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THE STRUCTURE OF INDEX SETS
AND REDUCED INDEXED GRAMMARS (*)

by R. PARCHMANN (*) and J. DUSKE (*)

Communicated by J. BERSTEL

Abstract. - The set of index words attached to a variable in dérivations of indexed grammars is
investigated. Using the regularity of these sets it is possible to transform an mdexed grammar in a
reducedfrom and to describe the structure ofleft sentential forms of an indexed grammar.

Résumé. - On étudie Vensemble des mots d'index d'une variable dans les dérivations d'une
grammaire d'index. La rationalité de ces ensembles peut être utilisée pour transformer une gram-
maire d'index en forme réduite, et pour décrire la structure des mots apparaissant dans les
dérivations gauches d'une grammaire d'index.

1. INTRODUCTION

In this paper we will further investigate indexed grammars and languages
introduced by Aho [1] as an extension of context-free grammars and lan-
guages. This family of languages has many properties of the context-free
languages and it is interesting to note how many of them can be carried over
and which properties are spécifie to the family of indexed languages. Standing
between the context-free and the context-sensitive family of languages, the
indexed languages have much more in common with the context-free family.

One nice property of context-free languages is the fact that they can be
generated by reduced grammars, which implies that each sentential form can
produce a terminal word. In the case of indexed grammars there is the
difficulty that a dérivation of a terminal word from a variable dépends on
an attached index word, which can be arbitrary long. Hence it is important
to investigate the structure of index words attached to a variable in various
forms of dérivations of an indexed grammar.

(*) Received November 1987, final version in June 1988.
(*) Institut fur Informatik, Universitât Hannover, D-3000 Hannover, West Germany.
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9 0 R. PARCHMANN, J. DUSKE

In the second section we will investigate the set TERMG(^4), for every
variable A. This is the set of all index words y such that A y can produce a
terminal word. Furthermore we will investigate the set INDEXG(^4) of all
index words appearing in sentential forms attached to the variable A. We
will show that for each indexed grammar G these two sets are regular and
effectively constructable. We will relate these results to previous results of
[9].

In the following section we will use the regularity of the sets INDEXG(^4)
and TERMG(^4) for constructing a reduced form of an indexed grammar.
The construction is a special case of the more gênerai concept of "regular
look-ahead" in [3] or the similar construction of a predicting machine (see
[5]) or of a grammar transformation for indexed grammars in [8].

The final section gives a resuit concerning the structure of the variable
part of sentential forms obtained by leftmost dérivations of indexed gram-
mars. These sentential forms obviously have a close relation to the pushdown
lists of an IPDA (indexed pushdown automaton) introduced in [7]. In the
context-free case these sets are regular [4], but in the indexed case we will
show that the corresponding sets are context-free.

2. INDEX SETS

In this chapter we investigate the set of index words attached to a variable
in dérivations of an indexed grammar. In particular we will consider dériva-
tions starting from the start symbol of a grammar and dérivations starting
from a variable with attached index words leading to a terminal word.

First let us recall the définition of an indexed grammar as given in [2]:

DÉFINITION 2 .1: An indexed grammar is a 5-tuple G = (N, T, /, P, S) where

(1) N, T, I are finite, pairwise disjoint sets; the sets of variables, terminais,
and indices respectively;

(2) P is a finite set of pairs (Af9 ®), AeN, fel[j{e}9 & e (NI* UT)*,
the set of productions; (Af, 0 ) is denoted by Af~+® and e dénotes the
empty word;

(3) S G N, the start variable.

Let ® = u1B1$1u2B2$2. . .Bn$nun+1 with uteT* for je[l : »+l ] , B}eN9

and pj-el* for je[l : n] with w^O, be an element of (NI*\JT)*, and let
y e/*. Then we set

0 : y = u1B1

Informatique théorique et Applications/Theoretical Informaties and Applications



INDEX SETS AND GRAMMARS 91

For 0 ' , ©"e(NI* UT)*, we set 0 '=>0" iff 0 ' = ®1Afy®2,
0 " = 0 ! ( 0 : y)0 2 with0 l 9 0 2 G ( N I * U T ) * and 4/-> 0 e P , ƒ e / U {e}.

