
INFORMATIQUE THÉORIQUE ET APPLICATIONS

JEAN-CAMILLE BIRGET
Two-way automaton computations
Informatique théorique et applications, tome 24, no 1 (1990), p. 47-66
<http://www.numdam.org/item?id=ITA_1990__24_1_47_0>

© AFCET, 1990, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1990__24_1_47_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 24, n° 1, 1990, p. 47 à 66)

TWO-WAY AUTOMATON COMPUTATIONS (*)

by Jean-Camille BIRGET (X)

Communicated by J.-E. PIN

Abstract. - Computations of a two-way automaton on an input tape are studied using the
algebraic notion of trace ofa two-way computation {due to J. P. Pécuchet), and certain "réductions"
of traces.

This paper only deals with two-way computations which begin and finish at one or the other
of the two ends of the input tape. The traces of such computations are characterized, and
formulas are given which tell how traces are combined when the corresponding inputs are
concatenated.

Another tool for studying a two-way automaton (also due to Pécuchet) is the language of its
control unit (considered over a "double alphabet"). This "control language" détermines the
entire two-way automaton and this leads to formulas relating the control language and the
language accepted by the two-way automaton itself.

Résumé. - Nous étudions les calculs d'un automate boustrophedon en employant la notion de
trace d'un calcul {due à J. P. Pécuchet) et certaines « réductions » de traces.

Cet article ne considère que les calculs boustrophedons qui commencent et finissent à l'un ou
l'autre bout de la bande d'entrée. Nous décrivons les traces des calculs de ce type et donnons
des formules qui indiquent comment se combinent les traces lorsque les entrées correspondantes
sont concaténées.

Un autre instrument dans l'étude des automates boustrophedons (dû aussi à J. P. Pécuchet)
est le langage de l'unité de contrôle (exprimé sur un « double alphabet »). Ce « langage de
contrôle » détermine l'automate boustrophedon et ceci conduit à des formules reliant le langage
de contrôle et le langage accepté par l'automate boustrophedon.

(*) Received June 1987, revised March 1988.
This research was supported in part by U.S. Army Grant DAAG-29-85-K-0099 and U.S. Air

Force Grant AFOSR-85-0186 through the Center for Mathematical System Theory, University
of Florida, Gainesville, FL 32611.

(*) Computer Science Department, University of Nebraska, Lincoln, NE 68588, U.S.A.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754 90/01 47 20/S4.00/© AFCET Gauthier-Villars

48 J.-C. BIRGET

1. INTRODUCTION AND DEFINITIONS

This paper is a continuation of my paper [2] and of J. P, Pécuchet's
work [7], but can be read independently. The main concern in [2] was the
effect of entire input words on the states, and this was described by the
global state transition maps [-> u ->], [±;], [u ï ;] , [<- u *-] associated to any
input u.

In this paper I study two-way automata from the point of view of their
computations (rather than just the effect of the computations on the states).
In order to do that, a slightly different model of a two-way automaton is
introduced (similar to the one in [7]). In this paper I only study computations
that begin and finish at one or the other end of the input tape (and not
somewhere within the input). For such two-way automaton computations I
give formulas that show how computations are combined as their correspond-
ing inputs are concatenated. Interestingly there is a connection between
two-way automaton computations and semigroup regularity (especially, the
regular-semigroup construction of [3] and [4]).

Finally, I give a new présentation of Pécuchet's theorem about the relation
between the language recognized by the two-way automaton and the language
recognized by the control unit of the two-way automaton.

DÉFINITIONS: In this paper the following model of a two-way automaton
will be used: it is a structure (g, Q, E, E U S , •) where E is the input
alphabet (used on the tape of the two-way automaton); Q = Q U Q is the set
of states, where Q is the set of right-moving states and Q is the set of left-
moving states. (The current state détermines the possible direction(s) that the
reading head will take in the next move.) In practice the number of states
will be finite, but this assumption is usually not necessary in the constructions.

A two-way automaton can bé yiewed as a tape (containing an input string
G E*) on which a reading head can move to the left and to the right, together
with a (finite) control unit. This control unit is a sequential (one-way)
automaton (g, E U Ë , •) where Q — QUQ (as above), E U Ë is the input
alphabet of the control unit (where Ë is a copy of E, disjoint from E), and
"•" is the next-state opération. Intuitively the control unit works as foliows:
when the reading-head reads a letter aeE on the input tape, the reading
head will transmit the letter aeE to the control unit, provided the current
state belongs to Q; if the current state belongs to Q then the letter EG Ë (the
"barred" copy of aeTi) will be transmitted to the control unit. The next-
state opération • is a relation (q, c) e Q x (E U Ë) -> q m c S Q. By the previous
sentence, qmcis not defmed (q m c = 0) if q $ Q but c e E, or if q $ Q but c e Ë.

Informatique théorique et Applications/Theoretical Informaties and Applications

TWO-WAY AUTOMATON COMPILATIONS 4 9

A current configuration of the two-way automaton is a word
a1 . . . a{qai+1 . . . üt„e2*gS*, where ax . . . atai+1 . . . <z„ is the input string
on the tape, and # is the current state, with the reading head positioned
between cells i and i:+ 1 of the tape.

