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COMMUTATIVITY IM GROUPS PRESENTED BY FINITE
CHURCH-ROSSER THUE SYSTEMS (*)

by Klaus MADLENER C) and Friedrich OTTO (*)

Communicated by Jean BERSTEL

Abstract. - Let G be a group that can be presented by a flnite Church-Rosser Thue System.
Then, whenever two éléments u and v of G commute, the subgroup < u, v >G o f G generaled by u
and v is finite, or it is infinité cycîic. In particular, each finiteîy generaled abelian subgroup of G
is either finite or isomorphic to Z. Further, if the center of G is non-trivial, then G itself is already
finite or isomorphic to Z,

Résumé. - Soit G un groupe présenté par un système de Thue fini ayant la propriété Church-
Rosser, Si deux éléments u et v de G commutent, alors le sous-groupe <u, V}G de G quHls
engendrent est fini, ou cyclique. En particulier, tout sous-groupe abélien finissent engendré de G
est fini ou isomorphe à Z. De plus, si G possède un centre non trivial, alors G lui-même est fini ou
isomorphe à Z.

INTRODUCTION

Thue Systems are string-rewriting Systems that have been studied extensively
in computability theory, combinatorial (semi-) group theory, and formai

language theory. A Thue System T on S induces a congruence relation <-> on
T

S*, and hence, languages can be defined as unions of congruence classes. In
addition, T présents a monoid JiT which is taken to be the factor monoid

of the f ree monoid S* modulo the congruence <->.
T

Thue Systems that satisfy the Church-Rosser property [4, 5, 11] are of
special interest, since a finite Church-Rosser Thue System defines a unique
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9 4 K. MADLENER, F. OTTO

normal form for each of its congruence classes, and any word can be reduced
in linear time to the normal form in its class [5], Hence, it is only natural to
ask which monoids can be presented by finite Church-Rosser Thue Systems.
Observe that we are only interested in finite Systems, since every countable
monoid can be presented by an infinité Church-Rosser Thue system.

So far only a few results could be obtained in this direction. Cochet [10]
proved that a group G can be presented by a finite special Church-Rosser
Thue system if and only if G is isomorphic to the free product of finitely
many (finite or infinité) cyclic groups. Gilman [13] conjectured that a group
G can be presented by a finite monadic Church-Rosser Thue system if and
only if G is isomorphic to the free product of a finitely generated free group
and finitely many finite groups, which is exactly the class of groups that have
présentations with a simple reduced word problem [15]. For two-monadic
Church-Rosser Thue Systems this conjecture has been proved only recently
by Avenhaus, Madlener, and Otto [3]; however, the gênerai case is still open.
Finally, Avenhaus, Book, and Squier [2] established that whenever M is an
infinité commutative monoid that is cancellative, then M can be presented
by a finite Church-Rosser Thue system if and only if M is either the free
cyclic group or the free cyclic monoid. Diekert [12] has generalized this result.
For groups his result states that whenever a group G presented by some
finite Church-Rosser Thue system has an abelian subgroup S of finite index,
then any abelian subgroup of G is either finite or isomorphic to Z. However,
Z and Z2*Z2 are the only infinité groups meeting these requirements [12],

Here, we restrict our attention to groups presented by finite Church-Rosser
Thue Systems. We investigate under which conditions two éléments u and v
of such a group commute. Of course, if the subgroup < u, v >G of G generated
by u and v is cyclic, then u and v commute. However, if u and v commute,
and if u has infinité order, then this already implies that < u, v >G is cyclic
(Theorem 2.3). In fact, it turns out that the centralizer CG(u) of u in G is
isomorphic to Z.

To prove this result we establish a lemma that may be of interest in its
own right : Let T be a finite Church-Rosser Thue system on S such that the
monoid Jir presented by (E; T) is a group. Then for each word w e P , the
language A£( {u}*) C\ IRR(T) of irreducible descendants of powers of u is
regular. Observe that the descendants of a regular set modulo a finite Church-
Rosser Thue system may in gênerai form a non-recursive set [22]. Further,
the lemma is effective in that a regular expression presenting the set
A*( (M)*) H IRR (T) can be constructed effectively from u and T. Thus, given
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FINITE CHURCH-ROSSER THUE SYSTEMS 95

a finite Church-Rosser Thue system T o n i such that MT is a group and a
word we E*, the order of u in JtT can be determined effectively.