=> is the n-fold product, => is the transitive and => is the reflexive, transitive
closure of =>.

The language L (G) generated by an indexed grammar G = (N, T, /, P, S)

is the set L(G)={w\weT*, S=>w}. A language L is called an indexed
language iff L = L (G) for an indexed grammar G.

As for context-free grammars it is désirable to have indexed grammars
with the property that each sentential form produces a terminal word. In the
context-free case the réduction of a grammar yields a grammar with this
property. The réduction process consists of two steps: (1) détermination of
all variables which produce a terminal word, and (2) détermination of all
variables which appear in a sentential form.

In the case of an indexed grammar, we have to consider the following
difficulties:

(1) the dérivation of a terminal word from a variable dépends on its
attached index word, and

(2) in sentential forms variables appear only with certain attached index
words.

Hence we have to consider the following two sets of index words:

DÉFINITION 2.2: Let G = (N, T, ƒ, P, S) be an indexed grammar and let
AsN. Then

(1) TERMG(A)={y\yeI*9AyXwi weT*}, and

(2) INDEXG(A) = {y\yeI*, S^®lAy®29 0 l 5 (-)2 e(JV7* U T)*},

In this section we will show that these sets these sets are regular. For this it
is convenient to have a form of an indexed grammar in which in each
dérivation step the length of an index word can increase or decrease at most
by one. To be more précise we want the productions to be of the form
A -> a, A ƒ-> B, or A -+ Bf, where A, B are variables, ƒ is an index and a is
a word consisting of variables and terminais. A grammar of this form will
be called normal form grammar. (In [1] a similar, but more restricted normal
form is defined.)

To this end let G = (Ni T, I, P, S) be given. Construct the indexed grammar
G'^(N\ T, I, P\ S) in the following way:

Let TC : Af-^u1B1y1u2B2y2- • •M
n^Jnw

n+i be an arbitrary production
in P.

vol 24, n° 1, 1990



9 2 R. PARCHMANN, J. DUSKE

(1) Replace ji by n' : A f - ut &?> u2 5<2
0). . . un 5<,0) un+1 and for all i e [1 : n]

l e t T i ; : ^ ^ ^ ^ .
(2) If f^e, then replace n' by / 4 / - » J and

(3) For each ie[l : n] replace %[ by the productions Ê^ -^ Ê^+i) fj+1 and
J ^ - ^ ^ with fj+1eIJe[0 : « £ - l ] where y£=/Br . .ƒ,.

N' contains iV and it is easy to see that the following lemma and corollary
hold for G and G' :

LEMMA 2.3: Let Ge(NI* U 7)*3 ^eiV, and yel*. Then we have Ay^>®

according to G if fAy=>0 according to G'.

This implies L (G) = L {G') and furthermore we have

COROLLARY 2.4: TERMG(,4) = TERMG, (A) for all AeN.

Since each sentential form according to G' can produce a sentential form
according to G we have with Lemma 2.3:

COROLLARY 2.5: INDEXG(^) = INDEXG,(A) for all AeN.

Now we will show the regularity of TERMG(^) and INDEXG(^) with the
aid of the Myhill-Nerode theorem (see e. g. [5]).

THEOREM 2.6: Let G = (N9 T, I, P, S) be an indexed grammar and let AeN.
Then TERMG(A) is regular.

Proof: W.l.o.g. (see Corollary 2.4) let G be in normal form. Let

T : P-^^(iV)bedefinedasT(Y)={A|AyK4w, weT*}.

