A.J. KFOURY

A linear-time algorithm to decide whether a
binary word contains an overlap

Informatique théorique et applications, tome 22, n°2 (1988),
p- 135-145

<http://www.numdam.org/item?id=ITA_1988__ 22 2 135_0>

© AFCET, 1988, tous droits réservés.

L’acces aux archives de la revue « Informatique théorique et applications » im-
plique I’accord avec les conditions générales d’utilisation (http:/www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1988__22_2_135_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informatics and Applications
(vol. 22, n° 2, 1988, p. 135 a 145)

A LINEAR-TIME ALGORITHM TO DECIDE WHETHER A BINARY
WORD CONTAINS AN OVERLAP (%)

by A. J. Kroury ()

Communicated by J. E. PIN

Abstract. — We present two new results. First, we give a new linear-time algorithm to test
whether an arbitrary binary word contains an overlap. Second, we show that the number of overlap-
free binary words of length n does not exceed O (n°) for some e<2.

Résumé. — Nous établissons deux nouveaux résultats. Premiérement, nous présentons un nouvel
algorithme qui décide en temps linéaire si un mot binaire arbitraire contient un chevauchement.
Deuxiémement, nous démontrons que le nombre de mots binaires de longueur n ne contenant pas
de chevauchements ne dépasse pas O (n®) oui e<2.

1. INTRODUCTION

Crochemore was the first to develop a @ (n) algorithm to test whether a
word of length n is square-free [2]; his algorithm can be adapted to decide in
linear time whether a binary word is overlap-free. Here we take a fresh look
at the latter problem and develop another linear-time algorithm for it (with
a relatively small proportionality constant). Furthermore, an analysis of our
algorithm allows us to determine a subquadratic bound on the number of
overlap-free words over a binary alphabet which is tighter than the previously
known bound; ours is 0 (n°) for some e<2, whereas Restivo’s and Salemi’s
is @ (n'°9 13) [5].

Concerning notation and terminology, we will generally follow Chapter 1
of [6]. In addition, late Greek letters (n, p, o and 1) will denote variables
ranging over the set of possible words, and late Roman letters (x, y and z)
will stand for individual symbols from finite alphabets.

(*) Received July 1986, revised June 1987.
(!) Laboratoire de Génie Informatique, Institut . M.A.G., Grenoble, France.

Permanent address: Computer Science Department, Boston University, Boston, Mass, U.S.A,,
02215.

Informatique théorique et Applications/Theoretical Informatics and Applications
0296-1598 88/02 135 11/$3.10/© Gauthier-Villars

136 A. J. KFOURY

Formally, a word o contains a square if it contains a finite subword of
the form tt, where t is non-empty. A word o contains an overlap if it contains
a finite subword of the form ptp’ such that pt=1p’, where p, 1, and p’ are
non-empty. Square-freeness implies overlap-freeness, but not the other way
around. No word of length =4 over a binary alphabet can be square-free;
on the other hand, there are overlap-free words of unbounded length over a
binary alphabet [6].

If o is a word over a binary alphabet, ¢ will denote the complement of o,
i.e., the word obtained from & by replacing every 0 by 1 and every 1 by 0.

The following is a useful characterization of overlap-freeness we shall use
repeatedly in the sequel.

1.1. LeMMA: A word o is overlap-free <> & does not contain a finite subword
of the form x 1t xtx<> G does not contain a finite subword of the form ttx (or
X Tt) where 1T is non-empty and x is the first (or last) symbol of t.

Proof: Straightforward. H

2. SOME PROPERTIES OF OVERLAP-FREE WORDS

Before giving our algorithm in Section 3, we state and prove a few technical
results about overlap-free words, from which will follow the correctness of
the algorithm. Many of these are implicit in [S].

2.1. LEMMA: Let 6=x x,...x,€{0, 1}* be an overlap-free word of length
n=5.

(1) If x,x;x3x,€{0110, 1001, 1010, 0101} or if x, x;, x3x4Xxs€{ 00100,
11011}, then for all even j, 4<j<n, x;=X;_;.

(2) If xyx,x3x,€{0011, 1100, 0100, 1011} or if x, x, x5 x4 x5 €{ 00101,
110103, then for all odd j, 3<j<n, x;=x;_,.

It is easy to check that all prefixes x; X, X3 X, not mentionned in (1) and (2)
contain an overlap.