From our characterization theorem we can easily dérive that each finitely
generated abelian subgroup that can be presented by a finite Church-Rosser
Thue system is either finite or isomorphic to Z. Further, if G can be presented
in this way, and if the center of G is non-trivial, then G itself is already finite
or isomorphic to Z. Finally, if G contains a finitely generated abelian
subgroup that is normal in G, then G is already either finite, isomorphic to
Z, or isomorphic to Z2*Z2. These results extend the ones obtained by
Diekert considerably.

Finally, even though our result does not settle the problem of which groups
can be presented by finite Church-Rosser Thue Systems, it gives an easy
criterion to verify that a given group does not have a présentation of this
form.

Based on the techniques developed in this paper it can be shown that the
groups in discussion are context-free groups. This and some related results
will appear in a forthcoming paper. Hence, from Muller and Schupp's
result [18] we can conclude that the groups presented by finite Church-Rosser
Thue Systems form a proper subclass of the class of groups that are finite
extensions of free groups. Actually, we conjecture that this subclass is exactly
the class of groups appearing in Gilman's conjecture.

1. MONOID PRESENTATIONS AND ELEMENTS OF FINITE ORDER

In the following the basic notions and définitions for this paper are given.
For more details and for a thorough discussion of the various applications
of Thue Systems the reader may consult the excellent overview papers by
Book [7, 8].

An alphabet E is a finite set the éléments of which are called letters, The
set E* of words over E is the free monoid generated by E, where the empty
word e serves as the identity. For a word we E*, the length of w is denoted
by | w | : | e | = 0, and | wa | = | w | + 1 for we E*, a e E. The identity of words is
written as =, and the concaténation of words u and v is simply written as uv.
Numerical superscripts are of ten used to abbreviate words : w° = e, and
w"+ * = wn w f or w e E*, n e N.

A Thue system T on E is a subset of E* x E*. An element (/, r) of T is
called a rule. For a Thue system Ton E, dom(T) = {/eE* | 3reE*:(l, r)eT}
is the domain of T, and range ( 7) = {r e E* 13 l e E* : (/, r) e T} is its range. The
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96 K. MADLENER, F. OTTO

Thue congruence <-> induced by T is the reflexive transitive closure of the
T

relation <->, which is defined as follows : u <-> v if and only if
T T

3x, y G E*, (/, r)e T: [u = xly and v = xry] or [w = xry and v = xly\ For a word
*

weS*, the congruence class {yeS* | w<-n;} of w is denoted by [w]T.
r

The set of congruence classes {[w]r|weD*} forms a monoid under the
opération [ü]T°[v]T~[uv]T with identity [é\T. This monoid is denoted as MT.
It is the factor monoid of the free monoid X* modulo the Thue congruence
*

<-•. If M is a monoid such that M ^ JtT^ i. e., the monoids M and J(T are
r

isomorphic, then the ordered pair (S; T) is called a présentation of M with S
being the set of generators, and T being the set of defining relations. The
monoid M is called finitely presented, if there exists a finite présentation of
M, i. e., a présentation (E; T) with X and T both being finite. In this paper
we will only be dealing with finite présentations.

Let T be a Thue system on S. We define a mapping ord r:E*->N as
follows :

ordT(w) : =

T

if there are integers n ̂  O and k ̂  1

such that w"+k <-» w"
r

\ O otherwise.

The value ordr(w) is called the order of w modulo T. If ordr(w) ^ 0, then w
is said to be an element of finite order for T, otherwise w is said to be an
element of infinité order for T, Obviously, a word weZ* is an element of
finite (infinité) order for T if and only if w présents an element of finite
(infinité) order of the monoid JtT* In particular, if the monoid JiT is

cancellative, then weX* is an element of finite order if and only if wk<-+e
T

for some integer k ^ 1.

Informatique théorique et Applications/Theoretical Informaties and Applications



FINITE CHURCH-ROSSER THUE SYSTEMS 9 7

Two words M, ueS* are called cyclically equal (rnodulo T) (w « v) if there
T

* *
are words x, y G £ * such that u<->xy and i;<->jx [20], We claim that the order

T T

of words is invariant under the relation of cyclic equality.