[0*(N) dénotes the set of all subsets of N and if Y=/i . . . /„, then
JR==fn' • -/i-I Let Rx be the following relation over /*:

forallyl5 y2el* we have (yl5 y2)eRx iff x(y1) = x(Y2),

Rx is an équivalence relation with fmite index. Furthermore, il, is a right
congruence. To prove this, let (y1? y2)eRx and let yel*. Assume A ex (yt y),

i.e., there is a dérivation AyRyf=>w, weT*. This dérivation can be rear-
ranged and then separated in an initial part which uses no indices of yf
and a final part, which uses only indices of yf, i. e., we have

AyR=>w1B1 w2- . .WkBkwk+i a nd Btyf=>Ui with
ie[l : k],je[l : k+l], w1u1 w2. . .wkukwk+1=

iw, and k^O. (Hère we use the
fact that G is in normal form.)

Informatique théorique et Applications/Theoretical Informaties and Applications



INDEX SETS AND GRAMMARS 9 3

If k = 0, then obviously we have ^ 6 T ( Y 2 Y ) - If k>0, then we have, using

(Ti. Ï2)ei?T [Le., T ( Y I ) = T(Y2)], B^Xul with « J e r , ie [ l : *] .

Therefore there is a dérivation

=> Wi^iT?w2 . . .wfc£fcyf wfe+1 4 W1M'1W2. . .wkMiwfc+1 = w'9

and hence 4̂ e x (y2 y).

Finally we have

U M, = { Y' | A YR 4 W> w e T*} = (TERMGC4))*
y e ƒ *, ^ e T (y)

where [y]T dénotes the équivalence class of i?T containing y. Since the family
of regular sets is closed under reversai the theorem is proven. D

COROLLARY 2.1: Let G = (N9 T, I, P, S) be an indexed grammar. Then the

set EMPTYG(A) = {y|^4y^>^} is regular.

Proof: Let P be the set of all productions of P containing no terminal
symbols and let G' = (N, T, /, F, S). Then EMPTYG(^) = TERMG,(^). D

THEOREM 2.8: Let G=(N, T, Iy P9 S) be an indexed grammar and let AeN.
Then INDEXG(^4) is regular.

Proof: W.l.o.g. (see corollary 2.5) we can assume that G is in normal
form.

Define a : I* -> ̂ (A^x N) by

o(y)={(A,B)\A,BeN,A±®1By®2,®x,&2e(Nl*UT)*}9

and furthermore let RG be the following relation over ƒ* :

forallyl5 y2el* we have (yl5 y2)e^0 iff a(y1) = a(y2).

This is an équivalence relation with finite index, and we will show, that it is
a right congruence. Let (yl5 y2)eRo and y e/*, and let (A, B)eu(yxy), i.e.,

there is a dérivation A =>©xByxy02 with ® ls ®2e(NI* U T)*. In a corre-
sponding dérivation tree consider the path from the root A to the leaf Byx y.
According to the special form of our grammar this path contains a node
which is labeled by Cy and the labels of all successor nodes on this path

are of the form Dy'y, y'e/*. Hence there are dérivations ^4=>©

vol. 24, n° 1, 1990



9 4 R. PARCHMANN, J. DUSKE

and C^>®r
1By1®2, Ie., (C, B)eo(y1). Since o(y1) = u(y2), there is a

dérivation C^>&1By2&2- Hence there exists the dérivation

A â>Bt (&t : y)By2y(B2 : y)©2, but this means (A, £)ea(y2y). With

INDEXA) = U [y]o

the theorem is proved. D
Let G = (N, T, I, P, 8) be an indexed grammar and let % : I* -* ̂ {N) with

x(y) = {i |^y J Ï=>w5 w e P } be the function defmed in the proof of theorem
2.6. Since the emptiness problem for indexed grammars is decidable (see [6],
the proof in [1] is not correct) it is easy to show that x is computable.
To this end let y e/* and AeN. Set GA = (N{J {Sr}9 T, ƒ, F , S') with
P' = P U { 5 ' ^ ^ f } . Then we have Asx(y) iff L(GA)^0.

