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SOLVING WORD EQUATIONS (*)

by Habib ABDULRAB (1)

Abstract. — Makanin's algorithm décides whether a word équation in words has a solution or
not. The aim of this paper is to give an introduction to the algorithm and a gênerai description of
our work. This provides some simplifications and improvements to the algonthm thus allowing to
achieve an effective implémentation solving non trivial équations.

Résumé. — L'algorithme de Makanin permet de décider si une équation en mots admet une
solution ou non. Cet article donne une introduction à cet algorithme ainsi qu'une description générale
de nos travaux dans ce domaine. Ceux-ci introduisent quelques simplifications et améliorations à
cet algorithme, et proposent une implémentation effective permettant de résoudre des équations non
triviales.

1. INTRODUCTION

The study of the properties and structure of the set of solutions of word
équations was first initiated by Lentin and Schützenberger ([9], [10]) in the
case of constant-free équations. Such équations always admit a solution. The
study of word équations with constants has been tackled by Markov who
gave an algorithm to décide whether a word équation in two variables has a
solution or not. Hmelevskii [7] solved équations with constants in three
variables. Makanin [11] showed that solving arbitrary équations is decidable.
He gave an algorithm to décide whether a word équation with constants has
a solution or not. His labour-consuming algorithm in one of the major results
(and certainly one of the most diffïcult) in theoretical computer science.
Pécuchet [12] gave a study unifying the two théories of équations with or
without constants, and a new description of Makanin's algorithm. We have
provided [1] some simplifications and improvements to this algorithm permit-
ting an effective implémentation.

(*) Received November 1987, final version in December 1988.
(*) Laboratoire d'Informatique de Rouen et L.I.T.P. Faculté des Sciences, B.P. n° 118, 76134
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110 H. ABDULRAB

Solving word équations arises in many areas of theoretical computer
science, but especially in the area of combinatorics on words ([10], [13], [14]),
and of unification in formai Systems ([3], [4]).

Let I b e a finite set (alphabet); we dénote by X* the free monoid on X.
i. e. the set of ail finite séquences (words) over X. The empty word is denoted
by the symbol 1. The length of a word w (i. e. the number of letters composing
it) is denoted by | w |. The number of occurrences of a letter x in w(xeX), is
denoted by | w \x. The alphabet of w is denoted by Alph (w) = { x e X/\ W \S > 0}.

A morphism of a monoid Mx into a monoid M2 is a mapping a of Mx

into M2 such that:

a (m1 m2) = a (mj a (m2), and a (1) = 1

ml9m2eM1.

Given two distinct alphabets V and C, a word équation e is an ordered pair
(eue2); ^ = ^ ( 1 ) . . .«x (|ex |), e2 = e2(l). . .e2(|«i|)> o f éléments of
L* = { V U C } * .

The alphabet V is called the alphabet of variables (denoted by x9 y, z. . .).
C is called the alphabet of constants (denoted by A9 B, C. . .). We will
suppose that Alph (ex e2) = L.

A solution of the équation e is a morphism a : L* -> L* such that
a(el) = a(e2), and a(e) = c for each ceC.

Example: The équation e = (AyB,xxz) has the solution a:

a(x) = AB, OL(y) = BA, a(z)=l, a(A) = A, a(B) = B.

Example: The équation e^(AxxyyyyB) has no solution.

A constant-free équation (C=0) always has the trivial solution a given
by: VzjeV, a(t>)=L We will not consider (from now on) this simple case,
and we will suppose that Card(C)>0.

A solution a is said to be continuous if OL(V)^ 1 holds for ail ve V.

The projection of the équation e into a subset g of V is the équation
defîned by erasing all the occurrences of letters of V\Q in e. Consequently,
an équation has 2Card (V) projections. It is obvious that e admits a solution iff
one of its projections admits a continuous solution.

The projections of the above-mentioned équation e=(AyB,xxz) are given
by:

,1), (AyB,l), (AB,xx), (AB,z),
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SOLVING WORD EQUATIONS 111

(AyB,z), (AB,xxz\ (AyB,xx), (AyB,xxz).