LEMMA 1.1: Let T be a Thue System on 2, and let u, DGI* . If U & V, then
T

Proof: Let u and v be cyclically equal. Then there exist words x, y G S*

such that u<r+xy and Î;<->JOC. Assume that u has finite order. Then we have
r r

integers n ̂  0 and fc ̂  1 such that un + k+-+un, and hence,

Thus, u has finite order, too, and ordr(i;)^ordr(w). By symmetry we can
conclude that ordr(w) = ordT(î;). •

In the following we are interested in Thue Systems that satisfy certain
restrictions. A Thue System T on £ is called length-reducing, if | /1 > | r | for
each rule (l,r)eT, and it is called monadic, if it is length-reducing and

*
range (T) g E U {e}. The réduction relation -• defined by T is the reflexive

r
transitive closure of the relation ->, which is defined through u -• v if and

T r
only if u<r+v and |«|>|t?|. So for a length-reducing Thue System T the

r
relation -> corresponds to the process of substituting an occurrence of the

T

left-hand side of a rule by an occurrence of the corresponding right-hand
side. A word WG!,* is called irreducible, if no réduction step -> can be

T

applied to w, otherwise it is called reducible. IRR(T) dénotes the set of

ail irreducible words modulo T, À£ (w) = {v G S* | w -> v} dénotes the set
r

of ail descendants of w modulo T, and for any language

vol. 22, n° 1, 1988



98 K. MADLENER, F. OTTO

L g E*, A?(L) = U A* (w). A length-reducing Thue System T on S is called
w e L

a Church-Rosser Thue system, if each congruence class contains a unique
irreducible word, which can then be taken as the normal form for its class [5].

2. THE RESULT

Let T be a Thue system on E. The monoid M r presented by (E; T) is a
group if and only if, for each word we E*, there exists a word w 'e£* such

that ww' <r+e. Obviously, this is equivalent to saying that for each letter a e E,
T

*
there exists a word a'eE* such that aa'^e. In gênerai, it is undecidable

T

whether or not such words a!(aeS) exist, since it is undecidable in gênerai
whether or not the monoid JtT defined by a given présentation (E; T) is a
group. However, if we restrict our attention to finite présentations involving
Church-Rosser Thue Systems, then this problem becomes decidable [24].- In
fact, given a finite Church-Rosser Thue system T on E such that MT is a
group, one can effectively détermine an irreducible word a~x for each letter

such that aa~x -+e. We then extend the function ~ 1 :E ->Z* to all of
r

S* by defining e~l:=e and(aw)" 1 :=w~ 1 a~ 1 , we E*, a e E. So in thefollow-
ing we will associate a fixed function ~ 1 : £ * - > E * with each présentation
(E; T) provided T is Church-Rosser and MT is a group. We then write w~k

to mean (w"1)*, i. e., wl is defined for all integers /.

Let the monoid JiT given by the présentation (E; T) be a group, and let
M1; u2> . . ., uneE*. Then the subgroup < wl5 . . ., un

 S)MT of JiT that is gener-
ated by {uu u2, . . ., w„} is the least subgroup of ^ T containing all the
éléments presented by w1; w2, . . ., un, i. e.,

A subgroup S of ^ r is called cjc/fc if it is generated by a single element,
i\ e., S = < w > ^ r for some word w e E*.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Finally, recall that a word we E* is called primitive if there are no word
and integer k> 1 such that w = xk; otherwise, w is called imprimitive.

In either case, the shortest x such that w = xk is the root of w.

In this section we will only be dealing with finite Church-Rosser Thue
Systems presenting groups. We will dérive a characterization for those pairs
of words that commute modulo a Thue System of this type. We first state a
special case of the characterization theorem we are aiming at. This special
case will be very useful for proving the main resuit.

LEMMA 2.1: Let T be a finite Church-Rosser Thue system on E such that
the monoid JtT is a group, and let M e E* be a non-empty primitive word such
that {u}* g IRR(7). Then for each word vel* and each integer m ^ 1, if um

and v commute, then i ? e ( u ) ^ r .

* *
Proof: Let ueE* and m^tl such that umv<^vum. If v*-*e, then nothing

T T

has to be shown, and so we may assume that i?«Ae. Since umv<-*vum, we

have umnv<->vum'n for all n ^ l . Let wn dénote the irreducible descendant of
T

umnv. Then umnv -> wn and vumn -• w„, since T is Church-Rosser.
T T

CLAIM : There exists an integer n ̂  1 such that um wn = w„ wm.