Now it is possible to construct a deterministic finite automaton (DFA)
which accepts TERMG(,4)*.

THEOREM 2.9: Let G = (N, T, ƒ, P, S) be an indexed grammar and let AeN.
A DFA <$é with L (jaf) = TERMG(>4)* is effectively constructable.

Proof: Détermine a set Z^^(N) and a function 8 : Z*I-*Z as follows
(Q dénotes an initially empty queue):

Set z0 : = x(<0, Z : = {z0}, and (z0, c)=>Q.
while Q «o^ empty

begin
Q => (z? y) { at this point z = t (y)
for all ƒ e /

begin

if
begin

end
end

end
The algorithm terminâtes since & (N) is finite. Now set sé — (Z, /, 8, z05 î )
with F={z\zeZJ Aez} and let S : Zx ƒ* ->Z be the extended transition
function of si defined as usual. We have 8 (zö, y) = t (y), for S (z0, <?) = z0 = t (e),

Informatique théorique et Applications/Theoretical Informaties and Applications
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and, if y = y' ƒ, ƒ G ƒ, then

S (z0, y) = S (z0, y' ƒ) = 5 (S (z0) y'), ƒ) = 5 (x (y'), ƒ) = x (y' ƒ) = r (y).

(Here we use the fact R% is a right congruence.) Therefore we have

= TBRMG(A)R. D

A similar construction is possible for the set INDEXG(^4), but there is an
easier way. We will construct a regular grammar generating this set.

THEOREM 2.10 Let G = (N, T, I, P, S) be an indexed grammar and let
AeN. A regular grammar GA with L (GA) = INDEXG(^4) is effectively con-
structable,

Proof: We can assume that G is of the form used in the proof of Theorem
2.8. Now construct Gf = (N, T, /, P\ S) in the following way:

If C~*u1B1u2...unBnun+l with Uj€T*9 je[l : « + l ] , BteN, i e [ l : n],

n^0, is in P, then the productions C-> Bb ie[l : n], are in F'. Ail productions
in P of the form C-»Bfox Cf-+ B are in P' too.

Now we will show that for ail C, BeN, it is decidable whether C=>B
according to G' holds. To this end construct G" = (N\J {S'}5 T, / U { # } ,

P", S') with f = n j { y - > C t f J I - > e } , Obviously C=î>5 according to

It is now possible to construct a regular gramar GA = (N, /, PA, S), where
PA is defîned as follows:

(1) If C-^Bfh in F , then C^Bfis in PA. (Note that ƒ is a terminal
symbol with respect to GA in the second production.)

(2) If C => B according to G\ then C -> .5 is a production in P ^

(3) Furthermore A -* e is in P^.
Obviously L (GA) = INDEXG(^) holds.

Remark: In [9], given an indexed grammar G = (N, T, /, P, S) and a
variable AeN, the notion

FLAGS 04) = { ^

is introduced and it is stated that this set is regular if G contains no
e-productions. But actually it is proved that the set INDEXG(y4) is regular.

vol. 24, n° 1, 1990



9 6 R. PARCHMANN, J. DUSKE

The problem in this proof lies in the faet that a dérivation S=>®1Ay&2,

&x, ®2e(NI* U T)* can not necessarily be continued by ®t => w, WET*.

Let us call in analogy to the notion INDEXG(^4) the set FLAGS (A) by
INDEXÉ (A) (1 means left terminât), i.e,7

^ÏNDEXl
G(A) = {y\yeI*, S^wAy®, wel*, ®e(NI* U I)*}.

It is possible to show, using proof techniques as in Theorem 3.2 that this
set is regular.

THEOREM 2.11: Let G = (N, T, /, P, S) be an indexed grammar and let
AeN. Then the set 1NDBX1

G(A) is regular.

Remark: A regular grammar for INDEX^ (̂ 4) is effectively constructable.

If we define INDEX£(/l)={Y|Ye/*, S=>vAyw, v, w e P } , it can be shown
in a similar way that this set is regular too.

