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COMBINATORIAL ANALYSIS OF QUICKSORT ALGORITHM (#)

by P. HENNEQUIN (*)

Communicated by P. FLAJOLET

Abstract. - We study probability distributions of several characteristic parameters on various
forms of Quicksort algorithm: median-of-k, cutting of small lists. A constant use of generating
functions leads to a more synthetic description and analysis of the combinatorial structure of the
algorithm. This approach allows us in particular to extend the known results for the distributions
of running times. We obtain average values, but also higher moments of the distribution of the
cost function, both exactly and asymptotically. We give for all k means and variances of median-
of-k algorithm with insertion sort on small files, and we compute higher moments in the standard
case.

Résumé. - On étudie les distributions de probabilités des paramètres caractéristiques de différentes
variantes de l'algorithme Quicksort: médiane de k éléments, tri différent sur les petites listes.
Vutilisation de séries génératrices fournit une description synthétique de la structure combinatoire
de Valgorithme et permet d'étendre les résultats connus sur les distributions de probabilités des
coûts d'exécution. On obtient ainsi les valeurs moyennes et les variances des coûts pour l'algorithme
Quicksort avec médiane d'un nombre quelconque d'éléments et tri par insertions sur les petites
listes. La distribution des coûts est caractérisée plus précisément par la détermination des moments
d'ordre plus élevé dans le cas standard.

1. INTRODUCTION

Sorting algorithms have been extensively studied by D. E. Knuth [7] who
gives detailed analyses of various combinatorial parameters that détermine
e. g. their average performance. R. Sedgewick [9] studied more specifically a
number of variations based on the Quicksort scheme. In this note we extend
some results of R. Sedgewick concerning average behaviours and higher
moments of the distributions of the running times of Quicksort algorithm:
we prove in particular that if limiting distributions exist they cannot be
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318 P. HENNEQUIN

normal. More quantitative information can also be derived from our analysis
concerning the tuning of the sélection for a partitioning element.

These results are derived by an algebraic method which follows the gênerai
gramework proposed by P. Flajolet [3] and J. M. Steyaert [10] for analyzing
the average performance of algorithms. We make an extensive use of this
symbolic operator method (instead of classical récurrence relations) which
allows the more gênerai and easier dérivations needed in our study.

2. COMBINATORIAL DESCRIPTION

We assume in our analysis that keys to be sorted are ail distinct. The
gênerai scheme for Quicksort is then described by:

function Qsort (L: list): list;

if size (L) ̂  1 theo £sort : = L

else Select an element v in L;

Partition L into L\ : = {xeL\x<v} and L2:-{xeL\x>v}

t: = gsort(Ll).u.ôsort(L2).

The sorting method dépends only on the relative order of keys and not on
their spécifie values, so that we can assimilate the set of lists of size n to the
set Sn of permutations over [1. . , n]: we associate to each key its position in
the sorted list. We then dénote by a, a1? a2 the permutations associated to
L, L l , L2 and by a0 the permutation obtained from a by deleting the
partitioning key. Furthermore, in order to simplify the notation, we will
identify a pair (o l5 a 2 )eS p xS^ with the pair {ouo'2) obtained by adding
p+1 to the labels of a2: (132,21) o(132,65).

2.1. Hypotheses

The following hypotheses are commonly assumed in average case analyses
of Quicksort:

H 1 (Hypothesis on data distribution): Lists of size n are permutations in Sn

with the uniform distribution (probability of each permutation—1/ni).

H 2 (Hypothesis on the algorithm): The partitioning method preserves equally
likely distributions on produced permutations. In other words, each pair
(oua2)eSpxSq cornes from the partition around the value v— p + l of the
same number of permutations a0 in Sp+q.

Informatique théorique et Applications/Theoretical Informaties and Applications



COMBINATORIAL ANALYSIS OF QUICKSORT ALGORITHM 3 1 9

H 1 is satisfied, in particular, when keys are drawn independently from a
continuous distribution and gives a (classical) probabilistic model in order to
define the average behaviour of the algorithm. Condition H2 is related to
the partitioning algorithm; it is crucial for most analyses since it allows the
translation of Quicksort's recursive structure into récurrences on costs. In
fact it is a conséquence of the more restrictive (but very reasonable in
practice) hypothesis H 2' which allows a better understanding of the partition-
ing mechanism and which is easier to verify for a given partitioning algorithm.