The nexf configuration of the two-way automaton is obtained from the
current configuration ^ . . . aiqai + 1 . . . an as follows:

If the current state q belongs to Q then the reading head moves right and
the input letter ai+1 is read and transmitted to the control unit. The new
state q' is any element of q*ai+1 (or q' = q^ai+1 if • is a function, in the
deterministic case). The reading-head will position itself between cells z+1
and z + 2. So the next configuration will be ax . . . atai+1 q'ai+2 • . . an.

If the current state q belongs to Q then the reading-head moves left,
reading the input letter ai and transmitting the letter a£e£ to the control
unit. The new state q" is any element of q • at (or q" = q + at if • is a function),
and the reading-head will position itself between cells i — 1 and i. So the next
configuration will bt a± . . . ai_1 q" a{ . . . an.

A two-way computation on a given input word is a finite séquence of
configurations of the two-way automaton in which each one is obtained from
the previous one by application of the next-state relation.

The trace (Pécuchet [7]) of a two-way computation is the séquence of
letters in the "double alphabet" S U E received by the control unit during
that two-way computation. The trace of a computation is the "input" as
seen by the control unit. Although the reading-head exécutes a two-way
movement on the tape (with input e E*) there is a one-way flow of information
from the reading head to the control unit; the information consists precisely
of the trace (e (X U 2)*) of the two-way computation.

Non-determinism arises when the next-state relation • is not a function,
and also when 2 0 0 ^ 0 -

Remark : The model of a two-way automaton used here is slightly different
from the one used in most of the literature (e. g. [6], [8]). It is similar to the
model that I used in [2], but in addition it incorporâtes Pécuchet's "alphabet
doubling" idea (see his paper [7] and also Eilenberg [5], p. 285.) This change
does not give the two-way automaton any increased power, but it will give
us increased means for describing the behavior of two-way automata.

Traces of two-way computations belong to (X U Ë)+. The subsemigroup
£ + describes right movements, while £ + describes left movements.

It is convenient to apply the bar (—) not only to letters of 2 (which yields
£) but also to words of Z+ , and even to words of (EU2) + , using the

vol. 24, n° 1, 1990

50 J.-C. BIRGET

following définition: if w = xt x2 . . . xne(E U Ê)+, where each xt-eS U Ë is a
letter, then w = xn . . . x2xx. We need the additional conventions that x—aell
if x = a e £, and x = âe S if x = a e E. Henceforth we can replace each séquence
of barred letters (eË+) by a single barred word. Technically this amounts to
identifying the free semigroup (E UÊ) + with the free product E+ © Ê + (of
E+ and Ë+). The two semigroups (I I J Ï) + and E+ ©Ë + are isomorphic.
Every element of (E U Ë) + is of the form ulv1u2v2 . . . unvn where n ̂ 1, and
iti, ü £ e2 + (1^ /^ / ï) — except that we also allow ux or vn to be the empty
word (in which case we simply drop u± respectively vn from the expression).

When we use automata as acceptors we have to fix start state qQ e Q and a
set of accept states F <= Q, and a "direction of acceptance" (see section 4).
This way we obtain two formai languages from any two-way automaton:

1. A language L{1) g (EUË)+ (over the double alphabet EUE) recog-
nized by the control unit; it will be called the "control languagë\ (This
language was introduced by Pécuchet [7]).

2. A language L{2) g l + (over the input alphabet E) recognized by the
two-way automaton; this language will be called the "two-way language". See
section 4 for définitions of two-way acceptance.

An interesting question, due to Pécuchet, is: How are L(2) and L(1) related?

Both languages are fïnite-state wheif Q is finite: for L{1) it is obvious; for
L(2) that is precisely the Rabin-Shepherdson theorem [8] about the équivalence
between one-way and two-way finite automata.

2. TRACES OF TWO-WAY COMPILATIONS ON A GIVEN TAPE INPUT

In order to relate a trace of a two-way computation to the input (on tape)
on which the computation is carried out, we use the following réduction
opération on words in (E U Ë)+.

DÉFINITION: Consider all the rewrite rules uu~u-^u,u~uu~-> u where u ranges
over E + . For we (E \J £)* defme red(w) to be the word in (E U £)• obtained
by applying the above rules repeatedly "as often as possible", until a word
is obtained to which no such rule can be applied anymore.

Fact (2.1) (Pécuchet [7]): The result red(w) obtained from we (E UË)* by
applying the aböve rewrite rules repeatedly as much as possible is unique
(independently of the order and places in which rules are applied). So the
opération w -> red(w) is a well-defined function on (E U Ê)*.

Informatique théorique et Appîications/Theoretical Informaties and Applications

TWO-WAY AUTOMATON COMPUTATIONS 51

The proof follows from the "diamond (Church-Rosser) property" of the
above rewrite rules: If wx <- w -> w2 then there exists w' G (E U £)* such that
w1-^w' <^w2. (Notation: Let x, jye(EUË)*; then x-*y iff y is obtained
from x by application of one rewrite rule of the above type; x -+y iff x—y
or if y is obtained from x by repeated applications of rewrite rules of the
above type.) See [7] for details, or [1] pp. 36-40 for a similar resuit and a
similar proof. •

We have the following basic properties:

Fact (2.2):

(a) For ail we (£ U 2)*: red(w) = red(w).