Proof. (1) By induction on even j=4. The result is clear for j=4. Let then
k be an even integer, 4 <k <n, and assume the result is already proved for
every even j, 4<j<k. With no loss of generality, suppose x;_5x;_,=01.
This forces x,_; x, # 11, otherwise x,_, x, _, x, would be an overlap. We next
show that x, _, x, 7#00.

By the introduction hypothesis, x,_sx,_,=01 or 10, (In case k=6,
X -5 X~ 4 may also be 11, but then in this case x;_, x,=10). f x, _5x,_,=01

Informatique théorique et Applications/Theoretical Informatics and Applications

OVERLAP-FREE BINARY WORDS 137

and x,_ x;=00 then x;,_s...x,_; would be an overlap. If x,_5x,_,=10
and x,_;x,=00 (the latter condition forcing x,,,=1), then x;_s5...x. 4,
would be an overlap.

(2) By induction on odd j=3. The proof is similar to (1) above, and we
omit it. W

2.2. LemMA: If c€{0,1}* is overlap-free of length =77, there is a unique
way of decomposing G into three parts: c=npn’ where n, ©’ €{1,0,1,00,11}
and pe{01, 10}*.

Proof: This easily follows from the preceding lemma. W

The n and ©n" in 2.2 are determined according to the 12 patterns mentioned
in Lemma 2.1. Clearly, once n is determined, so is ©’. If o has as a prefix
one of the first four patterns in 2.1. 1:

0110, 1001, 1010, 0101.

then n=); if o has as a prefix one of the remaining two patterns in 2.1.1:

00100, 11011,

then 1=00 or 11; and if o has as a prefix one of the six patterns in 2.1.2:
0011, 1100, 0100, 1011, 00101, 11010.

then =0 or 1.

For the case of overlap-free words ¢ of length <6 not in {1,0,1,00, 11},
a decomposition of ¢ in the form prescribed by Lemma 2.2 is always
possible, although it may not be unique (e. g., let c=001011 which admits
two such decompositions, according to whether =0 or t=00.) Also, a
unique decomposition in the form prescribed by Lemma 2.2 is sometimes

possible for words o that are not overlap-free (for example, let
c=001100110).

2.3. LemMA: Let m, w'e{),0,1,00,11}, pe{01,10}* and |p|>4. Then
npn’ is overlap-free <> both np and pr’ are overlap free.

Proof: The left-to-right implication is immediate. For the converse, assume
both np and pn’ are overlap-free but that mpn’ is not, and we shall get a
contradiction. Under this assumption, |n|#0 and |n'|#0. Because p is of
even length, not both |n|=1 and |n’'|=1, otherwise npn’ would not be of
the form ttx where x is the leftmost symbol of t. With no loss of generally,
assume |n|=2. This implies that n=xx and n’=x (or xx), where xe{0,1},
with the shortest overlap in mpn’ being xxpx (or x p xx). But if pe{01,10}*,

vol. 22, n° 2, 1988

138 A. J. KFOURY

it is now easily checked that both np and pn’ contain an overlap, contradicting
the initial assumption. B

In the preceding lemma we cannot ignore the condition |p|>4 in the

hypothesis. For example, if 1=00, p=1001, and n’ =00, both np and pn’ are
overlap-free but npn’ is not.

2.4. LeMMA: Let x, ye{0,1} and pe{01,10}". Then:
(1) xp overlap-free <> xx p overlap-free,
(2) py overlap-free <> pyy overlap-free.

Proof: The right-to-left implications are trivially true. We prove the left-
to-right implication in (1) only; the same proof applies to (2). Assume then
that x p is overlap-free, xx p is not, and we get a contradiction. Under this
assumption, the shortest overlap in xxp contains the leftmost x; i.e., xxp
contains a prefix ttx with t#A. Given that pe{01,10}7, it is easily seen t
cannot be of odd length. If t is of even length, xp has already a prefix 11" x,
with |1:’ | = | 7|, contradicting the assumption that xp is overlap-frec. W

2.5. LeMMA: Let x, ye{0,1} and pe{01,10}". Then:

(1) xxp overlap-free = xxp overlap-free,

(2) pyy overlap-free = pyy overlap-free,

(3) xxp overlap-free = if xxp has an overlap then xxx or xxxxxxx is a
prefix of xxp,

(4) pyy overlap-free = if pyy has an overlap then yyy or yyyyyyy is a suffix
of pyy.