An équation e is called simple if Card (C) = 1. Consider a simple équation
e with V = { vx. . . vn}, C = {c1}. Let e' be the commutative image of e, i. e.

Consider the linear diophantine équation e", called the length équation
associated with e:

The isomorphism between [c1 }* and (N, +) permits to show that e admits
a solution iff e" admits a non-negative integer solution. Finding a non-
negative integer solution to linear diophantine équations is solved by several
algorithms [8]. Thus, sol ving simple équations can be easily reduced to solving
linear diophantine équations.

Consider now an équation ƒ with Card (C)^ 2, and let ƒ be the simple
équation associated with ƒ by replacing all the constants o f / b y cx. The
length équation ƒ ' associated with ƒ is, by définition, that associated with/ .
It is easy to see that if ƒ admits a solution then ƒ ' admits a non-negative
integer solution. The converse of this implication is false as shown in the
following counter-example: the length équation associated with the équation
e = (Axxy, yyB) of the previous example has the non-negative integer solution:

2. MAKANI1VS ALGORITHM

2.1. Informai présentation of two examples

We describe hère the basic notions of Makanin's algorithm and its gênerai
behavior via two examples.

Consider the previously seen équation e = (AyB,xxz). This équation is not
simple, and its length équation has a non-negative integer solution. So, it
cannot be solved by the results given in the previous section.

The first step of the algorithm consists in the computation of all the
projections of e in order to find a continuous solution to one of these
projections.

The second step consists in associating for each projection p = (Pi,p?) of e,
all the possible ways of choosing the position of the symbols of px according

vol. 24, n° 2, 1990



112 H. ABDULRAB

to those of p2. The following diagram illustrâtes one possibility for the
projection (AyB,xx) (seefig. 1).

1 A i

x

y i

X

B

Figure 1

Now, this scheme applicable to p will be transformed into a so called
position équation, This new object inherit the seven boundaries of the scheme
and of ail occurrences of constants (these occurrences are called constant
bases), but variables will be treated in a special manner.

Single occurrence variables, such as y, will disappear.
The n occurrences (n>l) of other variables are replaced by 2n — 2 new

variables associated via a symmetrical binary relation (called duality relation).
These new variables are called variable bases.

The position équation Eo computed from the previous scheme applicable
to e is: (see/zg. 2).

Figure 2

Hère, xt is called the dual of x2 and conversely.
Note that, after the second step of the algorithm (i. e. the computation of

all the schemes applicable to all the projections of e), the algorithm develops
a tree level by level. The tree is denoted by se and its levels by Lt(i^0), This
tree is called the tree of admissible and normalized position équations.

The first level of sé contains the position équations computed from the
schemes applicable to the projections. In our example, Lo contains the
previous position équation Eo. It is important to observe that it is the only
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SOLVING WORD EQUATIONS 113

step where new variable bases will be generated. Their number will thereafter
remain bounded.

The step from level Lt(i> =0) to level Li+1 is based on the transformation
and normalization of position équations. There are five distinct types of
position équations. According to its type, each position équation E existing
in se is transformed into a set T(E) of position équations.

We will describe hère how to transform the position équation Eo of Lo in
order to generate Lx,

Note first that the largest leftmost variable of Eo (i. e. xx) is called the
carrier. The first occurrence of A with a left boundary equai to 1 is called
leading base. Having a carrier and another leading base characterizes one of
the five types of position équations. This type is called Type 5. The transform-
ation of a position équation of this type consists in transferring the leading
base A, in all the possible ways, under the dual of the carrier. There are two
distinct ways to do the transfer. Either A takes all the space between the
boundaries 3 and 4, or a part of this space. So T(E0) has the foliowing two
position équations (denoted respectively by Eu E2): (see fig. 3).

Figure 3

vol. 24, n° 2, 1990



114 H. ABDULRAB

The list ( 2 x 1 4) of the last two position équations is called connection.
Such an object is created in order to avoid any loss of information during
this move. It plays the role of a link between old and new positions of A.
This connection (2 JCI 4) indicates that the prefix of xl ending at boundary
2 is equal to the prefix of its dual (z. e. x2) ending at boundary 4.