(b) For ail wu w2 e (S U £)*: red (w1 w2) = rerf(rerf(w1) rerf(w2)).

[Proof outline. For (a): w and w are reduced in a symmetrie way, applying
UUU-+U instead of uuu -> w, and vice versa. For (6): The element r e d ^ w2)
is unique, and independent of the order and place of applications of the
rewrite rules.] •

DÉFINITION: A two-way automaton computation is said to be left-to-right
iff at the beginning of the computation the reading-head is positioned at the
left end of the input (on tape) while the state is right-moving (e Q), and at
the end of the computation the reading-head is placed at the right end of
the input while the state is right-moving (eg) or left moving (eQ). Seefig. 1.

A two-way computation is said to be left-to-left iff it begins at the left end
of the input in a right-moving state and finishes at the left end of the input
(in a left-moving or right moving state).

A strict left-to-left computation is a left-to-left two-way computation during
which the entire input is visited. Seefig. 2.

By symmetry one defines right-to-left, and right-to-right computations.

Remark. ~ Contrary to [2] I do not require in the above définition that
at the end of a left-to-right computation the state be right-moving (and
similarly for the other computations). The results of sections (2) and (3)
would also be true with the conventions of [2], However the proofs in
section 4 are easier with the present conventions.

Also, in the above définition of a computation (see also the définition in
section 1) we are not saying that the automaton has to halt at the end of a
computation; a computation is just a séquence of configurations (a segment
of a maximal computation).

vol. 24, n° 1, 1990

52 J.-C. BIRGET

rrr xu ITZ H T !

Fig. I Fig. 2

Figure 1. — A left-to-right compilation.
Figure 2. — Two left-to-left compilations, the second being strict.

LEMMA(2.3) (Relation between input and tracé): Let weÇE \J £)* andueX + .
Then we have:

(1) w is the trace of some left-to-right computation (for some two-way
automaton) on input u iffred(w) = u.

(2) w is the trace of some left-to-left computation (for some two-way automa-
ton) on input u iffred(w)=pp, where pel** andp is a prefix ofu (L e.: peT +

and MG/?S*).

The computation is strict left-to-left iffthe trace w satisfies red(w)=zuu,

(3) w is the trace of some right-to-right computation iff red(w)z=:Js, where
5 G S + and S is a suffix ofu (i.e.: s e£ + and weX* s).

In the strict case red(w) = üu.

(4) w is the trace of a right-to-left computation ijfred(w) = u,

Proof: The four relations are proved in a similar way, and I will consider
only the fïrst one.

(=>) Suppose w is the trace of a left-to-right computation on input u, We
must show that red(w)~u.

The trace of a left-to-right two-way computation is of the form
w=zulv1u2v2 . . . unvnun+u where w ^ e S * (l g / ^ « + l , lgj^w). The proof
goes by induction on the number n of barred segments vr We prove that

Informatique théorique et Applications/Theoretical Informaties and Applications

TWO-WAY AUTOMATON COMPUTATIONS 53

red(w) is equal to red(wf), where w' is also a trace of a left-to-right eomputa-
tion on input w, but w' contains only n—l barred subsegments. The word w'

is obtained from w by removing one zigzag (^ or ^) through application of

a rewrite rule vvv -> v or üuu-* ü: consider the shortest among the segments
vl9 u2i v2, . . .,un, vn9 of w (excluding ux and wn+1)5 and remove a zigzag
around that shortest segment,

(<=) Conversely, suppose red(w) = u. We must show that there exists a left-
to-right computation of some two-way automaton on input w, whose trace is
w.

If red(w) — u then there exists a séquence ww+1(=w), w„, . . ., wl9 wo(= u)
of words in (SU 2)* such that (for 0^ /^«) : wt is obtained from wi+1 by
application of a rewrite rule of the form xxx -> x or xxx-> x (with x€E +) .
We prove by induction on increasing i that all the words wt (O^i^n+l) are
traces of left-to-right computations on input u. This is certainly true for
u = w0 (case/=0): just take a one-way computation.

Inductive step (i-M+1): wi+x is of the form mxxxr (or mxxxr) where
wt = mxr (respectively w^mxr), x€E + , and m, r e (2 U^)*, Let us consider
the case where wi+1—mxxxr (the other case is similar), If wt is the trace of
a left-to-right computation on input w, then wi + 1 will also be a trace of a
left-to-right computation on input u: wi+1 is obtained by fïrst executing the
initial part mx of the computation wb second, carrying out a back-and-forth
movement on x (so at this point the trace is m xxx), third, executing the
remainder r of wt. •

Another way to state lemma (2.3) is as foliows:

Fact (2.4); Let « e S + be a given input. The set of traces of all left-to-right,
respectively left-to-left, resp. right-to-right, resp. right-to-teft computations (for
all possible two-way automata) on input u are:

(1) red~l (u) (= { w/red(w) = u }) for left-to-right traces.

We will dénote this set by { -• u ->}.

(2) U red"x (pp) for left-to-left traces.

p prefix of u

We dénote this set by { ?± w}.

