
INFORMATIQUE THÉORIQUE ET APPLICATIONS

PAUL SPIRAKIS

BASIL TAMPAKAS
Efficient distributed algorithms by using the
archimedean time assumption
Informatique théorique et applications, tome 23, no 1 (1989),
p. 113-128
<http://www.numdam.org/item?id=ITA_1989__23_1_113_0>

© AFCET, 1989, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1989__23_1_113_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 23, n° 1, 1989, p. 113 à 128)

EFFICIENT DISTRIBUTED ALGORITHMS
BY USING

THE ARCHIMEDEAIM TIME ASSUMPTION (*)

by Paul SPIRAKIS (1>2) and Basil TAMPAKAS (*)

Abstract. - This work examines the effect oflimited asynchrony on three fondamental problems
of distributed computation: The problem of symmetry breaking in a logical ring, that of mutual
exclusion and the problem of readers and writers. We assume our distributed System to be
Archimedean in the sensé that processors know upper and lower bounds on the message delays and
processor speeds. We use the knowledge ofthose bounds to get algorithms for the above mentioned
problems which well improve the efficiency of algorithms presented by previous research. For the
symmetry breaking problem we get a protocol which admits arbitrary initiation, and uses only
linear number of message bits and linear time on the average. For the mutual exclusion problem
we break the lower bound on the number of messages which holds in case of unrestricted asynchrony.
We also find an important différence between Archimedean and Synchronous networks. Our
algorithms are practical in the sensé that any existing distributed System up to now follows the
Archimedean time assumption.

Résumé. - Ce travail étudie l'effet de Yasynchronisme limité sur trois problèmes fondamentaux
du calcul distribué: le problème de la rupture de symétrie dans un anneau logique, celui de Y exclusion
mutuelle et le problème des lecteurs et des écrivains. Nous supposons notre système distribué
archimédien, en ce sens que les processeurs connaissent les bornes inférieures et supérieures sur les
retards de messages et sur les vitesses des processeurs. Nous utilisons la connaissance de ces bornes
pour obtenir des algorithmes pour les trois problèmes cités, qui améliorent considérablement
Yefficacitè des algorithmes présentés antérieurement. Concernant le problème de la rupture de
symétrie, nous obtenons un protocole qui admet une initialisation arbitraire, et qui prend seulement
un nombre linéaire de bits de message, et un temps moyen linéaire pour s'exécuter. Concernant
l'exclusion mutuelle, nous passons en dessous de la borne inférieure du nombre de messages qui
existe dans le cas de Vasynchronisme non restreint. Nous montrons aussi une importante différence
entre les réseaux archimédiens et synchrones. Nos algorithmes ont une portée pratique, puisque
tous les systèmes distribués existants suivent Vhypothèse du temps archimédien.

(*) This research was funded in part by the NSF contract DCR 8503497 and by the Ministry
of Industry, Energy and Technology of Greece.

(1) Computer Technology Institute, PO BOX 1122, 26110, Patras, Greece.
(2) Courant Institute of Mathematical Sciences, 251 Mercer St, NY NY 10012, U.S.A.

Informatique théorique et Applications/Theoretical Informaties and Applications
0296-1598 89/01 113 16/$ 3.60/© Gauthier-Villars

114 P. SPIRAKIS, B. TAMPAKAS

1. INTRODUCTION

This work examines the effect of limited asynchrony on three fundamental
problems of distributed computation: The problem of mutual exclusion, that
of readers and writers and the problem of symmetry breaking in a logical
ring. The amount of asynchrony among local clocks of the various sites is
limited as follows: We assume the distributed System to be Archimedean
(see [17]). That is, the duration of a step of any process in any site is bounded
above by rmax and below by rmin units of (absolute) time and the (absolute)
time it takes for any message to be sent through a direct communication link
is bounded above by dmax and below by dmin. Although processes are assumed
to know the bounds rmin, rmax, dmin and dmax, they do not have access to any
global clock showing the absolute time.