Proof : Let fe ^ 1. Then um 'k v -> wfc implying | wfc | ̂  m * fc • | M | +11? |. On the
T

other hand, um-k<-+wkv~x, and hence, w^t;"1 -• um'k according to the choice
T T

of u, and so m • /c * | u | ̂  | wk | +1 f " 1 1 . Let

a k : = | wk | ~~m ' k ' | u | +1 v~1 [

Then ak ^ 0, and

| wk | = m • k ' | w | — | v ~11 + ak.

We have MmwJt<-^wmMmfcz; = Mm'(fc + 1)u*-> wfc + 1 , i. e., wmwk -> wfc + 1 and anal-
T T T

ogously, wk u
m - • Wjt + !. This means that either wm wfc = wk + x = wfc w

m or
T

vol. 22, n° 1, 1988



100 K. MADLENER, F. OTTO

I wk +11 < m * | u | +1 wk |. In the former case we are done, so assume the iatter.
Then

implying that ocfc + 1<ock. Since

we conclude that there exists an integer n ̂  1 such that

Since umwn = wnu
m, and since u is primitive, there exists an integer /^0

such that wn = ul. Hence, um " v <r+ wn = ul implying that
T

T

Let r b e a finite length-reducing Thue system on E, and let R g E* be a
regular language. If Tis monadic, then the language A$(R) is also regular [9].
However, if T is non-monadic, then this language is not necessarily regular.
In fact, even if Tis Church-Rosser, this language can be non-recursive [22].

In what follows we are interested in languages of the form
A*( {w}*) H IRR(7), where u is an element of infinité order, and Tis a finite
Church-Rosser Thue system presenting a group.

LEMMA 2.2: Let T be a finite Church-Rosser Thue system on E such that
the monoid JtT is a group. Then for each word weH*, the language
A£ ( {u}*) OIRR (7) is regular.

Proof: Observe that the language A*( {u}*) O IRR(7) is finite if and only
if the word u has finite order. So let we£* such that ordr(u) = 0. Without
loss of generality we may assume that u is irreducible. For each n^O, let
un dénote the irreducible descendant of u". Then um ^ un for all integers
n, m^O, n # m.

Let n}£ 1. Then uun -^un + 1, and since JlT is a group, u~1 un + 1 -• un. Thus,
r T

- | M x | ̂  | u | implying that

Informatique théorique et Applications/Theoretical Informaties and Applications



FINITE CHURCH-ROSSER THUE SYSTEMS 101

Hence, whenever uu„-mn + 1, then i^\u\ + \u * |. Analogously, unu->un
T T

a l s o i l l j
Let X : = max {| l| | ledom(T)}, and let |i : = 2 - ( | u | +\u~l [)• (X-

Since um / un for all m # n, there exists an index n (u) such that | uk | ^ (i for
all fc^n(ja). Finally, let ^^n(jn) be chosen such that \up\ < | « p + 1 | . Since

* *
uup-+up + 1<^upu, we have the following factorizations: up = xt = sz and

T T

up+l=vt = sw, where ux->v and zw -> w. Since w, u^6lRR(7) , and since
r r

ï, J ^ | w|n-| w'11, we can conclude that |x | , | Z | ^ ( | M | +\u~1\)-(X~l). By the
choice of p this yields that t=yz and s = xy for a word y e l * satisfying
1̂ 1 ^X. Thus, we have the f ollowing situation:

* *
np = xyz, up + 1= vyz = xyw, where ux-+v and zw -> w.

r r

Since JiT is a group, and since u*Ue, we obtain v^x and z^w. Now four
T

cases must be distinguished.

(i) v = xx1 and w ^ z ^ for some non-empty words xu z1el,*.

Then up+l=xxiyz = xyz1 z, which implies x1y=yzXi ux-*xxx, and
r

*
zu -y zx z.

T

CLAIM. up+k = xx\yz for all fe^l.

Proof: By induction on k:

k = l : up+i=xxxyz according to our assumptions.

k -> & + 1 : wwp+fc = wxxi ^z by induction hypothesis.

Now wxxi yz-^xxi+ 1>?z = xxi>'z1z. The word xx^y is a factor of up + k,
T

and hence it is irreducible.

The word yzx z is a factor of up+1, and hence it is irreducible, too. Since
I^I^A,, this means that the word xx\+1 yz = xx\yz1z is irreducible, i. e.,
xx\+lyz = xxk

iyzxz is irreducible, i. e., xx\+1 yz = up+k+l. •

vol 22, n° 1, 1988



102 K. MADLENER, F. OTTO

Thus, in this situation the language

is clearly regular.