It is easy to see that TERMG(^4) = TERMG(^4) /* holds for each grammar
G and each variable A, Hence there are regular sets which are not of the
form TERMG(y4). On the other hand we obviously have:

THEOREM 2.12: Let I be an alphabet and R^ I* a regular set, There exists
an indexed grammar G such that R = INDEXG(yf) = INDEX^ (A) =
INDEXÉ (A) holds for a variable A.

3. REDUCED INDEXED GRAMMARS

A context-free grammar G is called reduced if every variable appears in a
dérivation of a terminal word, which is equivalent to

(1) each sentential form produces a terminal string, and

(2) each variable is reachable from the start symbol.

This is the motivation for the following définition:

DÉFINITION 3.1: An indexed grammar G = (N, T, /, P, S) is called sentential

form (SF-) reduced, if 5=> © implies © => w, weT*. G is called reduced if it
is SF-reduced and if for each AeN there is a dérivation

S^>®1Ay®2i ®u 026(iV/*ur)*, y El*.

Remark; If G is SF-reduced, we have L(G)^0.

Informatique théorique et Applications/Theoretical Informaties and Applications
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The following theorem shows that each nonempty indexed language can
be generated by an SF-reduced indexed grammar. We will use the same idea
as in Theorem 2.11 but the construction of the grammar is quite different.

THEOREM 3.2: Let G = (N9 T, /, P, S) be an indexed grammar with
L{G)^0. Then an SF-reduced indexed grammar G' = (N', Ty T9 P', Sl) with
L (G) = L (G') can effectively be constructed.

Proof: W.Lo.g. we can assume that G is in normal form. Furthermore
let N= { A !, . . ., Ar} and sé{ = (Zi9 /, 8£, zf9 Ft) be a DFA with
L(jéi)^TBRMG(Ai)

R for ie[l:rj . (These DFA's can be effectively con-
structed, see Theorem 2.9.)

In a dérivation S=> ®t Aiy&2, &u &2 e (NI* U T)*9 it is essential to know

whether &x => w with we J1*, holds, L e., whether a term Ajy ocurring in Sx

produces a terminal word, This is equivalent to the question whether
Sj(zj, yR) is in F y Hence we set

N' = N^ZX^ . . . x z r and S' = (S,z°u . . .,zr°).

Since it is possible to consume an index in a dérivation, we have to save the
states of the DFA's before producing this index, therefore we set

/ = / x Z 1 x . . . x Z r

Now set G' = (JV, r , f, P', S'\ where F is defmed as follows:

(1) Let AJ0->u0Aj1u1 . . . uq.iAj uq with utsT* and Aj.eN, ie[0:#],
n^O, be in P. Then for all zkeZki fce[l:r], with zHsFh for is[Q:q] the
production

(AJo9zt9 . . .,zr)-+u0(Ah,zl9 . . .9zr)uX' . . . •uq-1(Ajq,zl9 . . .9zr)uqisinP'.

(2) Let Ai-^Ajfbt in P, then for all zksZk, ke[l:r], with zieFi and
Fj the production

(4;,*!, . • .9zr)-+(ApSx(zl9f)9 . . .9Sr(zr9f))(f9zl9 . . .3z r)isinP'.

(3) Let Aif-tAj be in P, then for all zfceZfe? Are[l :r], with zjeFj and
8(- (Z(., ƒ ) e Ft the production

ƒ,z l5 . . . ^ ^ - ^ ( ^ Z i , . . .,2 r)isinP'.

vol. 24, n° 1, 1990



98 R. PARCHMANN, J. DUSKE

To compare dérivations according to G and G', we need the following two
functions:

(a) q> : ƒ* -* / * with (p (e) = e and

(b) h:F* -+I* is a homomorphism with

h(f,zu...,zr)=f, fel, zkeZk, ke[l:r].

First we will prove:

Aty=>w9 weT*, according to G implies (At,zu « . ., z,.) (p (y) => w where
zk=^k(zk>JR)> ke[l :r] according to G'.