Any practical distributed system up to now follows the Archimedean time
assumption. However, there is very little previous research investigating the
gains in efficiency that distributed algorithms may have by exploiting such
assumptions. The work of [17] presented an algorithm to elect a leader in an
Archimedean ring of N processors with distinct names, by using only O (N)
messages, while it had been previously shown that O(iVlogJV) messages are
needed by may distributed algorithm in order to elect a leader in a ring, if
unlimited asynchrony is assumed. [13, 14] used Archimedean asynchronism
in their distributed algorithms for interprocess communication and resource
allocation.

On the other hand, there is a considérable amount of research on distri-
buted algorithms that work in a synchronous network. Most of those tech-
niques depend crucially on the exact timing one can do in the absence of
any asynchronism. It is therefore not all clear whether such techniques can
be easily modified so they can apply to an environment of limited asynchrony.
(See, for example, [4, 6, 7, 10, 16, 5] as a représentative sample of work in
synchronous distributed computation.)

We consider hère three major problems of distributed computation: The
first is the achievment of mutual exclusion in a complete network of sites.
We show how the notion of Archimedean time can be exploited to get a
message complexity which is below the lower bound for the same problem
when unlimited asynchrony is assumed. We also provide an analysis of the
time delay needed to achieve mutual exclusion. Our second problem is that
of synchronizing readers and writers, both by préventive (L e. mutual exclusion
based) techniques and by optimistic techniques (each process is allowed to
exécute and, if the resuit is unsatisfactory, has to start again). We show that

Informatique théorique et Applications/Theoretical Informaties and Applications

EFFICIENT DISTRIBUTED ALGORITHMS 115

the optimistic techniques are much improved (e. g. starvation is avoided) by
a simple use of the knowledge of limited asynchrony. Finally, we consider the
problem of electing a leader in an anonymous ring of processors (symmetry
breaking). We show how to adopt the synchronous algorithm of [5] in order
to get a solution for an Archimedean ring, which has the same message
complexity and much better time complexity that the algorithm of [17]. It
seems that modifying a synchronous distributed algorithm to work in an
Archimedean environment is a gênerai technique which optimizes both mes-
sage and time complexity simultaneously.

In some of our aigorithms there will be more than one processes at each
site of the network. These synchronous processes, of a site may enter into
compétition for local critical resources, in which case known mechanisms
(such as sémaphores) are used to résolve any conflict between them.

2. MUTUAL EXCLUSION IN A COMPLETE NETWORK

2.1. The Ricart and Agrawala algorithm

The algorithm proposed by Ricart and Agrawala [15] was selected because
it minimizes the number of messages necessary for mutual exclusion. The
algorithm assumes the présence of a complete transport network free of
errors. Each node has three processes local to it. They operate on a set of
common variables, with a sémaphore serializing access to them.

The three processes are (a) one which invokes mutual exclusion for the
site (b) one which receives "request" type messages from other sites and (c)
one which receives reply messages from other sites. When a site Pt wishes to
enter its critical section, it générâtes a timestamp (as in [9]) and sends a
message to all the other sites, of the "request" type, accompanied by this
timestamp. When a site receives such a message, it may either reply favorably
by sending back a "reply" type message straight away, or defer its response.
A site that has received a reply message from every other site may enter its
critical section. On leaving its critical section, a site sends any deferred reply
messages to ail sites awaiting such a reply. The décision to reply at once or
to defer the reply is based on the following priority mechanism: if the site
does not wish to enter the critical section it replies at once (favorably). Else,
it compares its timestamp with that of the request and the older (smaller
valued) timestamp wins (in case of a tie, the process with smaller identity
wins).

vol. 23, n° 1, 1989

116 P. SPIRAKIS, B. TAMPAKAS

The protocol described requires 2(n— 1) messages per entry into a critical
section: n—1 for requests and n—1 for favorable replies [See also [12] for a
nice description of the algorithm of [15]).

2.2. The protocol for Archimedean networks

If we reverse the meaning of a reply, so that no reply during a maximum
"waiting period" implies a favorable response, and if a message of the
"delayed" type is explicitly sent to indicate an unfavorable reply, then the
number of messages necessary for each entry into the critical section varies
between n—1 and 3(n—1), because the sending of a delayed type message
implies that a favorable reply will have to be sent later. (See also [15].)

Since the number of the "delayed" type messages dépends on the number
of processes really competing for the resource, we propose to reduce the
amount of compétition by introducing random waits every time a process
enters a compétition for the critical région. If the maximum size of the
uniformly random wait is carefully selected, this technique will reduce compé-
tition in half without introducing deadlock or starvation.