(ii) x = vvx and 2 = w1w for some non-empty words vu v^eE*. Then
up = vv1yw1 w and up+1 = vywx w = vv1yw implying \up\ > |w p + 1 1 . This contra-
dicts our choice of index p, i. e., case (ii) cannot occur.

(iii) x = vvx and w = zxz for some non-empty words vl9 zxeH*. Then
up+1 = vyz = vvxyzxz implying y — v1yzu which contradicts the fact that vx and
zx are non-empty.

(iv) v — xxx and z = wxw for some non-empty words xx, Wjell*. Then
up + x=xxiyw1w = xyw giving the same contradiction as above.

Thus, only case (i) can occur, and the lemma is proved. Q

Finally, we can state and prove our characterization theorem for commut-
ing éléments in finite Church-Rosser Thue Systems presenting groups.

THEOREM 2. 3: Let T be a finite Church-Rosser Thue System on E such that

the monoid JlT is a group, and let « e l * be a word of infinité order. Then for

each word ueD*, the following two statements are equivalent:

(i) u and v commute.
(iii) The subgroup ( M , Ü } M T of JtT generated by u and v is cyclic.

Proof: Let u, f e E* such that ordr(w) = 0. If there exists a word .yeS*
such that M, ve(y}MT, then obviously u and v commute. To prove the

*
converse implication assume that uv <-> vu.

T

If v<r+e, then <u, t> X^T = < M X*T, anc* w e a r e done. So assume that v+ke.
T T

For each n ̂  0> let un dénote the irreducible descendant of un. By Lemma 2.2
the set

R(u): ={u n | n^0} = A*({u}*)niRRm

is regular. Since it is also infinité, there exists a set I(u) = {xw lz \ i^0}^R(u\
where x, w, z e i * are words such that x z / e / w .

Let y dénote the root of w, i. e,, y is a non-empty primitive word such that
w = yn for some n ^ l . Obviously, we have {_y}*<=IRR(T). Now for each
integer f^O, there is an index ; ^ 1 such that xwlz = ujt. We fix an integer
k ^ 0 such that7fc+ x >jk, and in order to simplify notation we define m : =jk+li

Informatique théorique et Applications/Theoretical Informaties and Applications



FINITE CHURCH-ROSSER THUE SYSTEMS 103

=jk, and / : —m—j. This gives

which in turn yields ul<^>z wz, since J(T is a group.

T

Using this relation we obtain
* * * * *

ytt(zvz~1)<r^zz~1 wzvz~1 <-*• zul vz*1 «->zvulz~x <-• ZÜZ~ 1 zu 'z~ 1 <->
r T r r r

which yields zuz""1 e <^ } M T by Lemma 2 . 1 . Analogously,

yn(zuz~1)<^>zz~1wzuz~1<^>zuî + 1z~1<^>(zuz~1)yn

implying zuz~xe<j;>^r. Thus, we have u, ^ ( z " 1 ^ ) ^ , i. e., w+->yo and
T

v<^yl
0 for some non-zero integers k, leZ, Hère ^0 stands for z~xyz.

T

Let p dénote the greatest common divisor of k and /. Then p^O, and
obviously, u, ue< jg>^ r On the other hand, there are integers X, [IGZ such
that

X.k+\i.l=p, Le., ux

T

Thus, y%e(u, v)Mr This means that <w, t?>^r=<,yg>^r, and hence, the
subgroup < M, v yMT is in fact cyclic. •

Actually, the proof just given shows a bit more than we claimed, since the
word y0 : =z~V z only dépends on M, but not on the word v. Thus, in
addition to Theorem 2. 3 we have shown the following.

COROLLARY 2.4: Let T be a finite Church-Rosser Thue System on S such
that the monoid JlT is a group, Then for each word u of infinité order, the
centralizer CT(u) ofu in J(T is isomorphic to Z.

Proof: Let u e 2* such that ordr(w) = 0. Then there exists a word yoel<*
such that for each ueE*, if u and v commute, then ve<KyQ

y)Mr Thus,

CT (u) = {v e Z* | uv <r+ vu} c < y0 yMT, and so CT (u) is isomorphic to Z. •
r

vol. 22, n° 1, 1988



104 K. MADLENER, F. OTTO

3. SOME CONCLUSIONS

From our characterization theorem we fairly easily obtain a number of
conclusions regarding the order of commuting éléments and the subgroups
generated by them.