(3) U+ red"l (ss) for right-to-right traces.

s suffix of u

We dénote this set by {u ?± }.

vol. 24, n° 1, 1990

5 4 J.-C. BIRGET

(4) red"l (u) for right-to-left traces.

We dénote this set by { *- u «- }.
(General définition: red* 1 (y) = { x e (I U 2)* f red (x) =y}.)

The next section will give fonnulas relating the traces on uv (concaténation
of inputs) to the traces on u respectively v. It will follow from those formulas
that the above subsets of (E U £)+ are rational languages.

Remark: If w is any word in (I U S) + then red~1(w) will be the empty
set unless w is indeed a reduced word [clearly, if an element w is not in the
range of the fonction red then its inverse image red~l(w) is empty]. When
red" x(w)ï£0 then every element of red~1 (w) can be obtained by starting
with w and repeatedly applying rewrite rules of the form u -> uüu, ü
(where u ranges over S+).

One easily checks that for each single letter aeSwe have;

{ a ?± } = (ad)+, { <- a <- } = (ad)* a.

3. TRACES, AND THE CONCATENATION OF INPUTS

THEOREM (3.1) (traces on concatenated inputs): Let u, vel, + . Then:

NOTATION: Here " . " dénotes the concaténation of languages (Ie.
Li.L2 = {xy/xGLli yeL2}\ and "*" is the Kleene star (Le. L*= U i",

where L° = { "empty word" } , and Ln+1 = L\ L).

Proof: Since the four formulas have very similar proofs I will only consider
the first one.

(c=) We have to show that red(w) = uv implies

Informatique théorique et Applications/Theoretical Informaties and Applications

TWO-WAY AUTOMATON COMPUTATIONS 55

By fact 2.3, if red{w) = uv then there exists a left-to-right computation (of
some two-way automaton) with input uv and trace w. Such a computation
has the form given in figure 3.

L J

Figure 3. — A left-to-right computation on input uv.

During thaï computation the reading-head of the two-way automaton
starts at the left end of w, and eventually leaves the string u (on the right
end of u) and enters into v, The pièce of computation done so far has a
trace in { -»«- •} .

Next, either the reading-head eventually finishes on the right end of v (in
that case the trace w of the computation belongs to
{->U^}.{-*V^}Z{-*U^}.({T±V}.{UT±})*.{-+V->}), or the readi-

ng-head eventually exists from v on the left end of v and reenters into u. The
trace of the pièce of computation done so far belongs to {-+u-+} .{*±v}.

This back-and-forth movement goes on a finite number of times. Let
k(^0) be the number of times that the reading-head crosses the u-v boundary
in the backwards (right-to-left) direction. Then the trace w belongs to

and hence to {

vol. 24, n° 1, 1990

56 J.-C. BIRGET

(ü) Next we prove that

red " x (uv) = { -> i«> -» } 2 { -* u -+ } ({

or equivalently: r̂ rf ({->w->-}({?±z;}{w^±})*{-^z;-»})g {wz;}, which in
turn is equivalent to red ({-+u^>}({<±v} {u+±})* {->v-*}) = uv.
By fact 2.2(6), and by the définition of {-•«->}, {<£©}, {w^} , {->!>-*}>
we have:

= red(red{ -> w - » } .(red{ *±v}.red{u*±))*.red{

= rerf (w. ({3; j7/_y € S + , j prefix of i; }

. {ie x/xe E+ , xsuffix of u})*. u)

Any element of

Z +
 5^ prefix of Ï;} . { xx/x e S +, xsuffix of u})*v

is o f t h e f o r m wn = uyx y x x1x1 y 2 y%x2x2 ynynxnxnv$ w h e r e n^.0 a n d

y(is a prefix of v, xt is a suffix of u (for l^z'5s«). Since yïxi = xïyi we also
have

wn=-uy1x1y1x1y2x2y2x2y3

So this expression of wn contains n subsegments in Ê+ ("barred" subseg-
ments).

We must show that red(wn) = uv. In order to do that we show that if «>0,
then from wn one can obtain a word w„_x (by applying a rewrite rule of the
form zlz-^z or zzz~-*z~, with z e S + , hence red(wn) = red(wn„ J), such that
wn_t contains only «— 1 subsegments in Ê+ .

Let us consider the shortest of all the segments x£j/|(l^i^w),

1 : The shortest such segment is of the form xty(, Since x£_x and xf

are both suffixes of «, it foliows that either xi^1 is a suffix of x£ or xt is a
suffix of xf_!. Therefore ^ _ i ^ is a suffix of x,^- or vice versa; but since
xtfi was chosen of minimum length, xtyi must be a suffix of xi_1 y(. Similarly
Xiyt must be a prefix of xtyi+1. (Indeed, yt and yi+1 are both préfixes of v,
so yt is a prefix of yi+1 or vice-versa, hence, x£j?£ is a prefix of x i j ; I + 1 or
vice-versa, but xtyi is of minimum length.) So there exist ^_ l 5 sf€E* with

o a n d xtyi+i^xiytSi'

Informatique théorique et Appîications/Theoretical Informaties and Applications

TWO-WAY AUTOMATON COMPILATIONS 57

Now

wn = uy1 . . . xi^iyixj'ixiyi + 1 . . . xnv = uyx . . . s^^y^y^y^ . . . xnv,

from which one obtains the word

by application of the rewrite rule xiyixiyixiyi ^xtyit This word wn^1 has
only n~-1 segments in £ + [and of course rec/(wn) = ret/(wn_1)].