H T: The partitioning algorithm uses only comparisons with the partitioning
key v.

Schema of partitioning algorithm

p + q _ _ _
Eléments > v

Eléments < v

m

H2'=>H2: Let p and q be fixed (v=p+l). In a genera! way, we can
characterize a partitioning method be giving for each on the permutation
S(a0) which takes a0 to O1.G2- If w e can" mark M(a0) the set of positions
in a0 of the p smallest keys, condition H 2' implies that 2(a0) dépends only
on M(a0) since the algorithm cannot discern keys <v (resp. >u). Thus the
p ! q ! permutations of a0 which have a same mark [and so a same E (ao)]5

produce by partition once and only once each pairs (a l5 a2) of permutations
of the p smallest and q greatest keys of a0; and so H 2. Finally, going from
a given pair (ouu2) to one of the (p + q)\/p\q\ antecedent a0 consists in a
special kind of shuffle (Qshuffle) of ax and a2: for each shuffle, i. e. for each
mark M(a0), we first exécute on a t two permutations fixed by

Remark: In this combinatorial description, we also suppose that the parti-
tioning algorithm is deterministic (S(a) and v are well defined for each list)
and particulary that keys to be selected are taken in fixed positions. However,
random exécutions which respect hypotheses H 1 and H 2 (for example sélec-
tion of keys in random places) lead exactly to the same probabilistic behaviour
since they correspond at each step to the same distribution of lists and keys.

vol. 23, n° 3, 1989



320 P. HENNEQUIN

2.2. Formai description. Partitional product

A class of combïnatorial structures is a denumerable set together with a
size f unction denoted |. |; we consider hère the class of permutations S = U Sn.
For a cost function C defined on permutations (for example, the number of
comparisons for sorting using Quicksort), we introducé the weighted class
C(S) consisting formally of éléments C(a). cr (with size = | a|) for a ail in S.
Then we associate to S and C(S) the exponential generating functions defined
by:

! 1-z

and

hence Cn is the total cost over Sn and, from H 1, CJn ! is precisely the average
cost.

If a e S partitions into au a2 we can write C(O) = C0(<J) + C(O1) + C(O2)

with C0(a) = cost of one sorting stage. We are going now to describe this
recursive définition of S by using the partitional product (see Foata [5])
which is a kind of cartesian product for labelled objects:

DÉFINITION: — A bipartition of [ l . . .n] is a pair (/l5/2) such that

— The partitional product oftwo structures su s2 of size p and q is the set
Sx ® s2 of pairs [(s^/j), (s2,12)] where (Iu I2) is a bipartition of[l. . .p + q]
such that | Ji | —p and 1121 — q. The size of éléments in sx ® s2 is then p + q and
card (sx ®s7} = (p + q) ï/p ! q l

— The partitional product of two classes, denoted by ®, is the union of
partitional products of ail pairs of the cartesian product

— We call rooting of a class C, denoted by o(C), the class consisting of
éléments ofC with a size incremented by 1 ( |x | 0 ( C )=|x | c+l) .

We divide the characteristic décomposition a -* (CT^ a2) into two steps:
sélection a -> (ao,p) where a0 is obtained from a by deleting in a fixed place
the key v=p +1, and partition around v9 (o0,p) -> (a1} a2). Consider the class
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\J={(<jJ)foeS,je[0. . . | a | ] } with |(crj)|u = | a l> we can state now:

PROPOSITION 1: The mapping a - > (o0,p) defines an isomorphism beween
S - S o and o(U).

PROPOSITION 2: T/ie mapping (a0,/?)--> (a l5 a2) defines on isomorphism
between U and S ® S.

Remark: Two classes are isomorphic if their sets are isomorphic and if
their size functions are equivalent; their generating functions are then equal.

Proofs: (1) Consider (a0,/?)eo(U), the only antecedent er in S —So is
obtained from a0 by incrementing labels >p and inserting the key v=p + l
in fixed place. The correspondence of size functions is given then by the
rooting operator and so the isomorphism.

(2) We have a plain correspondence between bipartitions of [ 1 . . . n] and
marks of lists of size n. So under hypothesis H 2', we can associate one
to one the éléments of partitional product a10a2 with the antécédents
a o ( | a o l H a i l + la2|) °f (cri>

a2) : w e exécute a Qshuffle according to each
bipartition; p is then fixed by p = \o1 |. In the gênerai case (condition H 2),
the isomorphism is not natural but cornes from a counting argument. Indeed,
the number of antécédents to a pair (al9 a2) of permutations of size p and q
is exactly the cardinal of o1 ® a2 : (p + q) \/p ! q !.

