2. •

Proof of Theorem 4.16; Let Dom (a) = a. Then by Theorem 4.15
p «(' i) - p «(r i) a n d by Proposition 4.29 Pa(t2)&EPai(r2). Let iea. Then
Fact 4.8 (i) yields

and

Thus it remains to prove that Pa(^2)^T^a 0*2)- Let r| a Proc. Then by
Lemma 4.24

Sn (^ (t2)) = Sn (Pa (t l). a) = Sn _Y (Po (tl)). S„ (a)

and similarly

vol. 21, n" 2, 1987

130 W. ZIELONKA

where y = Dom (P-(a)).

Since PaOi)~r^aOi)> w e h a v e

Multiplying both sides by Sn(a) we get Sn(Pa(t2))~ rSn(Pa(r2)). •

5. LOOSLY COOPERATING FINÏTE ASYNCHRONOUS AUTOMATA

The synchronization mechanism used in finite asynchronous automata is
rather complicated. We may ask if it can be simplified without loss of
computability power. In ASYN automata when we perform an action a e S,
the next state of a process ieDom(a) dépends on a and it dépends on current
states of all other processes from Dom(a). In this section we examine parallel
automata with a simpler synchronization mechanism.

A loosly cooperating asynchronous automaton, LCASYN in abbreviation,
is a tuple A=(P l s . . ., P„, F), where for ien, P£ = (Sis Si9 s°, 8£) is the i-th
process. Sis Sh sf have the same meaning as in the case of ASYN automata.

5; : SjXZ,-->^(S,.) is the next-state function of Pt. As previously
n

f c S = x St is the set of final states. A is deterministic if

V i G n, VSieSi, V a e Z,-, card (5£ (sis fl)) ^ 1.

The transition between global states is defined as follows, let

(si, . . . , s 0 , (« ' / O e S , a e E,

then

if Vi^Dom(a), s'^s" and VieDom(a), s'/eb^s^ a).
In the same way as in the case of an ASYN automaton we define how

traces act on A, the independency relation JA, the language L(A) and the
trace language T(A) recognized by A. Every LCASYN can be transformed
to an ASYN automaton if we define

cvCs^ . . .,sïfc) = (Sil(s;i, a\ . . . , \(s; f c , a))

for { ils . . .,ifc} =Dom(a).

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 131

THEOREM 5.1: For every finite trace language Ta £(£,ƒ) there exists
a loosly cooperating finite asynchronous automaton A such that I& = I and
T(A) = T.

Proof: Let D = ï x l - J and Cliques (D)= {Z„ . . .,SB} and let
ht : X*->Z* be projections of £* onto Hfjen. We consider the languages
L;= {^(tJrteT) (see Proposition 2.12). Every Lf is finite. We can build a
deterministic finite state acceptor i4£ = (Sis Q(-, ^ô, 5£, FJ of Lz such that

Vu, yeL , , w # u => Ô ^ } , , tt)#8(.(4o, u).

Then A = (P l s . . . , P B , F), where for ail i e n P£ = (Ei9 6», «o> ô<) a n d

F = {(^, . . .,<?„) : 3MieLl9 . . .93uneL„, Mien, bt{^Oi u^ = qh \ ^^eT).

By Proposition 2.12 this construction is correct. •

PROPOSITION 5.2: Let A be can LCASYN automaton. Then there exists a
deterministic LCASYN automaton E such that T(/\) = T(B).

Proof: We can transform every process Pt of A to a deterministic process
in exactly the same way as we transform a nondeterministic finite state
acceptor to a deterministic fsa, changing suitably the set of final states. •

PROPOSITION 5.3: For every LCASYN automaton A there exists an LCA-
SYN automaton B in the normal form such T(A)= T(B).

Proof: As in Proposition 4.3, •

THEOREM 5.4: There exist regular trace languages which are not recogniza-
ble by the loosly cooperating finite asynchronous automata. •

A simple proof of the above theorem will be given in the next section.

By LCReg(I, ƒ) we shall dénote the class of trace languages recognized
by LCASYN automata.