2.2.1. The modified protocol

The protocol requires a certain number of déclarations, local to each or
the sites Pl9 . . . s Pn. For Pt these are:

var osn : 0. . . + oo /* (our séquence number)*/
hsn : 0. . . +oo /* (highest séquence number seen)*/
nnr : 0. . . n— 1 /* (number of négative replies)*/

csreq : boolean /* (true when site wants to
enter the critical section)*/

sleep, priority: boolean
repgiven: array [1. . . n] of boolean
ppr: 0, . .n — 1 /*(#of positive replies)*/

The variable repgiven [ƒ] is true if Pt has sent a (temporary) négative reply
to a request from Pr

We now present the three subprocesses competing for these local variables.
The access to the variables must be protected by an exclusion mechanism.
We assume a fair scheduling of the three subprocesses.

Informatique théorique et Applications/Theoretical Informaties and Applications

EFFICIENT DISTRIBUTED ALGORITHMS 117

For site Pt:

(a) Process which invokes mutual exclusion for this node:

csreq <- true;

osn<-hsn + l;

nnr <- 0;

ppr^O;

sleep <- true

wait for x steps, selected uniformly randomly between [mindelay+ predict*de-
laystep, mindelay + 2*predict*delaystep]

sleep <r- false

for j^i, jel . . . n send (request, osn, i) to j; wait for window (i) steps
/* count nnr*/ wait until ppr = nnr

< CRIRICAL SECTION >
csreq «- false;

for j — 1 to n do
if repgiven [ƒ] then

begin
repgiven [ƒ] <- false;
send (positive rep) toj
end

od

(b) Process which receives {request, k, j) messages
/* k is the séquence number of the requesting site, j is the site name making the request */

on receipt of (request, k, j) do
begin

hsn <- max (hsn, k);
priority <- csreq A (not (sleep)) A [(k > osn) V (k = osn A i <ƒ)];
if priority then

begin
send (négative reply) to j ;
repgiven [/] «- true
end

end
od

(c) Process which receives replies
on receipt of (négative reply) do

nnr <- nnr + 1;
on receipt of (positive reply) do

ppr <- ppr + 1;

2.2.2. The delay variables

DÉFINITION: Let Y = ^min/rm

vol. 23, n° 1, 1989

118 P. SPIRAKIS, B. TAMPAKAS

DÉFINITION: Let s be the number of actually competing sites (with
csreq <- true) at any particular time (O^s^n).

(a) The value of predict (of an invocation of process a) is set equal to the
value of nnr seen in the previous invocation of process a.

This estimate for "predict" is good only when the number s changes slowly
with time (i. e. is of bounded accélération see [14]). Otherwise we can use the
estimate predict = n.

(b) window (i) is set equal to (2dmjrmin + c.rmjrmin) where c is approx
equal to the number of steps of process (b). This quarantees that site i is
going to collect ail négative replies possible. This is so because rmax/rmin steps
of a process correspond to at least one step of any other process.

(c) mindelay is set to ct. rmax/rmin, where c1 =#of statements of process (a).
That is, mindelay corresponds to the "best" case for i, when nnr = 0.

(d) delaystep is set to c1.rmax/rmin (so that nnr * delaystep corresponds
"approxirnately" to the time delay that site i is going to suffer due to low
priority).

2.2.3. The performance of the Archimedean protocol

LEMMA 1: Due to the rondom shifts, the mean value E (nnr) of nnr is
1/(1+y).s/2. Furthermore, for each (3e(0, 1), nnr<;(l + p) E (nnr) with
probability -* 1 as n ->oo.

Proof: The random shift causes a process to sleep for a period of time
which is at least y and at most 2/y of the active round of the process. Due
to independent random shifts, the probability that a starting to compete
process finds another particular process active, is then at most 1/(1+y).
Hence, on average, a competing process finds 1/(1 +y). s of its competitors
awake. Its timestamp is then "in the middle", again due to the random shifts.
So, the mean value of nnr is 1/(1+y).(s/2). The rest of the lemma follows
by applying a theorem on tails of Bernouilli trials. •

LEMMA 2: The number ofmessagesy nl9 required by the Archimedean protocol
for mutual exclusion has mean value n1=n—\ +(1/(1 +y)). (s/2). The probabil-
ity that nx exceeds (1 + p) nx \for any p e (0, 1)], goes to zero as n -> oo.