2: The shortest segment is of the form x^^^ Then x(yi+1 must be
a prefix of Xiyt and a suffix of xi+iyi+1 (by the same reasoning as in case 1),
Thus there exist ti+ls tte2,* with

xiyi = xiyi+1ti+x and xi+1yi+1 = ti.xiyi+1.

Then (after a calculation similar to case 1), by application of the rewrite rule

we obtain a word wn_x with only n— 1 segments in £ + and

This way vvn is successively replaced by words Wj with
red(wn) — red{Wj)(n^j^O), and w;- has only j subsegments in £ + . Finally
w0 = uv e E + (no "barred" subsegments), so red(wn) = red(w0) = wz>. S

Remark: The formula for {«- wu -•} is equivalent to the formula for
{-•«!>->}, by the fact that {+- uv <- } = { -*MÛ"-> }, if one defines
{ ̂ w - • ^ r e ó r 1 (w). Similarly the formulas for [%uv] and {MVÎ^} are
equivalent.

IMPORTANT COROLLARY (3.2): For every weS+ the sets {-^>u^>}, [%u}9

{ut^}, { < - M < - } , arefinite-state languages.

Proof: The corollary follows easily from the formulas, by induction on the
length of u (since only rational opérations appear in the formulas). •

After this corollary one wonders wether red and red'1 preserve fînite-
stateness in gênerai. This is not the case however.

Fact(3.3) (Pécuchet) : There exist languages L £ (S U £) + that are finite-
state but such that red{L) is not finite-state {and not even context-free),

vol. 24, n° 1, 1990

58 J.-C. BIRGET

There exist languages L g E + that are finite-state, but such that red~x{L) is
not jïnite-state (and not even context-freê). In f act red~1ÇE+) is not context-
free (for any alphabet E). The proofs use the Pumping Lemma (Ogden's
version); see [7], •

Recall (fact2.3) that m T 1 ^) is the set of all traces of left-to-right
eomputations of two-way automata. The fact that red~1(E+) is not fini te-
state then implies the following: The finite control unit of a two-way Jïnite
automaton cannot always know whether the "input"'e(E \J Ë)+ it receives really
arizes from a left-to-right two-way computation. In other words: it would be
possible for the reading-head to deceive the control unit, by sending to it
certain words of (I l j 2) + that are not traces of any two-way movement on
a tape. The control unit could not always notice that.

Although red(.) and red"1 (.) do not preserve finite-stateness, we will see
some opérations that do preserve it, namely the opérations L -* red(L) O E+,
due to Pécuchet, and L -* dos (L) = the set of all words obtainable from
words in L by repeatedly applyihg rewrite rules of the form xxx-~*x,
xxx-^x with

CLOSURE UNDER THE REWRITE RULES;

{uuu—>u, u-*uu u/u G E + }.

DÉFINITION: If L is a subset of (EU2)* then clos(L) is the subset of
(E U Ë)+ obtained by closing L under the rewrite rules uuu~*u, uuu^ ü(as
u ranges over E+). More precisely, a word we (E U2)* belongs to clos(L)
iff w is the result of applying any finite number (including zero) of rules of
the form uuu -*u or üuü-* u (as u ranges over all of E+), in some order, to
a word of L. Notice that for we (E U £)*, clos(w) is a set, while red(w) is a
single word [and red(w) e clos (w)].

Fact (3.4): If L c (£ y £) * is a jïnite-state language, then clos(L) is also a
finite-state language,

Proof: Let At=(Qf E U 2 ? •, Ço, F) be a one-way deterministic finite
automaton recognizing the language I i (I U £)*.

From i t w e shall construct a two-way non-deterministic finite automaton
A2 which accepts clos(L). The idea for A2 is as follows. When A2 processes
a word w of clos (L) it has the ability to read w in the left-to-right direction,

but it can also "choose" to make zig-zag movements (**) on any subsegment
—»

Informatique théorique et Applications/Theoretical Informaties and Applications

TWO-WAY AUTOMATON COMPUTATIONS 59

of w (provided that this subsegment is of the form weZ+ or ï7e£+). During
these zig-zag movements A2 continues simulating the states-transitions of Ax.
The zig-zags on w, respectively ü, correspond to applying rewrite rules of the
form uüu->u, resp. üuu-^ü (with MÊS +) . Finally, the input w will be
accepted iff w can be obtained from a word in L (accepted by A±) by applying
rewrite rules of the form uüu^u, üuïï-^ü with weS+ (Le. by performing
zig-zags on subsegments u or u of w). Actually such zig-zags can occur within
each other.

A précise description of A2 follows now. Here I I j S is the actual tape-
alphabet of the two-way automaton A2, and not the "double alphabet" of
the control unit; 2 does not indicate backwards movements of A2.

A2 = (Q2> Qi, S U S , . . ., 0 , {q0, q'o}, F2),

where

and

(Le. herel use two start-states). The alphabet of the control unit is ignored
here.