Let n=\. Then At-*w is in P, and Y G T E R M G ( ^ ^ L e., h^
therefore (Ai9 zu . . ., zr) -> w with 2k = 8fc (zj, y*), k e [1 : r] is in P\

Now assume

with Ajly=>vl for /e[l :g]. We have y€TERMG(^) for /e[0:ç], and there-
fore

with zk — bk(z®,yR), ke[l :r], is in P', and with the induction hypothesis we
«+1

have (Ah zl9 . . . 5zr) >̂ w according to G'.

Now assume A^^-Aj/y^-w. We have y € TERMG (̂ 4f) and
/ y e T E R M G ( ^ ) , i. e.,

and

8j (^, YR ƒ) = 8;(S; (4 . YR)= ƒ) e i>

therefore

(4,21 5 . . .,zr) - (^ , 8i (zl9 ƒ ) , . . . , 8r (zr9 ƒ)) (ƒ, zl9 . . .,zr)

Informatique théorique et Applications/Theoretical Informaties and Applications



INDEX SETS AND GRAMMARS 99

with zk = 8fc(z£,y*), ke[l:r] is in P', and with the induction hypothesis and

the définition of cp we have

(Ai9 z l9 . . ., zr) cp (y) => ( ^ Sx (zl5 ƒ ) , . . . , 8r (z„ ƒ)) (f, zu . . ., zr) <p (y)

= ( ^ , 8, (zlf ƒ ) , . . . , Sr (zPf ƒ)) cp (ƒ y) 4 w

according to G'.

Let now y = ƒ a and >4(- y = i f / a = > ^ a = > w according to G. Then we have

y = ƒ a G TERMG (^ ) and a e TERMG ( ^ ) ,

i. e.,

8, (zl yR) - 6£ (8, (z?, a^), ƒ ) G F, and 8 ; (z,°, a*) G Fj5

therefore the production

with z/ = 8k(z£,a*), A:G[1 : r], is in P' and with the induction hypothesis and
the définition of cp we have

(Ai9 8i (zi, ƒ ) , . . . , 8P(z;, ƒ)) (ƒ, zi, . . ., zP)) cp (a) => (J7, z'l5 . . ., zr0 cp (a) 4 w

according to G'.

In particular we have:

If S => w, w G T*, holds according to G, then (5, z?s . . ., z?) = S" ̂ > w, accord-
ing to G', hence L(G) g L(G').

Furthermore it is easy to show:

(Ai3zl9...9zr)q>(y)^>w with zk = dk(z%,yR\ ke[l:r], according to G'

implies Aty => w according to G.

This implies: If 5" = (S, z$, . . ., zr°) 4 w, w e T*y holds according to G\ then

5^> w according to G, hence L(G') g l ( G ) .

Now we have L(G) = L(G'). Note that G and G' are structural equivalent,
/. e., the dérivation trees of terminal words according to G and G' are the
same except for the labels at intermediate nodes.

vol. 24, n° 1, 1990



100 R. PARCHMANN, J. DUSKE

Next we have to show that G' is SF-reduced. To this end we will fïrst
prove:

Let S' 4 ©' with & = &[ B' y' 0'2, ©;, @'2 e (NP \J T)*, where y = h (y'), and
B' = (B,zl9 . .,zP), then zk = 8k(z°k,y

R), yeTERMG(i?), and y'= q> (y).

If n = 0, then S' = ff = (S9z%9 . . .,zr°) and y = h(y') = e. Since L(G)Ï0, we
have eeTERMG(S).