As a corollary, we can now identify S with o(S ® S) + So acording to the
partitioning décomposition and expand the cost function C on this description
of S, we so obtain:

S=o(S®S) + S0 and C(S) = Co(S) + o(C(S) ® S) + o(S ® C(S))

The partitional product of two classes corresponds to the product of the
exponential generating series (see [3]); in the same way the rooting operator
corresponds to taking antiderivatives on these series. So, we can translate
the previous formai descriptions into the équations:

C (z) = Co (z) + 2 IZ C (x) 5 (x) dx and S (z) = V S2 (x) dx + 1
Jo Jo

From which as expected, we get S (z) = (l — z)"1.

2.3. Variants

We consider here two generalizations of the Quicksort algorithm which
lead to the same kind of solution. The first one consists in using for small

vol 23, n° 3, 1989



322 P. HENNEQUIN

lists (size ^M) a sorting procedure (insertion sort for example) more efficient
than Quicksort on small files. To describe this cutting of small lists variant
we introducé a cutting operator on classes defined by:

> = {ceC/ |c |>M}=C-P M (C)

with

If a class C is described in a gênerai way by C = constr(C,...), changing
the définition of objects of size g M leads to the new description:
C = TM[constr(C, . . .)] + Ci where C± is the class consisting of new éléments
of size ^ Af. The exponential generating series Ct (z) is then a polynomial of
degree M (operator TM corresponds trivially to a cutting opération TM on
series).

The second variant consists in selecting the partitioning key as médian
element of k = 21 +1 keys. We thus obtain a more centered distribution for
partitioning key. Indeed, the probability that a list of size n=p + q+l parti-
tions itself into lists of size p and q is:

Pp.-OW/U.)
We suppose hère that during the détermination of the partitioning key v,

we also partition (equally likely) the list Lk of the k concerned éléments into
two sublists L\t and L2t. To simplify explanations, we suppose also that
these lists consist of first éléments of lists L, LI and L2. We write then:
L = Lk.L\ L 1 - L 1 , . L 1 ' , L2 = L2,.L2'. (|L|^fcj

Schema of median-of-21 +1 partition

L | 2 t + l | P + Q-2t

As previously, the lists Lk are generated from L lf and L2t by the construc-
tion o(Llt®L2t). On other hand, the rank of the key v is equally likely

Informatique théorique et Applications/Theoretical Infonnatics and Applications
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distributed in L' (but not in L) so LY®LT describes exactly the set of
antecedent lists L'. The behaviours of lists L', L 1', L2' and of lists Lk, L lt,
L2t are then independent except for the contribution of the key v. So for
fixed LV and L2', the (t\)2 pairs (L1,L2) obtained by considering all
permutations of L \t and L2t have exactly as antécédents the set of lists
obtained by concaténation of the kl permutations of Lk with éléments of
L1'®L2' .

DÉFINITION: We call i-rooting the operator O; defined by o;(C) =S(- x C (with
cartesian product size). If C is formed of lists, we replace the cartesian product
by concaténation and we dénote by D£ the inverse operator which consists in
deleting the first i éléments of a list.

This allows us now to describe the permutations of size ^k with respect
to their partitioning décomposition:

PROPOSITION 3: The décomposition of cost for median-of-k Quicksort is
described by:

Tk(S)==ok(Dt(S)®Dt(S))

C(S) = C0(S)+ok(D t(C(S))®D t(S)) + ok(D t(S)®D t(C(S)))

We consider now the Quicksort algorithm with the two previous variants
combined (with M ̂  k). We remark that C = ô  (A) => C(0 (z) = i ! A (z) where (i)

dénotes the i-th derivative, so the cost C is described by the following
équation over generating series:

-̂ - f ...
tl tl J k times

This équation appears also in the analysis of a variant of binary tree search
in D. H. Greene [6].