COROLLARY 3.1.* Let T be a finite Church-Rosser Thue system on X such

that the monoid JtT is a group, and let u, V e £* be words such that uv<->vu,
T

* *
but neither u<-^e nor v<-+e.

T T

(a) If u has finite order, then v and uv have finite order.

*
(b) If u has infinité order, then v has infinité order, and either 1? <-> u ~ * or uv

T

also has infinité order.

Proof: Let w, Ü Ê S * such that uv<r+vu, u+Ue, and v4*e. If ordr(w) = 0,
T T T

* * .

then by Theorem 2. 3 there exists a word y e 2* such that u<^yl and v<r+yj

T T

for some integers i, jVO. Now ord r(u) = 0 implies that ord r(y) = 0, which
then yields that ordT(i>) = 0. Thus, either u and v both have infinité order, or
they both have finite order.

(a) Let u and v have finite order, and let ra : =ord r(î/). Then m g: 2,

vm <-• e, and vl 4* e for all i { 1, 2, . . ., m — 1 }. If ordT (uv) = 0, then
r T

(uv) vm~1 = uvm <r+u<-+vmu<-+vm~1 (uv)
TT T

implies that o r d r ( f ) = 0 according to the above remark. Thus, uv has finite
order.

(b) Let u and v have infinité order. Then the subgroup < u, v } M T is cyclic,
and since it is infinité, we have <w, u > ^ r ^ Z . Thus, wi;e<w, V}MT implies

that either uv<r+e, i. e., v+^u"1, or ordr(wu) = 0. •
T T

Informatique théorique et Applications/Theoretical Informaties and Applications



FINITE CHURCH-ROSSER THUE SYSTEMS 105

A group is called torsion-free, if it does not contain any non-trivial éléments
of finite order. The following corollary gives a characterization for those
groups presented by finite Church-Rosser Thue Systems that contain éléments
of infinité order, and it states a simple observation about groups of this kind
that are not torsion-free.

COROLLARY 3.2: Let T be a finite Church-Rosser Thue system on S such
that the monoid JiT is a group.

(a) The group JÎT is infinité if and only if it contains an element of infinité
order.

(b) If MT is infinité but not torsion-free, then MT contains infinitely many
non-trivial éléments of finite order.

Proof: (a) If JtT contains an element of infinité order, then obviously, JtT

must be infinité. Now assume conversely that the group Jtr is infinité. Then
the set IRR(T) is an infinité regular set of représentatives for JtT. Hence,
the pumping lemma for regular sets applies giving a subset {xyk z | k ̂  0 } of
IRR(7), where y^e. Since the set IRR(T) is subword-closed, this gives
{j/}*gIRR(7). Thus, y describes an element of infinité order of JÎT.

(b) Since JtT is infinité, there exists a word j /e£* such that ord r(j) = 0,
and since JtT is not torsion-free, there exists a word xelRR(T) — {e} such
that ordT(x) = m^2. For ail z = l , let xt : =y~ixyi. Then

x)=m for ail i.

* *
Assume that xt<^xi+j for some integers i, j ^ 1. Then y~ixyi^^y~i~jxyi+j

implying that x<-+y~jxyj, i. e., yjx<->xyj. Since x has finite order, y3 must
T T

have finite order by Corollary 3.1. Hence, 7 = 0. Thus, for ail i

i. e., { x ; | i = l } présents an infinité subset of JiT of éléments of finite
order. •

Corollary 3.2 (a) solves the Burnside problem [1] for groups presented by
finite Church-Rosser Thue Systems. In fact, our proof is valid for each group
that can be presented by a complete string-rewriting system the domain of
which is a regular set. That we used length as an ordering is not important
in this situation.

If Tis a finite monadic Church-Rosser Thue system on S and weD*, then
the order ordr(w) of w can be determined effectively. In fact, given a finite
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monadic Church-Rosser Thue System T on E, it is decidable whether or not

there exists a word wel*, w<->e, such that ordr(w)>0 [23]. Ho we ver, for
T

finite Church-Rosser Thue Systems that are non-monadic, this problem is
still open, while it is known to be undecidable for finite Thue Systems in
gênerai. If we restrict our attention to letters only, then we do at least have
the following resuit, which can be viewed as a generalization of [2, Lemma
4].