Proof: The proofs for (1) and (2) are similar to those of the left-to-right
implications in the preceding lemma. We prove (3) only; the proof for (4) is
similar.

For (3), assume xxp is overlap-free and xxp is not. Hence xxp contains a
prefix ttx, with t#A. Given that pe{01,10}* and that t is x or starts with
xx, the length of © must be odd. Given that xp is overlap-free, this forces
the prefix ttx to be xxx or xxxxxxx. W

We define a partial function ¢ from {0,1}* to {01,10}". ¢ is defined
for all words of the form npn’ where n, n'€{},0,1,00,11} and pe{01,10}"
by:

P, if m=n'=\
L~ \ xxp, if m=xorxx,withxe{0,1},andn’ =A;
Qo(rpn)=y _ ., . N
pYY, if w'=yoryy, withye{0,1},andn=A7;

XXPyY, if m=xorxx,m =yoryy withx,ye{0,1}.

Informatique théorique et Applications/Theoretical Informatics and Applications

OVERLAP-FREE BINARY WORDS 139

2.6. LemMA: Let m, n'€{2,0,1,00,11}, and pe{01,10}*. Hypothesis:

(1) If (n=x or xx) and (W' =y or yy), then xpy#1t for all t€{0,1}7;

(2) If m=xx then neither xxx nor xxxxxxx is a prefix of np;

(3) If i’ =yy then neither yyy nor yyyyyyy is a prefix of pn’.
Conclusion: mpn” overlap-free <> @ (npn’) overlap-free.

Proof: We consider the case when | P | >4, so that Lemma 2. 3 can be used.
For the case when |p | <4, the lemma is established exhaustively.

By Lemma 2.3, 2.4, and 2.5, it is easy to see that all we need to prove is
the implication xxp and pyy overlap-free = xxpyy overlap-free. Assume that
xxp and pyy are overlap-free, but that xxpyy is not. A shortest overlap (an
expressmn of the form 1tz with z the first symbol of 1) in xxpyy is therefore
Xpyy, or xxpy, or xxpyy. Because xxpyy is of even length, it cannot be a
shortest overlap. Hence, xpyy or xxpy is a shortest overlap. But in both
cases, this contradicts the fact that xpy#tt for allt. I

We cannot omit condition (1) in the hypothesis of the preceding lemma.
For example, let 1=0, n’=1, and p=011001, so that npx’ =11 with t=0011.
Here npn’ is overlap-free, but @ (npn’) is not.

We define another partial function ¢ from {0,1}* to {01,10}*. ¥ is
defined for all words of the form mpn’ where n, n'e{A,0,1,00,11} and
pe{01,10}", by:

P, if n=n"=)\
Y (mpm’) ={ xxp, if m=xorxx,withxe{0,1},andn’'=2;
pyy, if m=MAorxorxx,n’=yoryy, withx,ye{0,1}.

Observe that o@(npn’) and VY(npn’) are words in {01,10}", and
¢ (npn’) =Y (npn’) whenever t=A or ' =A.

2.7. LemMaA: Let m, '€ { 4,0,1,00,11}, and pe {01, 10}*. Hypothesis:

(1) If (n=x or xx) and (' =y or yy), then xpy=11 for some 1€{0,1}%;

(2) If n=xx then neither xxx nor xxxxxxx is a prefix of np;

(3) If &’ =yy then neither yyy nor yyyyyyy is a suffix of pn’.
Conclusion: npr’ overlap-free <>y (npn’) overlap-free.

Proof: We consider the case when | p|>4, so that Lemma 2.3 can be used.
For the case | p 1 =<4, the lemma is established exhaustively.

For the right-to-left implication, there are several subcases to consider,
some trivial. We consider only one of the non-trivial subcases here (the others
being treated similarly). Suppose that pyy is overlap-free, and we want to

vol. 22, n® 2, 1988

140 A.J. KFOURY

show that xxpy is also overlap-free. This is established by the following
sequence of implications:

pyy overlap-free = py overlap-free
= xpy overlap-free (by (1)) = xp overlap-free
= xpyy overlap-free (by 2.3) = xxpyy overlap-free (by 2. 4)

= xxpyy overlap-free (by 2.5) = xxpy overlap-free.

For the left-to-right implication, it readily follows by Lemmas 2. 3, 2.4,
and 2.5, that we only need to prove that: xpy contains an overlap => both
xp and py contain an overlap.