Here, we transform only the first position équation Ex. The transformation
of the second one is realized in the same way.

Ex has a carrier with left boundary greater than 2, it has no leading base,
and all the boundaries between its left and right boundaries are non-essential.
(i. e, it is neither a left or right boundary of a base, nor a last boundary of a
connection). This situation characterizes another type (called Type 3) of
position équations. The transformation of such a type consists in the transfer
of all the boundaries, existing between the left and right boundaries of the
carrier, into the dual of the carrier. In our example, we transfer the boundary
2, in all the possible way s, between the boundaries 3 and 5. This move can
be realized in three ways:

1. The boundary 2 will be located between the boundaries 3 and 4.
2. The boundary 2 will be located between the boundaries 4 and 5.
3. The boundary 2 will be identified with the boundary 4.
Note here that the first two possibilités contradict the information, given

by the connection-/, e.: the segment between the boundaries 1 and 2 is equal
to the segment between the boundaries 3 and 4. These two possibilities are
not admissible, and must be eliminated.

The transformation of Ex gives rise to the foliowing position équation £3:
(see/zg.4).

Figure 4
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SOLVING WORD EQUATIONS 115

Note that the connection is deleted.
The type of this position équation features each position équation having

a carrier with a right boundary equal to 2, and no other leading base. Such
a type will be called Type 2.

The transformation of such a position équation consists in deleting the
carrier and its dual, leading to the following position équation: (see fig. 5).

Figure 5

This last position équation has no carrier. The transformation of each
position équation of this type (called Type 1) consists in deleting the fîrst
boundary, and the leading base (if one exists). So we obtain: (see fig. 6).

Figure 6

This last position équation is simple (that is, it has only one constant
letter), and so the initial équation e has a solution.

The equality of two position équations is based on the following équiva-
lence relation among position équations: two position équations E1 and E2

are called equivalent when they differ only by renaming of variables or
constants. Note that the correspondence of the names of the bases of Ex and
E2 must conserve the définition of the relation between two dual variables.
More precisely, if xx and x2 are two dual bases of Eu and x[ and x2 are the
bases of E2 corresponding to xt and x2, then x\ and x'2 must be dual in E2.

Note that, the algorithm develops a tree level by level until we obtain an
empty level or a level equivalent to a previous level, in which case the initial

vol. 24, n° 2, 1990



116 H. ABDULRAB

équation e has no solution, or a level containing a simple poisition équation,
in which case e has a solution.

We give now another example solving an équation which has no solution.

Consider the équation e = (Ax, xB). The following tree describes the resolu-
tion of e (see fig. 7).

The position équation Eo is of Type 5, its transformation gives rise to E1

and E2 as seen in the previous example.

Et has the type of ail position équations having a carrier, no other leading
base and an essential boundary between the left and right boundaries of the
carrier. This is called Type 4. Its transformation consists in transferring the
essential boundary 2, in all the possible ways, between the left and right
boundaries of its dual. According to the connection of Ex there is one way
to do the transfer. It consits in identifying the boundaries 2 and 3. Next, the
prefix of the carrier ending at the boundary 2, and the identical prefix of its
dual, are deleted. The transformation of E2 is realized in the same way of
Et leading to the previously developed position équation Eo. This resulting
position équation is deleted. The transformation of E3 (Type 5) consists in
transferring A in the same segment of B, leading to a position équation
directly eliminated. The fourth level of the tree is empty, and so e has no
solution.

Let us now describe two basic notions appearing in Makanin's algorithm:
The notion of schemes applicable to an équation and that of position équation.

2.2. Scheme applicable to an équation

Essentially, we introducé [1] the formai notion of a scheme applicable to
an équation e to formalize the concept, used by Makanin's algorithm, of
"mixing" the positions of the symbols of an équation, in all the possible
ways.

Obviously, there are many possible ways of choosing the positions of the
symbols of e1 according to those of the symbols of e2.

Example: the following diagrams illustrate some possibilities for the équa-
tion e = {xAz, AzB): (see fig. 8).