After simple manipulations, we obtain the characteristic differential équa-
tion of degree k:

( i z ) c ( z ) = ( i z m ( z ) (i-zyc«>(z) + ( 1 _ r ) c
kl kl tl

where QM-k(z) & a polynomial of degree M—k.

vol. 23, n° 3, 1989



324 p. HENNEQunsr

3. RESOLUTION

3.1. Method

X) = C(z)iCo(X) = Co(l-X) = Co (z) ( . . . ) .
Consider now the differential oprator 0 defined by ®.F(X) = XF(X), we
have easily by induction on n:

W ( 1 ) . . . ( 0 „ + 1 ) .
n ) n\ n\

So, we can rewrite the characteristic équation as:

where polynomial Pt(x) = (-l)k I J—2(—1)*I

PROPOSITION 4; If R(x) is a polynomial such that R(x) = (x — P)m.Q (x)
g (x) Zias tfce roots otl5 a2) . . ., ocn wit/i multiplicity mls m2, . . ., mn; t/ïe

F (X) of R (0) . F (X) = ^ Lnfc (X) is;

.=o(fc-0!\ewA=P (i
n mi ~ ! m - 1

+ Z Z *yX*Ln'(X)+ Z I

*tj and \ij are in the same domain (real or complex) as af and p.
The proof of proposition 4 is not very hard and consists in successive

inductions on the degree of R (x), on k (for m = 0 and m = 1), and then on m.

So, to solve an équation of type R(®).F(X) = G(X), we try to expand
G (X) in terms of the form X$ Lnk (X) which become by resolution terms of
the form X^ Ln' (X) with i = m. . . k + m and m is the multiplicity of P in R (x).
Moreover, in our problem, the prédominant contribution to the cost comes
from X$ Lnfc(X) factors where the real part of p, Re(p), is minimal and k is
maximal. Indeed, we have the asymptotical form for the n-th coefficient of
the series (see [4]):

Informatique théorique et Applications/Theoretical Informaties and Applications
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3.2. General solution

In this paragraph, we do not detail proofs which come directly from
classical algebraic manipulations and from propositon 4.

L E M M A : ( a ) The roots of Pt(x) are the integer s 0 , 1 , . . . , £ — 1 ; — 2 ; the
quantity 3t + 2 if t is odd; and the 2p complex roots: OLUOL2> • • - > a p tvgether
with their conjugates a l s a2, . . ., öcp (p — [t/2]).

(b) All the roots ofPt(x) have a real part greater than —2.

THEOREM 1; The exponential generating function of cost for the Quicksort
algorithm has the gênerai farm:

where:
RM(X) is a polynomial of degree M; Xj are complex for j = 1. . .p;
X, H, Xo are real; X = 0 ift even; [i — 0 ift even or t odd and M<3t + 2;
and F(X) is a particular solution of: F t(0) . F(X)= -J£* C^(X)/k l

THEOREM 2: The average cost for lists of size n (n>M, n>3t + 2 ift odd)
is given by:

ni

where BJ
n = 2 ( — l)n Re f X, f J ] ) is an oscillating term with amplitude

\ \n/J
0(n~Re(a/+1)).

Let NR dénote the set consisting of complex roots of Pt(x) and of root
31 + 2 when t is odd; we have, as a corollary, the asymptotic form for the
average cost:

with b, =
reJVR

Example: If we consider the number of comparisons, we have for example:

co
n=C°Jn\=n+\-2t and so C0(X)^l/X2-2t/X.

The contribution F(X) is given then by: Pt(®).F(X) = (k + l)/X2-2t/X

vol. 23, n° 3, 1989



326 P. HENNEQUIN

Thus, we have the particular solution:

fc + 1 Ln(X) 2t
F(X) =

x2 pt(-i)x

By extracting coefficients, we obtain the average number of comparisons
which gives the major contribution to time behaviour of algorithm: (Hp

dénotes the p-th harmonie number)

3.3. Intégration constants

In gênerai the constants Xt and \i are determined from the values of the
average cost for lists of size Af+1 to M + f+1, for example by a linear
System. Hère, we want to show briefly how we can compute these constants
and especially ^0 by using once more operator © and generating functions.
For this we introducé the polynomial At (x)=Pt (x)/((x + 2) (x — t +1)
(x — t + 2). . . x) which has for roots the t éléments of NR. If we apply now
At(<3) on the formula of theorem 1? the terms generated by the roots of
At (x) desappear and we have:

Moreover when we apply on a series a polynomial in © of degree p9 the
coefficient of zn in the resuit dépends only on the coefficients of orders n to
n+p in the initial series. So, if we consider the coefficient of zM + 1 in the
previous formula, we can replace the average cost series by a series G(X)
which has the same coefficients of orders M+1 to M + t+ 1; we obtain thus:

PROPOSITION 5: The linear contribution to the average cost is given by:

At(-

where G (X) is a solution of:

(t-0)( t+i-e)...(2t-0)
(t+2)(r+3)...(2t+2) °

Informatique théorique et Applications/Theoretical Infonnatics and Applications
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The équation for G(X) is obtained by replacing C(z) by C1 (z) in right side
of the characteristic équation (I); this translates exaclty the fact that lists of
size Af+1 to M + t + 1 partition directly into small lists (size ^M) and so
their costs are determined in one récurrence step from Cx (z).

In that manner, we extend the results of Sedgewick obtained for t<2
through solving of 21 +1 encased récurrences, by giving for all value of t the
linear term of average costs. By changing polynomial At(x), we can also
compute the other intégration constants but they correspond in practice to
(very) negligible contributions.

3.4. Results

We are now able to give average values over lists of size n(n>M and
n>3t + 2) of the characteristic parameters used by Sedgewick. We therefore
generalize the results known for the values t~0 and t— 1 (see [9]):

Number of partitioning stages (c£ = 1): Ân = Kt — - 1 + 0 (nb*>
M + 2

Number of key comparisons during partitioning stages (cn = n+1 — 2t):

Number of key exchanges (c^ — minimum required number +1):4t + 6

And if we use insertion sort for small lists, we have the linear contributions:

Number of really inserted keys (c^ = n—Hn):

Number of moved keys {cl — n(n~ l)/4):

4(2t+3) 2M+4 K,

vol. 23, n° 3, 1989
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1 and bt<\; or for particular values of t:

t

K,.. .
b t . . .

t

b t . . .

0

2
— 00

5

1.5309
^3.75090

1

1.7143
- 6
6

1.5181
-3.14282

2

1.6216
-6.5

1

1.5086
-2.66256

3

1.5760
- 5 . 5
£ - • 0 0

1/Ln(2)«1.442
1 - 7t2/Ln3(2) t

4

1.5489
-4.52832

So we can see that the use of median-of-fc procedure (leading to a more
centered distribution of the partitioning key) allows to gain directly on the
asymptotic behaviour of cost; however the gain becomes less interesting as
soon as k is greater than 5. On the other hand, the variant of cutting small
lists influences only the linear term of the cost but is not negligible in practice
for usual sizes of lists. We can see in particular (simulations or explicit
formula for total running time [9]) that an optimal value of M (M = 10 to 15)
permits to gain around 10% on the sorting of lists of size < 5,000.

4. VARIANCE AND MOMENTS

In this section, we want to describe more precisely the distribution of costs
around their average values. We compute in particular the variances of
previous parameters for ail t and the first moments of the number of
comparisons in the standard case £ = 0.

4.1 . définitions and équations

Let Cn> k dénotes the probability that the cost is equal to k for lists of size
n; from the structure of the algorithm we have the characteristic récurrence
(PPiq previously defined):

(II) (iïn<M)Cnfk=
p+q=n-X

with R (p, q, r) = probability that the partitioning cost is r, if sublists are of
size p and q.

Consider now the series Cn (u) = Sfc Cntk u
k and C (z> u) = Zrt Cn (M) Z", we can

express all the moments of the distribution by iterate differentiations with

Informatique théorique et Applications/Theoretical Informaties and Applications
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respect to u of C (z, u) in u= 1:

du

From (II), we obtain easily the following récurrence on series C„(K) (for
n>M):

(lia) C„(u)= E PPi1R,,9(u)C,(u)C9(u)
p+q—n—1

where

In the gênerai case, we cannot deduce directly from (Ha) a simple func-
tional équation for C(z9u) since Rpq(u) does not factorize in the form
Rp, q (

u) = f(M) Rp (
u) Rq (

u)' We then have to consider the successive derivatives
of (Ha) in M=1 and to translate "by hand" the récurrences thus obtained
into functional équations for the series of moments: M(-(z) = LB Cj^ (1) z".
This opération is not trivial and not always possible but allows in particular
to compute (same kind of équations as in part (3) the variance of the number
of exchanges during partitioning stages. We will see further that the moments
of the other parameters can be computed more simply from an algebraic
équation for the bivariate series C(z,u).