Assume xpy contains an overlap, but not py, and we get a contradiction.
(The proof that xp contains an overlap is similar.) By hypothesis, xpy =1t
so that xpy=xt"yxt’y for some v €{0,1 }*. Because py is overlap-free, xpy
has a prefix xt’t” for some t“€{0,1}* which ends with symbol x. Hence
v’ 1" is a non-empty prefix of v’ yxt' y=py. If 171" is also a prefix of v’y
then py contains the sub-expression xt” v, which is an overlap, contradicting
the initial assumption. If 1’ yx is a prefix of v/ t”, itself a prefix of 1" yxt'y,
it is not difficult to see that t’xyt’y contains an overlap-another
contradiction. M

We need one more fact about overlap-free words. This is a classical result
due to Thue [6].

2.8. LeMMA: Let 0e€{01,10}" and o’ be obtained from o by mapping
consecutive occurrences of 01 and 10 into 0 and 1, respectively. Then o is
overlap-free <> G’ is overlap-free.

Proof: Straightforward. B

3. THE ALGORITHM

The input to the algorithm is an arbitrary ce{0,1}*. At the first iteration,
the algorithm sets o, =0. At the n-th iteration, n=1, it carries out the
following steps:

1. If 5,€{0,1,00,11}, terminate successfully.

2. Decompose o, as &, p, T, with n,, m,e{ A, 0,1,00,11} and p,e{01,10} .
If this is not possible, terminate unsucessfully. If o, has more than one such
decomposition, take &, as short as possible.

Informatique théorique et Applications/Theoretical Informatics and Applications

OVERLAP-FREE BINARY WORDS 141

3. If m,=xx, with xe{0,1}, and xxx or xxxxxxx is a prefix of m,p,,
terminate unsuccessfully.

4. If n,=yy, with ye{0,1}, and yyy or yyyyyyy is a suffix of p,=n,,
terminate unsuccessfully.

5. If (n,=x or xx) and (n,=yoryy) and (xp,y=1t for some 1€{0,1}*)
then goto 6 else goto 7.

6. Define o, ., from Yy (n, p,®,) by mapping consecutive occurrences of 01
and 10 into 0 and 1, respectively, and go to the (n+ 1)-st iteration.

7. Define o, from @(n,p, ;) by mapping consecutive occurrences of 01
and 10 into 0 and 1, respectively, and go to the (n+ 1)-st iteration.

For later reference, we call the above algorithm /. Without giving the
details, let us note that ../ can be easily modified into another algorithm .o/’
which executes the same steps as &7, except that if .o/ terminates unsuccessfully
then 7’ in addition returns a subword of the input word which is an overlap.
More specifically, if &/ terminates unsuccessfully at Step 2 (resp. Step 3,
respec. Step 4) at the n-th iteration, then o, contains an overlap of the form
XXX OF XXXXX Or xxxxxxX (respec. xxx or xxxxxxx as a prefix, respec. xxx
or xxxxxxx as a suffix) with xe{0,1}. This last assertion is immediately
verified for Step 3 and Step 4; to verify it for Step 2 also, one may use the
reasoning of the proof of 2.1 (left to the reader). An overlap in o, must
finally be translated into an overlap in &,, the original input word, and it is
not difficult to see that this can be done without exceeding a linear time
complexity (established for o in the next theorem).

3.1. THEOREM: Algorithm o/ terminates successfully on input 6€{0,1}* <o
is overlap-free. If) c l =n, then o/ executes at most O (n) steps.

Proof: The correctness of Step 2 in o/ follows from Lemma 2.2. Steps 3
and 4 in & test whether conditions (2) and (3) of lemmas 2.6 and 2.7 are
satisfied. The correctness of Step 5 in &/ follows from Lemmas 2.6 and 2.7.
The correctness of Steps 6 and 7 follows from Lemma 2. 8.

For the time complexity of 7, observe that on the first iteration &/
processes a word of length n, on the second iteration it processes a word of
length n/2, on the third iteration it processes a word of legnth n/4, etc., from
which we deduce that o/ runs in a linear number of steps. B

We can get an estimate for the proportionality constant in the time
complexity of algorithm o/ as follows. First of all, note that on each iteration
o/ makes at most 7 passes of the word it processes (at most 5 passes in Step
2, 1 pass in Step 5, and 1 pass in Step 6 or 7). Since n+(n/2)+(®n/4)+ ... <2n,

vol. 22, n° 2, 1988

142 A. I. KFOURY

the time complexity of &7 is therefore <14n+c, where c is the cost incurred
in Steps 3 and 4 which is <14log (n) (7 comparisons for each of Step 3 and
Step 4, multiplied by the maximum number of iterations).