Informally, a scheme applicable to an équation e = (el9e2) indicates how
to iocate the positions of the symbols of er according to those of e2 in a
possible solution of e.
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E n :

1 2

( 2 xi 3 )

V

A

B ^

( 2 »i 3 )

Figure 7

, X

, A ,
l A 1

z

z ,
1 B 1

x

, A ,
i A i

Z i

z
B

i . x .

. A ,

A , Z

z ! B ,

Figure 8

vol. 24, n° 2, 1990



118 H. ABDULRAB

We dénote by the symbol = each common boundary of both sides of e,
by < each lone boundary of ex and by > each lone boundary of e2. The
second scheme of the previous example can be represented by (= > < = =) .

Formally, a scheme is any word se—{=i < , > } * = , that is a word over
the alphabet { = , < > > } beginning and ending with the letter = .

A scheme s is called applicable to an équation e~(e1,e2), | ^ i | # 0 , and
\ex | / 0 , if the following conditions are satisfied [1]:

2. S> \ 2 \

where Sv, <p e { = , < , > } is the number of occurrences of cp in s.

The left and right boundaries of a symbol t [denoted by lb(t) and rb(t)\ in
a scheme s applicable to e are the integers of the interval [1 \s\], defïned in
the following way:

If t = e1 (n) then lb{i) is the length of the prefix of s whose length is equal
to n over the alphabet { = , < }, and rb{t) is the length of the prefix of s
whose length is equal to n+1 over { = , > } . The définition in the case
t = e2(ri) is obtained from the previous one by exchanging < and > .

Note that the set Te of all the schemes applicable to an équation e is
recognized by the following automaton [1]: (see/ïg. 9).

Figure 9

Each horizontal edge is labeled with < , each vertical edge is labeled with
>, and each diagonal edge is labeled with =.

Informatique théorique et Applications/Theoretical Informaties and Applications



SOLVING WORD EQUATIONS 119

We prove [1] that the size of Te grows exponentially with the length of e.
More precisely:

( = 0

w h e r e n1 = \e1\—l, a n d n2 = \e21 — 1.

In addition, Te contains generally a very important number of schemes
that can be eliminated because they imply some contradictions on the lengths
or the values of the letters of e,

Example:

— The length of z in the second scheme of the previous example is both
greater than and equal to the length of a constant symbol.

- The value of z in the third scheme of the previous example is equal
both to A and B.

These observations lead to a définition of the concept of a solution of a
scheme applicable to an équation.

Définition: A solution of a scheme se Te is given by a multi-word S:

[2.2.1]: S=((V19 . . ., FCard(V)),(L(l), . . . ,L(| j | )) ,(*(l) , . . .,R(\s\)\T)

element of C + C a r d ( V ) xC* N xC* M xC + , such that:

(a) M
(b)
(e)
(d) for each symbol y of the équation e we have:

L{lb(y))yR(rb(y))=T if y belongs to C

and

Example: A solution of the following scheme applicable to e=(AyB,xx)
(see/zg. 1).
is given by:

L( l )= l , L(2) = A, L(3) = AB, L(4) = ABA, L(5) = ABAB.

R(l) = ABAB, R (2) = BAB, R (3) = A B, R (4) - B9 R (5) = 1.

T=ABAB.

vol. 24, n° X 1990



120 H. ABDULRAB

V1 = AB, V2 = BA. (Remark: V = {v u v 2 } = { x,y}).

PROPOSITION (2 ,2 .1) ; An équation e has a continuons solution if f one of Us
applicable schemes has a solution.

Proof:

— If a scheme s applicable to e has a solution then:

a(t)= if t is a variable v£ then Vi else t.

is a continuous solution of e,

— Consider the set ̂ 4:

^ = { a ( e , ( 1 ) . . . et (/))//= 1,2 and 1 ̂  g | et j}.

where a is a continuous solution of €. Let K(l). . . j£(Card (̂ 4)) be the ordered
séquence of the éléments of A, such that | üf(O]<| AT(* +1)|,
(1 ̂ z^Card(^)— 1), and consider the following scheme s:

1. s(l) is equal to = .