To characterize the moments, we also introducé the semi-invariants or
cumulants K;(n) of order ï, defined by (see Knuth [7], vol. 1):

or

Main properties of cumulants

— Kj (n) is the average cost and K2 (n) is the variance.
— In ordinary cases, the cumulants characterize completely a distribution

law and the convergence of all cumulants implies the convergence of the law
[the normal distribution is characterized by: K;(n) = 0 for i>2].

— The cumulants KJ (n) of the normed centered law are:
K'i(ri) = Ki(ri)/&(ri) where a(n) is the standard déviation.

vol. 23, n° 3, 1989



330 P. HENNEQUIN

4.2. An interesting case

We assume hère that the cost of one partitioning stage is the same for ail
lists of size n and has the form C0(n)~a(n — k) + b(a= \,b = 2 gives the
number of comparisons), We can then factorize Rpq(u)~ub up^tuq~t and
translate easily the relation (II a) into a differential équation over C (z, u):

(II fc) ^^C(z9u) u(^pt
k\dk \t\ ôzt

with PM_k(z, u) polynomial of degree M—k in z.
We thus obtain a synthetic équation for C (z, u) which characterizes impli-

citly the distribution of costs. A direct analysis of this équation (exact or
asymptotic détermination of [z"] C (z, u)) is yet difficult owing to the coupling
of z and u. Mellin transform techniques (see [3]) sometimes used in similar
cases, seem to fail because we have at the same time a product form (square)
and derivatives with respect to z of C(z, u).

However, we can obtain easily by successive differentiations with respect
to u of relation (II b) and setting u= l , équations for the séries of moments
Mt (z) = (d/dzY C (z, u) |BSS i of the form:

We can then solve these successive differential équations by hand (i = 2) or
using a symbolic manipulation language like Maple or Macsyma. We obtain
in this way first moments of the distribution but the shapes of the other
moments and of the limiting distribution (if it exists) can only be conjectured.
In a recent work [8], M. Régnier has used a non-constructive argument to
establish the existence of this distribution whose density function still remains
to be explicitly characterized.

4.3. Results

(a) After (long) computations, we obtain variances of previously defined
parameters:

V a r ^ J , Var(D„), Var(£„) are 0 (n)

Var (Bn) = Ct (n + l)2 + O (n Ln (n))

Informatique théorique et Applications/Theoretical Informaties and Applications
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where:

c,=
4(2t + 3)2 (4t + 6)2(t+2)

For spécifie values of t (with r- 1/Ln(2) « 1.4426950408) we have:

t

K ? K - 7 t 2 / 6 ) . . . .

c'xio5

K ? K ^ 2 / 6 ) . • ••
Bt . . . . - . • . . .
Ct x 105

0
42026

2
56.288

4

.01972

.32013
10.025

1

.11489

.87464
30.979

5
.01138
.26403
7.6675

2

.05301

.55554
19.720

6

.01021

.22462
6.0532

3

.03430

.40634
13,663

t-+co

(r/2t)2

r*/2t
((2-r)/8t)2.105

So we can see the great advantage of the use of median-of-fe procedure
which allows to appreciably recenter the distribution of costs (réduction of
extreme cases). The gain on the average costs becomes less tangible for fe ̂  5.

(b) With the help of Maple, we obtain also the first cumulants of the
distribution for the number of comparisons in the standard case £ = 0 (Ç is
the Riemann zeta function):

(n) =
108

1)5

+ f 2 ^ . _ 124Ç (2)) (n +1)2 + O (n Ln (n)

165995 \
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The shape of these cumulants, with regard to intermediate computations,
allows us to conjecture (this has been verified for the twelve first cumulants)
that for i > 2 we have:

where

and af rational.
This implies then that the normed centered law of the number of compari-

sons converges to a limiting distribution characteirzed by the cumulants

i

g:::::
i

<

3

.2326

.8549

8

.8630
27.66

4

.2080
1.178

9

1.4953
73.938

5

.2401
2.097

10

2.4750
188.78

6

.3301
4.459

11

3.1777
373.89

7

.5132
10.66

12

-0.8591
-155.93

Final remark: From Chebyshev's inequality using the moment of order 4,
we can give an upper bound for the probability that the number of compari-
sons Cn is far of his average value:

Prob(| C n -C n |/Cn>£)<0.0461216(£Ln(n/Af))-4

So for n= 1000 and M = 10, we have with probability >99% a relative error
E less than 21%.
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