Words are accepted by the two-way automaton A2 \ï they give rise to
some left-to-right computation which starts on the left in a start-state, and
ends on the right in an accept state.

The next-state relation © : (Q2 \J Q2) x (H J Z) - ^ g 2 I J Ô 2 i s defined as
follows:
for states in Q2 and

for ael,: (->, ± , q)®a={(-+, + , qma), (^, +, gma)}9

for âet: (->, ±, q)®â={(-+, - , qma), («-, -

for states in g 2 and

for ael,:

(<-» —, q)@a=0(undeflned);

vol. 24, n° 1, 1990

60 J.-C. BIRGET

for a G S :

(«- ,+ , q)®â— 0 (undefîned),

From this définition the three coordinates of the states (namely {-*,<-},
{ + , — }, and Q) receive the following interprétation: the fîrst coordinate (in
{ -+5 <_ j) indicates the direction of the movement of the two-way automaton
A2> The second coordinate (in {+ , — }) indicates whether in the last right-
ward movement the letter read belonged to E or to Ê; the rules
(4-, —, q)®a = 0 = (<- ,+, q)@â guarantee then that during a left-ward
movement the reading head never crosses over from segments in £ + to
segments in Ë+ or vice versa. The third coordinate (i n 0 simulâtes the state
of At (aeceptingL).

Let us fînally prove that A2 recognizes clos (L),
(1) Proof that if a word belongs to clos (L) then it is accepted by A2:

induction on the number ofapplications ofrewrite rules (of the form uûu-^u
or uuu~* u where weE+) to a word in L, in order to reach a certain word
of clos(L).

(Step 0) : Then every word of L is accepted by A2 (when only states in Q2

are used).
(Inductive step) : If a word of the form xuûuy, or xûuuy, (where « G E +)

is accepted by A2 then the word xuy (respectively xûy) is also accepted by
A2: in the case of xuuuy one replaces each pièce of computation on the
subsegment u by the corresponding left-moving computation on the subseg-
ment u of xuy (obtained by putting a bar —on the trace); in the case of
x uu uy one replaces each pièce of computation on the subsegment u by the
corresponding left-moving computation on the subsegment u of x uy.

(2) Proof that if a word is accepted by A2 then it belongs to clos(L):
induction on the number of right-to-left turns (or "reversais" <=*) of accepting
computations of A2.

(StepO): If a word is accepted in a computation of A2 without any turns
(i. e. one-way movement), then the word must belong to L. [And, of course,
L£ clos (L).]

(Inductive step): Suppose the accepting computation of A2 on input
WE (SUE)* involves a left-to-right turn. Then w must be of the form
w=xuy, where w is a maximally long subsegment of w belonging to E+ such
that a turn occurs on u (or w is of the form w — xûy, where u is a maximally
long subsegment of w belonging to Ë+ such that a turn occurs on u). By the

Informatique théorique et Applications/Theoretical Informaties and Applications

TWO-WAY AUTOMATON COMPUTATIONS 61

construction of A2, the reading head never moves off u to the left side of u
(see the définition of ©:(<-, + , q)®a=0); similarly in the case xüy the
reading head does not move off ü to the left side of ü. We conclude that the
two-way computation of A2 on w consists of a succession of three left-to-
right computations: first one on x, second one on u (respectively u), third
one on y. The computation on u has a trace t e {-> u -•} (respectively
£Ê{->M—>} = {<-w<— }). Now replace w = xuy (resp. w = xuy) by xty.
Clearly w can be obtained from xty by applying rewrite rules of the form
sss-^s, sss-^s with s e£ + , since te{ -> w-> } (resp. *e{ <- M<- }). There-
fore, if xtyeclos(L) then wec/o.s(L). But xf>> can be accepted by A2 using
a computation involving fewer turns than the accepting computation on w.
Thus, by inductive hypothesis, xty does indeed belong to clos(L); from there
it follows that w belongs to clos(L). •
Remark 1: If instead of the above automaton A2 one uses the two-way
automaton A2 = (Q'2 = { ̂ } x g, g'2 = { ^ } x g , Z U S , . . . , • , (- • , ?0X
{ -> } x /ï)5 accepting by left-to-right computations, with next-state relation °
defined by:

then the language recognized is the closure of L under the rewrite rules
www-*w, where w ranges over all of (H J S) + . Hence this closure also
preserves fmite-stateness. Again, in this automaton we ignore the alphabet
of the control unit.
Remark 2: The closure under the rewrite rules u -+uüu, w-> MMM (as u ranges
over Z+) does not preserve finite-stateness. For example, this closure of
a+ = {an/n>0} is equal to red~x(a+), which is not even context-free (see
Fact 3.3). So the opération clos (.) is not a "rational transduction" (it
preserves finite-stateness, but its inverse does not; see e.g. [1] for a définition
of rational transduction).

Two-way automata thus lead to a cîass of finite-stateness preserving
transformations (like clos(.), and Pécuchet's 2 + C\red(.\ etc; see the next
section and also Pécuchet [7]), which are not rational transductions.

vol. 24, n° 1, 1990

62 J.-C. BIRGET

4. THE CONTROL LANGUAGE L{1) AND ITS RELATION TO THE TWO-WAY LAN-
GUAGE

For the remainder of the paper we consider a fïxed two-way automaton
(o? Ö» E, 2 U 2, •, #Os F), where #0 is a chosen start state, and .F is a chosen
set of accept states.