Proof: By the protocols, the number of messages sent by any process is
equal to n— 1 + ppr = n— 1 +nnr. The lemma then follows by Lemma 1. •

Informatique théorique et Applications/Theoretical Informaties and Applications

EFFICIENT DISTRIBUTED ALGORITHMS 119

2.2.4. The time spent bef ore entering the critical région

The length of time a process waits before entering its critical section
dépends on whether (or not) messages are received in the order in which they
are transmitted.

DÉFINITION: The granting delay D is the stretch of time beginning with the
requesting node asking for the critical section and ending when that node
enters its critical section.

As noted in [15] the worst case happens when the order of messages is not
preserved, specifically when messages of the "reply" type overtake messages
of the "request" type. In such a case D can be (in the original protocol) as
badas(w(n+l)/2-l)rmax .

In our modified protocol, a node A of the lowest possible priority will
change its priority as soon as a message of the request type arrives from
another node. This will take time at most dmax. Any other node may not
enter its critical section more than twice in succession after that (once because
its timestamp is older and once more because its site number is smaller).
Therefore, the node A will wait at most D^2dmax + 2(n— l).mindelay units
of time before it is allowed to enter its critical région. Our remarks about
the mean number of actually competing nodes leads to the conclusion that
the mean value of D satisfies

2.2.5. Conclusions and Remarks

Our protocol exploits the Archimedean asynchrony in two ways: (a) by
using a timeout to implicity detect a favorable reply and (b) by introducing
random waits to reduce compétition for the critical resource. Both its message
and time complexity are below those of the Ricart and Agrawala protocol
(which are shown to be optimal for unlimited asynchrony). Note that node
failures do not affect our protocol (since no reply in a timeout is taken to be
a favorable response any way). Of course failures happening after a négative
reply and before the corresponding positive reply must be detected (by
introducing another timeout, without the sending of any message).

The séquence numbers osn and hsn are theoretically unbounded but can
be stored modulo M where M^2n—1, as noted in [15], since the maximum
différence of any two séquence numbers at any time instance can be made to
be, <^n—\. (In such a case, when making a comparison, the smaller number
should be increased by M if the différence is n or more.)

vol 23, n° 1, 1989

120 P. SPIRAKIS, B. TAMPAKAS

3. THE PROBLEM OF READERS AND WRITERS

3.1. Introduction

Consider n +1 processes sharing a data set. Among these processes, n can
read these data at the same time; these are the readers. The remaining process
may change the value of the data; this is the writer. If the shared data set
cannot be reduced to a single location and if the opérations are only atomic
with respect to one data item at a time, then a protocol is needed to guarantee
the consistency of the whole data set. The readers and the writer must
"mutually exclude each other" while all readers may read data simultaneously.
The problem was first posed by [3].

Our protocol of Section 2 can be easily modified to solve the Readers-
Writers problem: The modification is simply that "readers" never give a
négative answer to a request of another reader. The writer follows the original
protocol. Any other mutual exclusion algorithm can of course be used. This
is the "traditional" approach to a solution of the problem.

3.2. The optimistic approach

The traditional solution to the Readers-Writers problem, based on mutual
exclusion, has two unwanted characteristics (a) the fairness of the solution
dépends on the fairness of the mutual exclusion algorithm used and (b)
processes are blocked for as long as the state of the system does not allow
them to advances i. e. they are blocked due to "global" conditions.

Lamport in [8] proposed an optimistic technique in which each process is
allowed to exécute, and if the result is unsatisfactory, has to start again. The
writers may always exécute, giving new values to data. Readers, on the other
hand, may check whether their read opération has overlapped with a single
writing or with two or more write opérations. In such a case, the reader has
to start again. (Details in [8]).