3.2. THEOREM: There are at most O (n°) overlap-free words of length n, for
some e<2.

Proof: The analysis is simpler if we modify Algorithm o/. Let U < {0, 1}=¢
be the set of overlap-free words of length <6. We replace Step 1 in o/ by
the following:

1. If o,eU, terminate successfully; and if o,e{0,1}=°—U, terminate
unsuccessfully.

We call £ the algorithm obtained from o after this modification. Clearly,
2 terminates successfully if and only if the input is overlap-free.

The bound mentioned in the statement of the theorem is a bound on the
number of words of length n=7 on which # terminates successfully. If %
terminates successfully on ce€{0,1}* and |c|=n27, then # executes k
iterations for some 2§k < l_log (n_Z)] -1 Indeed, it is not difficult to check
that |o;|<(n+2'—2)/2'"1 for i=1, so that the largest possible value of i
such that |o,|<6 is [log(n—2)]— 1.

Assume % executes k =2 iterations and terminates successfully. Hence, the
first test of Step 2, and the tests of Steps 3 and 4, are always false in the
course of this execution. The only test which may switch from false to true,

or vice-versa, is that of Step 5. (The test of Step 1 is false throughout except
in the k-th iteration.)

Case 1: The test of Step 5 remains false throughout the execution of #
(the first k—1 iterations of £). In this case, the input o is fully determined
by the values of n;, i, ®,, ©5, ..., M _,, T,_q, and o, i €., for a given value
of o, €U by running the algorithm in “reverse” we uniquely reconstruct the
input o, if we also know the values of =, ©{,...,m,_;, T,_;. Although
n, T, €{A,0,1,00,11}, and therefore the pair (n;, n)) may assume one of 25
values, it is easy to see that if we know the leftmost and rightmost symbols
of o;—call them x and y respectively —then (m, n{) may assume no more
than 5 distinct values for each i=1,2,...,k—1. Indeed, if | 5,| is even.

(m,) € { (A 1), (x,), (xx, 1), (A, yy), (xx, y3) },
and if | o;| is odd,
(ni, 1'C:) € { (;"’ y)’ (x,)")5 (x’ yy)’ (xx’ y) }

Informatique théorique et Applications/Theoretical Informatics and Applications

OVERLAP-FREE BINARY WORDS 143

Furthermore, given values for x, y, and (w,, n}), it is also easy to see that the
leftmost and rightmost symbols of o;,, are uniquely determined [and there-
fore (m;, 4, T}, ;) may in turn assume no more than 5 values]. From this we
conclude that the number of input words 6 =0, for which # will terminate
successfully in k iterations, under the assumption that the test of Step 5
remains false throughout, does not exceed

4-12-5%71

where the “4” is the number of possibilities for the pair (lefmost symbol,
rightmost symbol) of o,, and the “12” the number of possible values for o,
(an overlap-free word of length 4, 5, or 6, given that we know its leftmost
and rightmost symbols). The above bound can be made tighter when we
observe that if m, =xx, and therefore if xxxxxxx is a prefix of o; then
m; 4 #A; and likewise, if n;=yy, n;, , #A. Hence, if we classify the possible
values of the pairs (n, 7) into two groups, those that do not have xx ou yy
as a component and those that do:

A={(), (%,), M Y) (X, M) },
B={(xx,N), (A, y), (xx, py), (x,), (xx,) },

then an instance of A4 for (%, n}) may be followed by the following instances
for (m;4 4, {+,): 2 instances of A and 3 instances of B (in case | o, | is even),
or 2 instances of A and 2 instances of B (in case |6, | is odd)—in either
case, at most 2 A’s and 3 B’s. On the other hand, an instance of B for
(m;, n;) may be followed for (m;,,, 7/, {) by: at most 1 instance of 4 and at
most 2 instances of B (whether |o,,, | is even or odd). Hence, if F(h) is the
number of paths in a tree of height h>1, whose nodes other than the root
are labelled with 4 and B satisfying the conditions:

A and B

A A B B B A B B

and the root has 5 successors labelled 4, 4, B, B, B, then our earlier bound
may be reduced to

4-12-F(k—1)=48- F(k—1).