PROPOSITION 5.5: If TieLCReg(Z., ƒ,.), i=l,2, then

r=T1 | |T2eLCReg(L, /),

where (L, I) = (L19

Proof: Let A/ = (P'1, . . ., P ,̂ F'), A / /-(P /
1 ' Î . . ., P'k', ¥") be LCASYN auto-

mata recognizing Tx and T2. Then

vol. 21, n° 2? 1987

132 W. ZIELONKA

where

F = { K , . . ., s'n, si', . . ., s'k') : K , . . ., O e F', (si', . . ., s'k') e F" }

recognizes T. •

PROPOSITION 5.6: If Tl9 T2eLCReg(E, I) then TX\JT2, T1C\T2BI,-

CReg(£, ƒ).

Hint. Given LCASYN automata A', A" in the normal form recognizing
7\ and T2 we can combine their corresponding processes P-, P" applying
the standard construction known from the automata theory. Q

6. AN ALGEBRAIC CHARACTERIZATION OF REGULAR TRACE LANGUAGES

Theorems 4.4 and 4.5 lead immediately to a new characterization of
regular trace languages, different from that given by Ochmanski [13]. While
preparing the revised version of our paper we learned about two papers of
C. Duboc [7, 8], where, among other things, the results of this section are
presented. Thus we give here only some hints, referring the reader to [8] for
full proofs. Let (£, I) be a concurrent alphabet. If the independency relation
is empty then, for ueD*, [u]j= {u}. Thus the monoids E(L, 0) and X* are
isomorphic. Under this isomorphism, regular trace languages are equivalent
with regular languages. From now on every language L will be identified
with a trace language { { u } : ueL } Œ E(L, 0) .

THEOREM 6.1: Let (E, I) be a concurrent alphabet and Cliques
(D)— {2 l 5 . . . , ! „ } . For every trace language TeLCReg(£, I) there exist

k

regular languages Lip iekjen, such that T= U (||"=1Ly).

Proof: Let A = (P l s . . . , P f l , F) be an LCASYN automaton in the normal
form recognizing T, for all ien P; = (E;, St, sf, ô)̂. For every
s = (s l s . . . , s n)eF we create the following finite state acceptors

4 « = (£É> Si9 s?, 8,-, {Si}), ien.

Then

n*) = u (| |?= x L (Aj), (E, i)=| \u, (sb 0). n
seF

Informatique théorique et Applications/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 133

As an application of the above theorem we give a proof of Theorem 5.4.
Let

L = ((ab{Ja2b2)c)*, ƒ= {(o, b\ (ft, a) }

Z= {a, 6, c} and T= {[u], : ueL }.

This trace language is recognized by the ASYN automaton from Exam-
ple 4.2. Let Ll=((a\Ja2)c)* and let g : {a, c}*->{£>, c}* be the homomor-
phism defined by g(a) = b, g{c) = c. There for xeLt there exists exactly one
ye{b, c}*, j>=£(x), such that x||j>eT. Thus T cannot be decomposed in
the form given by Theorem 6.1.

Let LCReg be the union of the families LCReg (E, 7) for ail concurrent
alphabets (S, 7).

COROLLARY 6.2: LCReg is the least family M of trace languages such that
(i) every regular language belongs to M
(ii) M is closed under U eind | |.

Hère U is understood as a partial opération defined only for trace languages
over the same alphabets.

Proof: Immédiate conséquence of Propositions 5 .5 , 5 . 6 and Theo-

rem 6 , 1 . •

THEOREM 6. 3: Let T be a regular trace language over a concurrent alphabet
(Z, /) and let Cliques(D)= {Xx, . . . ,£„}. Then there exist

(i) a concurrent alphabet (£, ƒ),

Cliques (D)= {ll9 . . . , £ „ } ;

(ii) an elementary homomorphism ƒ : £(S, T)-+EÇL, î) such that Vien,

(iii) a family of regular languages Lip iek.jen, where "iiek, L(j cz £ƒ such
that

7W(

Proof: Let A=(P>
1) . . ., Pn, A, F) be an ASYN automaton recognizing T.

For every a e l , s', 5"e X S„ such that s"e5fl(s'), 5aeA, we create a
i e Dom (a)

new action (s', a, s")e£. We define ƒ ((5', a, 5")) = a. The next-state functions

vol. 21, n° 2, 1987

134 W. ZIELONKA

are defined in the following way, for i,. e Dom (a),

s,.((^a,s''),sip=s;;,

where

In this way we obtain an LCASYN automaton and applying Theorem 6.1
and the homomorphism ƒ defined above we have the thesis. •

Let Reg be the union of all families Reg(S, /) for all concurrent alphabets

(z,J).