Let W be the number of statements of the body of the infinité loop in the
code of the writer process in the solution of [8], Let R be the number of
statements of the body of the infinité loop in the protocol of any reader
process. Our proposai is again to exploit the Archimedean asynchrony by
introducing random waits in both the readers and writers. The modification
to the protocol is very easy: Each process has to wait for a random number
of steps, selected uniformly (and independently for each process) from the
interval [(R + W)/y, 2(R+W)/y], where Y=srmia/rmax bef ore each access to the
data. One can then prove that when a reader starts its code, the probability

Informatique théorique et Applications/Theoretical Informaties and Applications

EFFICIENT DISTRIBUTED ALGORITHMS 121

p that the writer will be "in the middle" of its sleeping period will be at least
(R + W)/(2(R + W)/y + W). This is so, because the random shifts make p to
be equal to the ratio between the "sleeping period" of the writer and the
sum of the "active" and "sleeping" periods. The duration of the active period
is in [Wrmin, Wrmax] units of absolute time and the duration of the sleeping
period is in [(R + W) rmax> 2 (R + W) rlJrminl

The successive trials of a reader will independently succeed with probability
p, hence the mean number of reader attempts bef ore success is l/p i. e. at
most (2(JR + W)h+ W)I(R + W)è(Vj)+ 1-

Note that this simple idea éliminâtes the starvation problem that the
solution of [8] has. Our protocol introduces waiting but it is a "local" pre-
estimated wiating, very different from blocking due to global conditions. (See
also [8] for the présentation of the optimistic protocol.)

4. SYMMETRY BREAKING IN AN ARCfflMEDEAN RING

4.1. Introduction

We consider hère a unidirectional ring of n processors (i. e. messages are
sent clockwise). The processors are not asswned to have unique identities and
the ring follows the Archimedean restrictions on asynchrony. The problem is
to device a randomised protocol so that a unique leader is elected in the ring.
([1] showed that no deterministic solution exists for the problem.) [7] presented
an algorithm which uses O (n) message bits and time on the average, under
the assumptions of a synchronous network where all nodes start executing
simultaneously. [5] presented a protocol which again use O (n) bits and time,
without any assumption on initiation time, again for synchronous networks.
[17] presented an algorithm for solving a related problem (the minimum
finding problem), in an Archimedean ring which uses either O (n) messages or
O (n) time [but not both—in case of O (n) messages the time becomes exponen-
tially long]. In that solution the processor identities are assumed distinct from
the beginning. (No symmetry breaking is needed.)

We propose hère a protocol which solves the Symmetry Breaking problem
in an Archimedean ring, by using simultaneously O (n) messages and O (n)
time on the average. This is the first time the Symmetry Breaking problem is
solved for Archimedean rings. Our technique was motivated by the synch-
ronous protocol of [5].

vol. 23, n° 1, 1989

122 P. SPIRAKIS, B. TAMPAKAS

4.2. À lower bound resuit

Since [1] proved that no deterministic solution exists for the symmetry
breaking problem, most probabilistic algorithms that solve it work in the
following way: They first have the processes to select names at random,
independently of each other. Then, they run some "minimum finding" tech-
nique, with the additional burden that it must report whether multiple minima
exist, in which case the protocol is run once more. If the ring is a synchronous
one, then the reporting of multiple minimums can be done through a deter-
ministic protocol. The following result says that this is not the case even with
limited asynchrony, in the case of messages of length O(logn) bits.

LEMMA 3: lf the minimum and maximum message delays in an Archimedean
ring are such that a message can make a full circle at the same time with
making half a circle and messages have length O(logn), then there can be no
deterministic protocol to discover whether there are multiple minimums among
the (arbritrary) names of the processes.

Proof: See figure 1. Consider two rings which are identical except for the
fact that in ring A there is only one processor with name equal to the
minimum value (1) and in ring B there are two such processors in symmetrie
positions (e. g. all other processors may have names equal to 2). If processor
(1') in B does exactly the same things as processor (1) and if the message
delays are appropriately selected, then processor (1) can not distinguish
whether the messages arriving to it come from itself (after making a full
circle) or by the possible (1'). For the full argument, (1) and (1') have to
proceed in full synchrony, while the delays along the paths 1 — Y and 1' —1
have to be at least ndmin. •

Therefore, any protocol that does symmetry breaking, even in an Archime-
dean network, has to réside in probabilistic means to discover multiple mini-
mums (and therefore it may err with some small probability),

4.3. A protocol optimal in message and time complexity

The protocol is composed of a séquence of phases. In each phase, every
node randomly sélects an identity from {1, 2, . . ., n}.