2. For each i(l ^ ï ^Ca rd (^ )+ 1), s(i) is equal to:

= , if K{i~ l) = ot(Pz) = a(P2)3 with P± and P2 are two préfixes of e1 and

It is not hard to see that s is a scheme applicable to e, and s has a
solution. •

The concept of a solution of a scheme applicable to an équation e enables
us to state some necessary conditions [1] satisfied by each scheme e Te which
has a solution, and §o, the application of the algorithm can be reduced to
the only subset Se of applicable schemes which satisfy these conditions.

Example: Consider the équation e = (xyxyA,yxyByy). Te contains 3,653
schemes applicable to e, whereas Se contains only 2 schemes applicable to e.

We show [1] how Se can be constructed effectively. Of course, we do not
proceed by Computing at first Te and then removing all the schemes that do
not satisfy the necessary conditions, but we compute Se directly.

Note that the computation of Se anses in several steps of the algorithm:
the position équations of the first level of A are directly computed from 5e.
The transformation of every position équation uses this computation to
realize all the possibilities of the transfer. Finally, the computation of Se
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SOLVING WORD EQUATIONS 121

arises in our algorithm which computes effectively a solution to the équation
e whenever one exists.

2.3. Position Equation

A position équation E can be represented by a diagram as the one shown
below:

Example (sccfig. 10).

The occurrences of the letters of E are called the bases of E. The bases yu

yi> • • •>J;45
Z5>26 a r e called the variable bases. Each variable xt is called the

dual of xi + ! (z = 1,3. . . ) and conversely.

1 2

f 2 6

Conne

A

Z 5

:hon^ :

3

A

5 Z6

4

n

7)

5 6

connectio n 2 :

'S

(2

7

B

ze

8

A

V

S 7

9

Figure 10

Each base of E has a fe/t boundary and a rig/tf boundary. The left boundary
of z6 is, for example, equal to 1 and its right boundary is equal to 7.

Theiists connection^ connection2 are called the connections of E.

Two dual variable bases having the same left and right boundary are called
matched.

More generally, a position équation is defmed by its variable and constant
bases, the two mappings left and right boundary, the duality relation, and a
flnite (possibly emtpy) set of connections. Each connection is a list of the
form
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122 H. ABDULRAB

where p and q are two boundaries and y (1). . .y (k) (k^ 1) are variable bases.
The formai définition can be found in ([1], [12]).

This concept [12] is a constraint version of the notion of generalized
équation introduced by Makanin [11], The unique différence between this
notion and that of generalized équation of Makanin is that the boundaries
are totally ordered and that the right boundary of a constant is the successor
of its left boundary. This concept provides a "geometrical" interprétation to
the concept of generalized équation used by Makanin, and permits to the
processes of transformation and normalization to be described graphically.

The transformation of position équations in the previous example differs
from that of the original algorithm [11] by the réduction, from 7 to 5, of the
number of types of position équations [12].

Let us now describe the notions of admissible and normalized position
équations.

A system of linear diophantine équations (called the System of length
équations) AX = B; A and B with integer entries; is associated with each
position équation. A position équation E is called admissible when this System
has a non-negative integer solution. Fundamentally, this System has a non-
négative integer solution whenever the lengths of the segments and the bases
of E are consistent.

A position équation is called normalized when the three following condi-
tions over its variables and connections are satisfied. Such conditions are
introduced both to reduce the number of équation types (for the sake of the
proof) and to ensure termination of the algorithm by generating only a finite
number of position équations.

A position équation E is called normalized when it satisfies the three
following conditions:

NI. [11] No connection of E contains a segment of the form (xi9 dual(xj),

N2. [11] If the connection (p9xl9 . . .,xk,q) contains the two variable bases
xi9Xj with (Xi^Xj and i<j) then there exists an integer / (i^l<j) satisfying:
left boundary (xl + 1)<left boundary {dual{x^)).

N3. [12] The position équation E has no matched variables.

2 .4. Makanin's algorithm

Remember that if the length équation associated with e has no non-negative
integer solution then e has no solution. Otherwise, if the équation e is simple
then e has a solution. Otherwise, the algorithm develops a tree level by level.