The control unit of this two-way automaton is the one-way automaton
(ÜUQ, S U 2 , •, q0, F). It accepts a language I (i) i (S U Î) * , called the
control language.

We will consider four different modes of acceptance of a two-way lan-
guage^T,* by a two-way automaton.

1. Left-to-right acceptance: there we assume qoeQ, and F^QKJQ. A
word wel* is accepted iff there exists a left-to-right computation of the
given two-way automaton on input w, starting at the left end of u in state qö

and ending at the right end of M in a state of F.

2. Left'to-left acceptance: Assume qoeQ and F^QKJ Q. A word we E* is
accepted iff there exists a left-to-left computation of the given two-way
automaton on input u, starting at the left end of u in state qQ and ending at
the left end of u in a state of F. We do not require here that all of u is
actually visited during this accepting computation.

3. & 4. In a symmetrie way one defines right-to-left and right-to-right
acceptance.

Remark: Contrary to [2], we do not assume that F g Q for left-to-right
acceptance, nor that F g Q for left-to-left acceptance, etc. The reason of this
change is that by using this mode of acceptance Pécuchet's theorem can be
proved (Theorem 4.2) more easily. The model of [2] is then a special case of
this more gênerai convention.

These four languages are called two-way languages and denoted £(2); the
context will teil which of the four modes of acceptance is referred to.

If A is an alphabet and Lg^f*, weA*, then the left-quotient w"1 L is

The left quotients w~lLil) [as w ranges over (EUS)*] are the states of
the minimum automaton of L(1) (sees. g. [6]). The complete description of the
minimum automaton of LiX) is:

states: g m = { W - 1 L (1) / W G (E U 2) * 5 w~1L(1)^0}f

input alphabet = S U %

start state = L(1),

Informatique théorique et Applications/Theoretical Informaties and Applications

TWO-WAY AUTOMATON COMPUTATIONS 6 3

accept states

the next-state function ® : Qm x (EU 2)* -> Qm is defined by:

for

[Remark: The empty set 0 is not used as a state. If 0 — w~1 L(1) for some
w, then the minimum automaton will be a partial automaton: the next-state
function is not defined when the next state would be 0.]

The importance of the control language is expressed in the following:

Fact (4.0): Let A2 = (Q, Q, E, E U £, •, q0, F) be a two-way finite automa-
ton whose control language is L{1\ and whose two-way language is L(2)<=£*
(defined with respect to any one of the four modes of two-way acceptance).
Then the language L(1) by itself détermines a two-way finite automaton
accepting L(2) (if we take the same mode of two way acceptance as for A2),
whose control language is also L{1\

Proof: The control language L(1) détermines its own minimum (one-way)
automaton, described above (whose state set is Qm — {w~1 L{1)/we (E U Ë)* },
etc). In order to obtain a two-way automaton from La\ we define:

Equivalently, a state w'1 L{1) is right-moving iff there exists at least one
letter aeZ such that (w"1 La))® a = a~1 w"1 L(i)^0 (it is easy to check
that for any alphabet A and any L^A*, and a E A we have: a~xL^0 iff
LÇ\aA*^0). So Qm is the set of those states in Qm on which the action of
some letter in E is defined. Similarly, Qm is the set of those states in Qm on
which the action of some letter in £ is defined.

Continuing the description of the two-way automaton determined by L(1):
the start state, accept states and next-state function are exactly the same as
for the minimum automaton of L(1\

It is easy to check that this two-way automaton
(Öm> öm> 2, E U Ë5 ®, etc), constructed form L(1), accepts L(2) (according to
the same mode of two-way acceptance as the initial two-way automaton A2),
and has L(1) as its control language. •

The rest of this section contains formulas which relate the control language
L(1) to the various two-way languages.

vol. 24, n° 1, 1990

64 J.-C. BIRGET

LEMMA (4.1): Let «eS + , and let L{1) be the control language of a given
two-way automaton {with two-way language L(2)).

Then the set of traces of accepting left-to-right computations on input u is
exactly

Moreover:

u€Ü2) iff {^u^}

Similar formulas hold for the other modes of acceptance (left-to-left5 etc).

Proof: (=>) If ueLi2) then let w be the trace of an aeeepting two-way
computation of u. Then (by définition of acceptance) we {-•«-»} and

(<=) If { -• u -• } H Lil) contains some element w, consider w as the trace
of a two-way computation on input u (on tape), starting in state L(1) (which
is the start state of the automaton for L(2) constructed from L(1> in Fact
4.0), and ending in state w"1 L{1\ which satisfies weL{1\ Le.w'1 L{1) is an
accept state. Hence u e L(2). •

THEOREM (4.2) (Pécuchet): (a) Let L(1) be the control language of a two-
way automaton, and let Li2) be the two-language relative to left-to-right accept-
ance. Then:

(b) If L is any finite-state language (S U 2)* then the language

E* H red(L) in E* is alsofinite-state,

Similar regularity preserving opérations can be obtained for the other
modes of two-way acceptance.