Initially all nodes are in a sleeping state. Any sleeping node can spon-
taneously become awake at any time, and start the first phase. As in [5] all
nodes will be forced to "wake-up" even if they do not become awake on
their own. Let X={xl9 . . ., xm} be the set of nodes which select 1. Now the
processors run a probabilistic sub-protocol, to détermine whether |X| = 0 , 1

Informatique théorique et Applications/Theoretical Informaties and Applications

EFFICIENT DISTRIBUTED ALGORITHMS 123

i

Figure 1.

or rnore. This sub-protocol goes through a séquence of k stages (h is a small
predetermined constant e. g. fc = 30). At the end of the k stages one of the
following two things may happen. (A) Each node has determined either that
|X|=0 (with certainty) of | ^ | > 1 (with certainty) in which case (we call it
situation A) the processors have to select random names again and go through
another phase. (B) Each node has determined that |X| = 1, with probability
^ 1 — (3/4)*. In that case, one node becomes elected and the others become
defeated. Note that the protocol hère may elect more than one leaders with
probability at most (3/4)fc, which can be made very small and is controllable
by the implementer.

The way the sub-protocol runs is as is as follows: Each candidate node
(one with identity equal to 1) uses a local timer to go through k stages of n
R̂ max + rmax)/

rmin] s t eP s e a c r i (so that each stage has actual
duration ̂ n dmax -h rmax i. e. at least the maximum time it takes a message to
go a full circle). At the beginning of each stage, the candidate chooses to
become "holding" or a "forwarding" candidate during that stage. In the
beginning of the subprotocol a candidate sends a "claim" message. If a
candidate receives just one claim during a "forwarding" period, it forwards
the claim at the end of the period only if the next period is again forwarding.
Ifthe next period is holding, the candidate does not forward (holds) the claim.

If a candidate receives any claim during a holding period, then it décides
that | ^ | > 1 and causes the start of a new phase. If a candidate receives > 1
claims during a forwarding period then it again décides that | ^ | > 1 and
causes the start of a new phase. If none of these happens during the k stages,

vol. 23, n° 1, 1989

124 P. SPIRAKIS, B. TAMPAKAS

then the candidate becomes elected and causes for the other nodes to become
defeated. The protocol is specified in detail in the Appendix A.

LEMMA 4: Every node starts the exécution o f a phase within n(dmAX-\-rmax)
time units from the beginning of that phase.

Proof: A phase begins by either a sleeping node being spontaneously awake
(and all others sleeping) or by a node becoming a next-timer. In either case,
in a full round, the corresponding messages will start everybody for the new
phase.

LEMMA 5: ƒƒ |X | = 1 in a phase, then the corresponding node is elected at
the end of the phase and all others are defeated at end of phase.

Proof: The node will become a candidate. The k stages will run without
problems. •

LEMMA 6: If a node becomes elected in a phase, then with probability at
least 1 — (3/4)fc the node is the only one elected and all others are defeated, and
the algorithm ends, in that phase.

Proof: Suppose that node A becomes a candidate at the beginning of a
phase. Suppose node B is also a candidate. Consider first the case where the
current period of A is holding and that its next period is going to be a
holding one. Node B must necessarily flip its coin during the current period
of A If the flip of B comes to be "forwarding" then the claim of B will
arrive at A either in the current period of A (in which case A will décide to
go into a next phase) or at most during the next period of A (where, again A
will décide to go into a next-phase). The above event has probability 1/4 and
A detects the présence of B. (If the current period of A is forwarding, a
similar argument can be done.) In fact, the only possibility for B to go
undetected, is for A, B to be synchronized and go through the same séquence
of sélections. Hence, if | X\ > 1 then this is going to be detected, with probabil-
ity at least l-(3/4)fe. (Scefig. 2.) •

THEOREM 1: Our protocol breaks symmetry in an Archimedean unidirectional
ring using 4eenk bits and 4en<2max k time units on the average, regardless of
the initiation time, where e is the base of natural logarithms and c = 0 (1) is
the number of bits needed to distinguish between 4 distinct message types.