LEMMA 3.3: Let T be a finite Church-Rosser Thue System on S, and let
a e X. Then the following two statements are equivalent:

(i) ord r(a)>0.

(ii) 3 m ^ l : amedom(7).

Proof: If ordT(a)>0, then there exist integers n^O and k^l such that

an + k++an. Since T is .Church-Rosser, this implies that an + k and an have a
T

common descendant. In particular, an + k is reducible modulo T, i. e.,
amedom(T) for some me{1,2, . . ., n + k}.

Now assume conversely that ameâom(T) for some integer m ^ l . Then
there exists a word re E*, | r |<m, such that (am, r)eT. For each n^m, let un

dénote the irreducible descendant of anmodulo T. If une{a}* for some n^m,

then an<-+un = akelRR(T), which implies n^.m>k. Thus, ord r(a)>0. So let
T

us assume that un£{a}* for ail n^m.

CLAIM: | un | <m for all n^m.

Proof: By induction on n:

n = m: am-^r^um implying Iwjg l r

n -• n + 1 : We have aft ->• w„, and by induction hypothesis | un
T
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Now an +1 = an a -> un a and an + 1 = aa" -> au„, which yield
r r

aw„ -> w„ +1 <- wn a. Since wn £ { a } *, we conclude that aun # w„ a, i e.,
T T

Û " « - ^ « « + I - Hence,
r

Since there exist only finitely many words u e S * satisfying |i?|<m, we see

that there are integers n1>n2*^m such that uni~unr Hence, aWl^->a"2, i. e.,
T

ordT(a)>0. \J

If, however, ^ r is a group, then by Lemma 2.2 Af ({u}*) O IRR(T) is a
regular set. Now either this set is finite, in which case there exists an integer

n ̂  1 such that un -• e, or this set is infinité, in which case there exists an
T

integer p ^ 1 such that

and

where X : = max { | J11 / e dom ( T)}. Fr om the proof of Lemma 2.2 we see that
this condition is not only necessary but also sufficient for the set
A*({ w}*) H IRR(7) to be infinité. Thus, we have the following result.

COROLLARY 3.4: Let T be a finite Church-Rosser Thue system on E such
that the monoid JiT is a group, Then given a word w e l * , the order of u
modulo T can be determined effectively.

Finally, we have the following characterization for certain abelian
subgroups of groups that are presented by finite Church-Rosser Thue Systems.

COROLLARY 3. 5: Let G be a group that can be presented by a finite Church-
Rosser Thue system. If S is an abelian subgroup of G such that S contains an
element of infinité order, then S is isomorphic to Z.

Proof: Let T be a finite Church-Rosser Thue system on Z such that (2 ; T)
is a présentation of G, and let S be an abelian subgroup of G containing an
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element u of infinité order. Then S is a subgroup of the centralizer CT (u) of
u in G, which is isomorphic to Z by Corollary 2.4. Thus, S^Z. •

If S is a finitely generated abelian subgroup of G, then S is infinité if and
only if it contains an element of infinité order. Thus, Corollary 3.5 implies
the following.

COROLLARY 3. 6: Let G be a group that can be presented by a finite Church-
Rosser Thue system. Then every finitely generated abelian subgroup of G is
either finite or isomorphic to Z.

Another application of Corollary 2.4 gives the following characterization
of groups that can be presented by finite Church-Rosser Thue Systems and
that have a non-trivial center.

COROLLARY 3. 7: Let G be a group that can be presented by a finite Church-
Rosser Thue system. If the center C of G is non-trivial, then G is either finite
or isomorphic to Z.

Proof: Let Tbe a finite Church-Rosser Thue system on E such that (E; 7)
présents the group G, and assume that the center of G is non-trivial, i. e.,

If C contains an element of finite order, then by Corollary 3.1 each element
of G has finite order, and hence G is finite by Corollary 3.2(a),

Now assume that C contains an element u of infinité order. Then G equals
the centralizer CT(u\ which is isomorphic to Z by Corollary 2.4. Thus,
G^Z. •

For groups containing a finite normal subgroup we have the following
observation.

COROLLARY 3. 8: Let G be a group that can be presented by a finite Church-
Rosser Thue system. If G contains a non-trivial normal subgroup that is finite,
then G it self is finite.