Case 2: The test of Step 5 is true in the i-th iteration, for some i<k —1. In
this case it is not too difficult to show that in the j-th iteration, for
j=i+1,...,k—1: the test of Step 5 is false iff m;=n;=2A, and the test of

vol. 22, n° 2, 1988

144 A. J. KFOURY

Step 5 is true iff m;=x and n}=x for some xe{0,1}. (This last assertion
holds provided | ;| =7, which is the reason for modifying </ into 4#.) Hence,
in this case, the input o is fully determined by the values of =,
My o o o5 M1, M1, and o, and the iteration number i<k —1 for which the
test of Step S is true for the first time. Moreover, for fixed values of the
leftmost and rightmost symbols of o=o,, the sequence of pairs
(my, 1), - . ., (W, M;) may assume no more than F (i) distinct values (as argued
in Case 1), whereas each of (m;, , 7/,), . . ., (W, M;_,) may assume one of
3 values, namely (A, A), (0, 1), and (1, 0). Hence, the number of input words
o=o, for which # will terminate successfully in k iterations, under the
assumption that the test of Step 5 is true for the first time in the i-th iteration,
1<i<k—1, does not exceed

4- 8‘F(i)‘ 3k—1—i
where “4” is the number of possibilities for the pair (leftmost symbol,

rightmost symbol) of o,, and “8” the number of possible values for o, (an
overlap-free word of length 4,5, or 6 such that o, =1t for some 1€{0, 1}*).

Our evaluation below of the function F is such that F(i)=3". Hence
4-8-F(i)-3* 17i<32-F(k—1).
Putting Case 1 and Case 2 together, the number of input words for which #

terminates successfully in k =2 iterations cannot exceed k- 48 F (k—1). (Case
2 covers k —1 subcases, one for every value of ie{1,...,k—1}.)

It remains to evaluate the function F(h) for h=1. It is not difficult to
prove that this function satisfies the recurrence relation:
F(h+2)=4F(h+1)—F(h), for h=1, with initial conditions F(1)=5 and
F(2)=19. Using standard techniques, the solution of this recurrence relation
is:

Fy=(1/2)[(1+ /3 Q2+ 3+~ /3) 2~ /3]

The second term contributes very little to the rate of growth of F(2). In fact,
for all h=>1:

F(h)y<(1.4) (2+\/§)"=(1.4)(3. 732)".
Hence, our desired bound k- 48 F (k—1) does not exceed
48- (logn)-(1-4)-(3.732)%9" -2 <5-(logn)* n'"°,

which is @ (n°) for some e<2. R

Informatique théorique et Applications/Theoretical Informatics and Applications

OVERLAP-FREE BINARY WORDS 145

A more careful analysis limits further the rate of growth of the function F
in the preceding proof, by considering more closely the relationship between
n,=xx and the possible values for ;. ,, %;,,, and w;, 5. The resulting recur-
rence for F becomes

F(h+4)=4F(h+3)—3F(h+2)+2F(h).

The solution of this recurrence in turn allows us to set e< 1.7 in the statement
of the theorem.

ACKNOWLEDGMENTS

Special thanks are due to Max Crochemore for his useful comments on an earlier version of
this report. Jean Berstel guided me through the recent literature on square-free and overlap-free
words, in particular [5). The report [5] investigates the connection between finite and infinite
overlap-free binary words, which we have independently carried out and reported elesewhere

3.

REFERENCES

1. J. BersTEL, Some Recent Results on Squarefree Words, Proc. of Symposium on
Theoretical Aspects of Computer Science, 11-13 April 1984, Paris.

2. M. CrocHEMORE, Linear Searching for a Square in a Word, Bulletin of EATCS,
No. 24, Oct. 1984, pp. 66-72.

3. A. J. Kroury, Square-Free and Overlap-Free Words, Technical Report, Department
of Computer Science, Boston University, 1985.

4. M. LotHAre, Combinatorics on Words, Addison-Wesley, 1983.

5. A. Restivo and S. SaLemi, Overlap Free Words on Two Symbols, in Automata on
Infinite Words, Nivat and Perrin Ed., LNCS 192, Springer-Verlag, 1985, pp. 198-
206.

6. A. SaLoMAa, Jewels of Formal Language Theory, Computer Science Press, 1981.

vol. 22, n°® 2, 1988