If any phase, each node may send 2 Wake-up messages and one next-time
message. If at least one node becomes candidate then each node will send or
forward exactly one claim message for at most k stages. There is a constant
number of message types, so each message uses a constant (c) number of

Informatique théorique et Applications/Theoretical Informaties and Applications

EFFICIENT DISTRIBUTED ALGORITHMS 125

t node A holding A nolding |

FLIP FDP ' FLIP S

message

node B ^
1 1

FLIP Forwarding FLIP

Figure 2. — Node Â detects the présence of node B.

bits. So, each phase uses at most 4ken bits. Within 4ndmaxk time units when
the first node on a phase executed the wake-up routine, either a node is
elected or a new phase is ^jtarted. For any phase of random sélections, the
probability that exactly one node sélects 1 is (1— (lfri))n~1> l/e. Thus, the

00

expected Jf rounds until this occurs is less than £ (1/e)(1 — lféy(j+l) = e. By
j=o

Lemma 5 the protocol terminâtes when this happens. The protocol may
terminate erroneously with probability at most 0 ((3/4)*) which can be made
arbitrarily small by selecting k to be e. g. 30 or 40. •

Note: The Archimedean assumption was necessary for timing the holding
and forwarding periods. Also, from simulations that we did, it seems that
our algorithm favors the f aster candidate in being selected. Further work will
quantify this.

5. CONCLUSION AND FURTHER WORK

We presented hère strong évidence that Archimedean networks admit more
efficient protocols than networks with no limits on the asynchrony. We did
this for three fundamental problems of distributed computation, in each case
providing a more efficient protocol than those in the literature. We also
showed that Archimedean rings are less powerful than synchronous rings.
Further work will examine the power of limited asynchrony through some
impossibility theorems.

vol. 23, n° 1, 1989

126 P. SPIRAKiS, B. TAMPAKAS

APPENDIX A

The symmetry breaking protocol

Rule 1 A sleeping node

1.1 It can become spondaneously awake and exécute the Wake-up-1
routine.

1.2. If it receives a "wake-up" message it becomes awake and exécutes the
Wake-up-1 routine.

Rule 2 An awake node

2.1. It ignores any received "wake-up" messages.
2.2. If it receives a "termination" it becomes defeated and passes the

message on.
2.3. When its clock is equal to n f(dmax + rmax)/rmin], if no claim is received

and the number it selected is 1, it becomes a candidate and sends a "claim"
message.

2.4. If the number selected is 1 and it receives a claim when its clock is
<n r(̂ max + rmax)/rminl t n e n ît becomes a next-timer, and sends a "next time"
message.

2.5. If it receives a "next-time" message it becomes a next-timer, and sends
a "next-time" message.

2.6. If the number selected is not 1 and no claim is received for
n(rmjrmin+l) R^nax + rmax)/>*min 1 steps, then the node becomes a next-timer,
and sends a "next-time" message.

2.7. If always forwards the "claim" message it receives.

Rule 3 A next-timer node

3.1. If it receives a "wake-up" message it becomes awake and exécutes the
wake-up-1 routine.

3.2. If it receives a "next-time" message for the first time, it passes it on.
It ignores any subséquent "next-time" messages.

3.3. It générâtes a "wake-up" message.

Rule 4 A candidate node

4.1. Sets a timer = 0 and a counter j — 0 (The timer increases itself automati-
cally by 1 at a rate equal to a step of the node).

4.2. Every time the timer = n r(dmax + rmax)/rmin] andj</c the timer is reset
to zero, andj<- j+l .

Informatique théorique et Applications/Theoretical Informaties and Applications

EFFICIENT DISTRIBUTED ALGORITHMS 127

4.3. Every time the timer is equal to zero, the candidate chooses (with
probability 1/2) to become a "holding" or a "forwarding" candidate, except
for the first time (/ = 0) is which the candidate chooses to be a forwarding
one.

4.4. If the node receives a claim during a "holding" period, then it becomes
a next-timer and générâtes a next-time message.

4.5. If the node receives >1 claims during a "forwarding" period, then it
becomes a next-timer and générâtes a next-time message.