Proof: Let T be a finite Church-Rosser Thue system on E such that (S; T)
is a présentation of G, and let JV be a finite non-trivial normal subgroup of
G. Then there are words ul9 u29 . . ., une!RR(T)~ {e} such that the set
{e, ul9 u2, . . ., un} exactly describes the subgroup N.

Informatique théorique et Applications/Theoretical Informaties and Applications



FINITE CHURCH-ROSSER THUE SYSTEMS 109

Assume that G is infinité. Then there exists an irreducible word wel* such

that ordT(u) = 0. In particular, um4+e for ail m ̂  1. The mapping ui-^u~1 utu
T

induces an automorphism on JV. Thus, there exists an index m ̂  1 such that

u~mulu
m<r+ uu i. e., ux u

m^umuv Since ordT (uj#0 whiîe
T T

ordT(w) = ordT(um) = 0, this contradicts Corollary 3.1. Thus, G is indeed
finite. •

Using this observation we can now prove the following generalization of
Diekert's characterization theorem [12].

COROLLARY 3. 9: Let G be a group that can be présentée by a finite Church-
Rosser Thue System. If G contains a finitely generated nontrivial abelian
subgroup that is normal in G, then G is either finite, isomorphic to Z or
isomorphic to the infinité dyhedral group Z2 * Z2.

Proof: Let N be a finitely generated non-trivial abelian subgroup of G that
is normal in G. By Corollary 3.6 AT is either finite or infinité cyclic. If N is
finite, then G is finite by Corollary 3.8. So let JV= <u >G for some element u
of G of infinité order. Then the centralizer CG (N) = CG (u) is an infinité cyclic
subgroup (Corollary 2.4) that is normal in G. Let CG(u)= (v}G for some
element z; of G of infinité order. For every element g e G, the mapping
<pfl : h~^>g~lhg induces an automorphism of CG(u)= (v}G, Le., g~xvg = v
or g~1vg = v~1. If g~1vg = v, Le., g and v commute, then also g and u
commute implying that geCG(u). Analogously, if g~1vg = v~1, then
g2 e CG (u). Thus, for ail gl9 g2 e G, if gl9 g2 $ CG (M), then g1 g2

 1 e CG (M), i. e.,
CG(U)8I = CG(U)82- Hence, the index \G : CG(u)\ of CG(u) in G is at most
two. Now Diekert's resuit applies giving G^Z or G ^ Z 2 * Z 2 . •

While it is still an open problem to characterize those groups that can be
presented by finite Church-Rosser Thue Systems, our results can at least serve
as criteria to verify that a given group does not have a présentation of this
type.

Example 3.10; Let G = i7
2xZ2 , i.e., G is the direct product of the free

group F2 of rank 2 and the cyclic group Z2 of order 2. Then G is not finite,
but Z2 is a finite normal subgroup of G. Thus, by Corollary 3.8 G cannot
be presented by a finite Church-Rosser Thue System. •
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In [16, 17] Jantzen investigates the class of groups G„(n^l), where Gn is
given through the présentation (X; SJ,

X={a,b},Sn={((abTba,e)}.

He shows that for no n^ 1, there is a finite canonical (semi-) Thue System Tn

* *on S such that |u | ̂  \v\ for all rules (w, ü)eTB, and <-> = <->. Using our

results we can prove that none of these groups can be presented by a finite
Church-Rosser Thue System.

Example 3.11; (a) The group Gx is neither finite nor isomorphic to Z.

However, its center C is non-trivial, since e*ha2eC, as can be seen easily.
Sx

Thus, Corollary 3. 7 gives the intended result.

(b) Let n ̂  2. Then Gn contains a subgroup that is isomorphic to
Z(l/n) : = {p.nq\p, qsZ} [16]. This subgroup is abelian, and it clearly con-
tains an element of infinité order. However, it is not finitely generated, and
so is not isomorphic to Z. Thus, Corollary 3. 5 applies. •

We conclude this paper with a look at Greendlinger's group G presented
by ({a,b, c, â, b, c); {(aö, e\ (âa, e), (bb, e), (5b, e), (cc, e), (cc, e),
(abc, cba))} [14].

Example 3.12; The éléments presented by ab and by ca commute in
G. However, the subgroup <a£>, ca}G generated by them is free abelian of
rank 2 [14]. Thus, Corollary 3. 6 implies that the Greendlinger group G can-
not be presented by a finite Church-Rosser Thue system. •

This last example answers a question raised in [21].
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