Now let

The assumption holds for 0 " 5 in particular we have Ar
J0~(AJ0,z1, . . . , z r )

with zk = $k(z%9y
R), y = h(y')eTERMG(AJ0) and y' = cp(y). The last produc-

tion applied is

with Aj^iAjpZ^ . . ,,zr), l e [ l : ^ ] . We have zhe Fh and hence

Now let S' i 0 " = 0 ; Al y' 0'2 => S[ A) f y' 0'2 - 0 ' . The assumption holds
for 0 " , in particular we have A\ = (At, zu . . ., zr) with y = h (y') 6 TERMG (At),
y' = cp(y)5 and zj!c = 8fe(Zfe,ylï). The last production applied is

(Ai9 zl9...,zr)-+ (Aj9 8i (zl9 ƒ ) , . . . , 8P (zr, ƒ)) ( ƒ z l5 . . ., zP).

We have 5 ^ , / ) = 8 i ( z ^ Y K / ) e FJS hence ƒ y = /*(/y')GTERMG(^-)- Fur-
thermore we have q> (ƒ y) = f y' (see définition of (p).

Now let S' i 0 " = ©; Al ƒ a' ©2 => ©; ^- a' ©2 = ©'. The assumption holds
for ©", in particular we have A\ = {Auzu . . ,9z^) with zfc = 8k(zj,aK ƒ),
ƒ a = A (ƒ a') G TERMG (^f) and ƒ a' = q> (ƒ a) = (ƒ, z l s . . ., zr) <p (a) with
zk = 8fc (zj, a11), fc G [1 : r], The last production applied is

{Ai9zl9 . . . 9 z r ) ( / , z l s . . . ,z r)->t4,.,z1 , . . . , 4

where zk = Sfe (zfe5 ƒ ), and z} G F7-, hence a e TERMG (Aj).

Now let 5' 4 0 ' , ff y' ©2 , ©;, 0 2 e (Nr / * U 7)*, where J3f = (5, z l9 . . ., zP)

and y~h(yf). Since y G TERMG (.0), there is a dérivation i?y=>w according
to G, and since zk = Sfc (z£, yR), k e [ l : r ] and (p(y) = y/ we have

' = (B,z1, . , .,zr)(p(y) => w according to G'. Hence G' is SF-reduced. D
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Next we can prove

THEOREM 3.3: Let G = (Ny T, ƒ, P, S) be an indexed grammar with L(G)^0,
Then an equivalent reduced indexed grammar can effectively be constructed.

Proof: First construct using Theorem 3.2 an equivalent SF-reduced
indexed grammar Gf = (N', T, F, P', S') for G. For each A'eN construct
using Theorem 2.10 a regular grammar for INDEXG,(^4'). Détermine
iV"=={i4'|INDEXG.O4')#0} (note that we have S'eN") and set
G" = (N'\ T, ƒ', P", S'\ where F' consists exactly of those production of F
which only contain variables from N". It is easy to see that G" is equivalent
to G and reduced. D

Remark: If G in the above theorem is an e-free indexed grammar, then G"
is e-free too.

Remark: In the context-free case, each production of a reduced grammar
is applicable in a dérivation of a terminal word. This is not necessarily true
for a reduced indexed grammar G = (N, T, /, P, S), because it is possible that
a production of the form A f -» B is not applicable in a dérivation of a
terminal word. This is equivalent to the fact that no word in INDEXG(v4)
begins with/, i, e,, INDEXG(^4) O ƒ 7* = 0 . It is obviously possible to test
this condition and to eliminate such a production (see also [8]).

4. THE STRUCTURE OF SENTENTIAL FORMS OF INDEXED GRAMMARS

It is well known (see [4]) that the set of strings which can appear on the
pushdown list of a PDA is a regular set. In analogy, given a context-free

grammar G = (N, T, P, 5), the set {a\S^ua, ueT*, aeN(N\J 7)*U{^}}
i

is a regular language where => dénotes a leftmost dérivation. A left linear
i

grammar which générâtes this set can be constructed as follows:

The set of variables of this grammar is TV' = { A' \ A e N } and N U T is the
set of terminals. Now consider an arbitrary production

Aö-^u0Bxu1 . . . uw . . . Bquq

with q>0 of P. For each ie[\:q] such that Bj^>wp W J Ê P holds for
je[l:i—l] introducé the production A'o^>B[uiBi+1 . . . Bquq. Furthermore,
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for all AeN9 the production A' -> A and, if L (G) # 0 , the production S' -> e,
are introduced.