4.6. If the node receives only the claim during a forwarding period, and
the buffer is empty, or if it receives no claims during the forwarding period
and the buffer contains a claim, then (a) if its next period is again forwarding,
it forwards the message on exactly at the end of its current forwarding period,
or (b) if its next period is holding, then it puts the claim into a local buffer
and does not forward it.

4.7. If the node receives a "next-time" message it becomes a next-timer
and forwards the "next-time" message.

4.8. When7 = /c (end of k stages) the node waits for an additional ndm&x

steps to get any messages in progress, "next-time" messages will cause it to
proceed as in 4.7. Else, it become elected at the end of the period and sends
a "termination" message.

Wake-up-\ routine

1. Choose a number at random in {1, . . ., n}.

2. Set clock = 0 and send a "wake-up" message.

REFERENCES

1. D. ANGLUIN, Local and Global Properties in Networks of processes, Proc. 12th
A.C.M. Symp. on Theory of Computing, April 1980, pp. 82-93.

2 C. ATTIYA, M. SNIR and M. WARMINTH, Computing on an Anonymous Ring, Proc.
4th A.C.M. Symp. on Principles of Distributed Computing, Aug. 1985, pp. 196-
204

3. P. J. COURTOIS, F. HEYMANS and D. L. PARNAS, Concurrent Control with Readers
and Writers, C.A.C.M., Vol 14, No. 10, pp. 667-668.

4. G FREDERICKSON and N. LYNCH, The Impact of Synchronous Communication on
the Problem of Electing a Leader in a Ring, Proc. 16th A.C.M. Symp. on Theory
of Computing, April 1984, pp. 493-503.

5. G. FREDERICKSON and N. SANTORO, Breaking Symmetry in Synchronous Networks,
V.L.S.I. Algorithms and Architectures, AWOC 1986, Lecture Notes in Computer
Science, No. 227, Springer Verlag, pp. 26-33.

vol. 23, n° 1, 1989

128 P. SPIRAKIS, B. TAMPAKAS

6. E. GAFNI, Improvements in the Time Complexity of two Message-optimal Election
Algorithms, Proc. 4th A.CM. Symp. on Principles of Distributed Computing,
Aug. 1985, pp. 175-185.

7. A. ITAI and M. RODEH, Symmetry Breaking in Distributive Networks, Proc. 22nd
I.E.E.E. Symp. on Foundations of Computer Science, Oct. 1981, pp. 150-158.

8. L. LAMPORT, Concurrent Reading and Writing, CA.C.M., Vol. 20, No. 11, 1977,
pp. 806-811.

9. L. LAMPORT, Time Clocks and the Ordering of Events in a Distributed System,
C.A.C.M., Vol. 21, No. 7, 1978, pp. 558-565.

10. J. VAN LEEUWEN, N. SANTORO, J. URRUTIA and S. ZAKS, Guessing Games and
Distributed Computations in Synchronous Networks, 14th I.C.A.L.R, L.N.C.S.,
No. 267, 1987, pp. 347-356, Springer-Verlag.

11. M. OVERMARS and N. SANTORO, An Improved Election Algorithm for Synchronous
Rings, preliminary draft, Carleton University, March 1986.

12. M. RAYNAL, Algorithms for Mutual Exclusion, The M.LT. Press, 1986.
13. J. REIF and P. SPIRAKIS, Real Time Synchronization of Interprocess Communication,

A.CM. Transactions of Programming Languages and Systems, April 1984.
14. J. REIF and P. SPIRAKIS, Unbounded Speed Variability in Distributed Systems,

S.I.A.M. Journal of Computing, February 1985.
15. G. RICART and A. AGRAWALA, An Optimal Algorithm for Mutual Exclusion in

Computer Networks, C.A.C.M., Vol. 24, No. 1, Jan., 1981.
16. N. SANTORO and D. ROTEM, On the Complexity of Distributed Elections is synch-

ronous graphs, Proc. llth Int. Workshop on Graphtheoretic Concepts in Com-
puter Science, June 1985, pp. 337-346.

17. P. VITÂNYI, Distributed Elections in an Archimedean Ring of Processors, Proc. 16th
A.CM. Symp. on Theory of Computing, April 1984, pp. 542-547.

Informatique théorique et Applications/Theoretical Informaties and Applications