COROLLARY 6.4: Reg is the least family M of trace languages such that

(i) every regular language belongs to M ;

(ii) M is closed under | | and {J (here U is understood as a partial opération
defined only for trace languages over the same alphabets);

(iii) for every Te M over a concurrent alphabet (X, I) and for every elementary
homomorphism

ƒ : E(X, /)->E(Z',/ '), f(T)e®

Proof: By Theorem 6. 3, Proposition 3. 3, Lemmas 3.4, 3. 5. •

Conclusing remarks: The concept of the finite asynchronous automaton
arises as a natural extension of the concept of the finite state acceptor when
we pass from sequential to parallel computations. For this reason all questions
and problems which have been considered for f sa can be posed for the ASYN
automata. In particular, infinité computations seem to be very interesting
from the point of view of concurrency theory. However, the development of
the theory of the asynchronous automata may need considérable efforts.
Another source of problems is concurrency theory, where questions concer-
ning deadlock and fairness seem to be of greatest interest.

ACKNOWLEDGMENTS

The autor wishes to thank Ryszard Janicki for his suggestions and encouragement.
We are also grateful to A. Arnold for his helpful criticism that led to significant improvements

in the paper.

Informatique théorique et Applicalions/Theoretical Informaties and Applications

NOTES ON FINITE ASYNCHRONOUS AUTOMATA 135

REFERENCES

1. A. BERTONI, M. BRAMBILLA, G. MAURI and N. SABADINI, An Application of the
Theory of Tree Partially Commutative Monoids: Asymptotic Densities of Trace
Languages, Lecture Notes in Comp. Sri., Vol. 117, 1981, Springer-Verlag, pp. 205-
215.

2. A. BERTONI, G. MAURI and N. SABADINI, A Hierarchy of Regular Trace Languages
and Some Combinatorial Applications, 2nd World Conf. on Mathematics at the
Service of Men, Las Palmas, 1982.

3. P. CARTIER and D. FOATA, Problèmes combinatoires de commutation et réarrange-
ments, Lecture Notes in Math., Vol 85, 1969, Springer-Verlag.

4. M. CLERBOUT and M. LATTEUX, Partial Commutations and Faithful Rational Trans-
ductions, Theoretical Comp. Science, Vol. 34, 1984, pp. 241-254.

5. R. CORI and Y. METTVTER, Recognizable Subsets of Partially Abelian Monoids,
Theoretical Comp. Science, Vol. 35, 1985, pp. 179-189.

6. R. CORT and D. PERRIN, Sur la reconnaissabilité dans les monoïdes partiellement
commutatifs libres, R.A.LR.O. Inform. Théor., Vol. 19, 1985, pp. 21-32.

7. C. DUBOC, Commutations dans les monoïdes libres : un cadre théoretique pour
F étude du parallélisme, Thèse de 3e cycle, also Technical Report 86-25, Laboratoire
Informatique Théoretique et Programmation, 1986.

8. C. DUBOC, Mixed Product and Asynchronous Automata (submitted for publication).
9. S. EILENBERG, Automata, Languages and Machines, Vol. A, 1974, Academie Press.

10. R. JANICKI, Synthesis o f Concurrent Schemes, Lecture Notes in Comp. Se, Vol. 64,
1978, Springer Verlag, pp. 298-307.

11. G. LALLEMENT, Semigroups and Combinatorial Applications, 1979, J. Wiley and
Sons, New York.

12. A. MAZURKIEWICZ, Concurrent Program Schemes and Their Interprétations,
DAIMI-PB-78, Aarhus University, 1977.

13. E. OCHMANSICI, Regular Behaviour of Concurrent Schemes, E.A.T.C.S. Bulletin,
No. 27, October 1985, pp. 56-67.

14. W. REISIG, Petrinetze. Eine Einfù'hrung, 1982, Springer Verlag.
15. M. W. SHIELDS, Non-Sequential Behaviour: 1, Report CSR-120-82, Department of

Comp. Science, University of Edinburgh, 1982.
16. P. H. STARKE, Free Pétri Net Languages, Lecture Notes in Comp. Se, Vol. 64,

Springer Verlag, pp. 506-515.
17. A. TARLECKJ, Notes on the Impîementability of Formai Languages by Concurrent

Systems, Institute of Computer Science of Polish Academy of Sciences, Report
481, Warsaw, 1982.

vol. 21, n°2, 1987