Using the fact that the sets TERMG(^4) are regular for an indexed grammar
G = (N, T, I, P, S), it is possible to show that in this case the corresponding
set is context-free. To formalize this statement let us first introducé the
homomorphism \i : (NI* U T)* -> (N \J T)* with \i (A y) = A, A e N, y e /*, and
ji (a) = a, a e T, Now we can show

THEOREM 4 . 1 : Let G = (N, T, /, P, S) be an indexed grammar. Then the

set M={\i(&)\S^u®9 « e P , ®eNI*(NI* U T)* U {e}} is context-free.
i

Proof: Let N= { Ai9 . . .,Ar } and let ^ ^ ( Z , , / , 8 ; , z ? , Ft) be the DFA's
with L ( ^ - T E R M G < > 4 £ ) * for is[l:r] and set N' = N* ZA x . . . x Z r and
f = / x Zx x . . . x Zr (see proof of Theorem 2.11).

In the sequel we need the fonction \ | / : / * x Z 1 x . . . x Z r - > / * defined by

,z l5 . . , z r )

for all zk e Zfc, A: G [1 : r], fel, and y e 7*.

We will now defîne a left linear indexed grammar G' = (N", T, T9 P\ S")
with N" = N' U {S"} (S" is a new symbol), T = N[J T, and /»' is defined as
follows:

(1) S"^(S,z°1,...,z?) = S'ismP'.

(2) If L (G) ̂  0 , then 5' .-> e is in P'.

(3) For all AeN and for all zkeZk, ke[\:r], the production
(A9zl9 . ..9zr)^>Ai$in F.

(4) Let ^ i 0 f-^u0AJ1y1u1 . . . Ajqyquq with « ^ 7 * , >4;,eJV, ie[0:^] s

/ e / U {e}, yj€l*9je[l:q]9 and ̂ > 0 be in P. Then for all ze[l :^] , and for
all zkeZk, ke[\ :r]9 with 8^(r jr yf)e F^, le [ l : /— 1], the production

X(zuf\ . . .,8r(zr)

Obviously G' is a left linear indexed grammar and hence L (Gr) is a context-
free language [1].
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An easy induction on n flrst shows:

A y Z> u 0 , 0 e NP (NP \J T)* according to G implies
i

(A, ^ (Z°, yR), . . ., 8r (z°, YR)) * (Y, z°u • • •, z?) 4 n (0 )

according to G\

In particular we have S=>w0, u e T , ÖeA^T*(NP \J T)* according to G

implies (S,z?, . . . ,z?)4|i(©) according to G'. Hence JlfgL(ff). With
another easy induction one can prove:

(A, Si (z°X9 y
Rl . . ., 8r (2r°, y*)) i|/ (y, z?, . . ., zr°) 4 w, weiV(7V U T)*,

according to G' implies Ay=>u&, ueT*, S e NP (NP U 7̂ )*, according to G
i

with |i (0) = w.

In particular (^z j , . . .9z®)=>w according to G' implies S=>w0, ueT*,
i

®e NP (NP [JT)*, according to G with fi(©) = w. This complètes the
proof. D

We will now show that it is not possible to substitute "context-free" by
"regular" in this theorem.

Example: We will give an indexed grammar G = (N, T, I, P, S) such that
the set M investigated in the foregoing theorem is not regular. Set

N={S,A9B}9 T={a,b,c}, / = { ƒ , « } ,

and

We have
L(G)={anbncn\n^0}

and

The set M is not regular.
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Remark; There is a correspondence between indexed grammars and mdexed
pushdown automata (IPDA) (see [7]). It is not diffieult to see that the set of
strings appearing on the pushdown list of such automata are context-free.
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