Proof: We only consider the case of left-to-right acceptance (Pécuchet's
theorem — see [7] for his original proof).

(a) Let u e L(2); then by Lemma 4.1 there exists w e { -> u ->} f) La) (# 0) .
Hence u~red{w), and so we E* dred(La)).

Conversely, if we E* OrediL^), there exists weL(1) such that
w = reöf(w)eE*. Hence we{->w-»}. Now WE{ -> u-+) r)L(1\ hence
{ -* u -* } H Lil}^0, so (by Lemma 4 .1)ueL m .

Informatique théorique et Applications/Theoretical Informaties and Applications

TWO-WAY AUTOMATON COMPUTATIONS 65

(b) If Lg(S U2)* is a finite-state language, we can construct (as in the
proof of Fact 4.0) a two-way automaton whose control language is L. By part
(à) of the present faet, the left-to-right two-way language of this automaton is
equal to £* C\red{L). Moreover, by the Rabin-Shepherdson theorem, this
language E* C\ red{L) is finite-state (being recognized by a two-way finite
automaton). •

Remark: The converse of Pécuchet's formula is not true (as we saw already
in Fact 3.3), L e. if S* C\ red(L) is fmite-state, that does not imply that L is
finite-state.

5. QUESTIONS AND RESEARCH PROBLEMS

(a) Stud^formal power series (e.g. with coefficients in N) accepted by
two-way finite automata.

For one-way finite automata the formal-power-series approach is related
to solving Systems of left (or right) linear équations. What kind of "équations"
(or other représentations) should one use to find the power series accepted
by a two-way automaton?

(b) A question which is related to power series is ambiguity.

It would be interesting to study unambiguous two-way finite automata
(where every word has at most one accepting computation). Relate unambi-
gous two-way automata to "two-way bimachines".

(c) Do the (non-rational) transductions L->£ + f\red{L) and L-+clos{L)
have interesting "non-linear matrix représentations" (as studied by Pin and
Sakarovitch [9])?

(d) Another problem, not necessarily related to two-way automata:

Find an automaton model (recognizing only finite-state languages) which
corresponds to the languages accepted via non-linear matrix représentations
(see Theorem 2.4 in the English version of[9]).

(e) Find new examples of finite-state languages (and of transductions which
preserve finite-stateness) for which fînite-stateness (resp. préservation of fînite-
stateness) is most naturally proved by using two-way automata.

Examples are L -> E+ H red(L), L -* clos(L), and

L - > I L = { X / 3 J > : xyeL, \x\ = \y\) (see[6] 1979,p. 73).

vol. 24, n° 1, 1990

66 J.-C. BIRGET

ACKNOWLEDGMENTS

This paper owes a lot to the paper [7] of Jean-Pierre Pécuchet. I would like to thank Prof
John Rhodes, Berkeley, for his encouragement, and Doug Albert for nis comments. I would
also like to thank Prof. Rudolf E. Kalman for giving me an opportunity to work at the Center
for Mathematical System Theory, University of Florida, where a large part of this paper was
written.

REFERENCES

1. J. BERSTEL, Transductions and Context-Free Languages, Teubner, Stuttgart, 1979.
2. J. C. BIRGET, Concaténation of Inputs in a Two-Way Automaton, Theoret. Comp.

Sci., Vol. 63, 1989, pp. 141-156.
3. J. C. BIRGET, Machines and expansions of a semigroup, and applications, Ph. D.

thesis, U. of California, Berkeley, May 1983.
4. J. C. BIRGET, Arbitrary Versus Regular Semigroups, J. Pure and Appl. Algebra,

Vol. 34, 1984, pp, 56-115.
5. S. EILENBERG, Automata, Languages and Machines, Vol. A, Academie Press, 1974.
6. J. E. HOPCROFT and J. D. ULLMAN, Formai Languages and their Relation to

Automata^ Addison-Wesley, 1969, and Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, 1979.

7. J. P. PÉCUCHET, Automates boustrophedon, semigroupe de Birget et monoïde inversif
libre, R.A.I.R.O. (Revue française d'automatique, d'informatique et de rech.
opérât.), Informatique théorique, Vol. 19.1, 1985, pp. 71-100.

8. J. C. SHEPHERDSON, The Réduction of Two-Way to One-Way Automata, LB.M. J.
Res. and Dev., Vol. 3.2, 1959, pp. 198-200, and in E. F. MOORE (Ed.), Sequential
Machines: Selected Papers, Addison-Wesley, 1964.

9. J. E. PIN and J. SAKAROVITCH, Some Opérations and Transductions which Preserve
Rationality, 6th G.I. (= Gesellschaft für Informatik) Conference, Lecture Notes
in Comp. Sci. (Springer Verlag) 145, pp. 277-288 and: Une application de la
représentation matricielle des transductions, Theoretical Computer Science, 35,
1985, pp. 271-293.

10. J. C. BIRGET, Proof of a Conjecture of R. Kannan, Proc. 21st A.C.M. Symp. on
Theory of Computing, 1989, pp. 445-453.

Informatique théorique et Applications/Theoretical Informaties and Applications