Informatique théorique et Applications/Theoretical Informaties and Applications



SOLVING WORD EQUATIONS 123

The first level Lo contains the position équations computed from the
schemes applicable to the projections of e.

The step from level Lt to level Li + 1 in Makanin's algorithm is based on
the two fundamental opérations of transformation and normalization.

Each position équation E of Lt(/^0) is transformed into a set denoted by
T(E) of position équations from which the non admissible ones are deleted.

If any position équation E' of this set is not normalized, it is replaced by a
set N(E') of normalized position équations computed from E. The resuit of
these transformation and normalization process to every position équation
of Lt leads to a set N{T(L$) of admissible and normalized position équations.

The next level Li+l will be deduced from N(T(Li)) by deleting a certain
number of position équations:

We fîrst identify position équations which differ only by a renaming of
bases or boundaries and delete every position équation already occurring in
a previous level.

We then also delete all position équations whose maximum length of
connections is greater than a number K(d) depending only on the length
d= | e | of the original équation e.

The development of levels is repeated until we obtain an empty level, in
which case the équation e has no solution, or a level containing a position
équation with only one constant (E is then called simple), in which case e
has a solution.

Makanin's algorithm:

Input: an équation e of L*

Output: YES if e admits a solution,

NO otherwise.

1. If the length équation associated with e has no non-negative integer
solution then END: NO.

2. If the équation is simple then END: YES.

3. i<-0.

4.

2Card (V)

A<- U e(PJ)

vol. 24, n° 2, 1990



124 H. ABDULRAB

where Pj is ihey-th projection of e, and e(Pj) is the set of all the admissible
and normalized position équations, computed from the schemes applicable
to Pj.

5. Loop:
5. a. If Lt = Q then END: NO.
5. b. If Lt contains a simple équation then END: YES.
5. c. Ï « - I + 1 .

5. d. Z,£<-the set of all admissible and normalized position équations
resulting from the transformation and the normalization of the éléments of
Lt_u the élimination of all the already developed position équations and of
the position équations containing any connection whose length is greater

Remark: This version of the algorithm differs from the original one of [11]
by the élimination of the already developed position équations introduced in

We state in this section one of the main results used in the proof of
Makanin's algorithm.

The notion of exponent of periodicity of a solution plays an essential rôle
in the proöf. This notion is given both for a word équation e, and for a
position équation E,

The exponent of periodicity of a solution a of an équation e (respectively
of a position équation E), is defmed as the greatest integer s satisfying the
following property:

There exists a word p(p^ 1) and there exists a variable v of V (respectively
a variable base x) such that:

v = ups w (respectively x = ups w) (u and w are two words of C*).

The following theorem is fundamental:

THEOREM (6.1) [11]: The exponent of periodicity s0 of a minimal continuons
solution o f an équation e {with \e\ = d) satisfies:

so<.(6d)22dA + 2.

The proof of this resuit is given in [11], p. 132-134. It consists in isolating
the primitive factors of each word of a solution, using the fact that primitive
words cannot overlap with their square, and showing that products Ps of
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SOLVING WORD EQUATIONS 125

such primitive words with great s can be simplifiée! to obtain a smaller
solution. The value of s0 dépends on the bound h of the heigh of minimal
solutions of linear diophantine équations, given in [11]. Other bounds [5],
improving the value of h exists since Makanin's paper. These new bounds
permit to reduce the value of h.

3. COMPILATION OF A SOLUTION

The purpose of the algorithm being to décide whether an équation has a
solution or not, we provide [1] an algorithm which, by taking advantage of
the tree se, computes effectively a solution to the initial équation. The idea
is to compute a solution of the scheme which générâtes the root of the
subtree containing a simple position équation.

In fact, we prove [1] that if a subtree of je contains a simple position
équation Eo, then the scheme sOi which générâtes the root of this subtree,
has a solution.

We show hère how the computation of a solution of e is obtained from s0

and give an example illustrating this computation.

We call fîrst the pair (Pl9P2) of préfixes of e, associated with a boundary
b, the two projections of b on the axes of e± and e2, in the automaton given
in (2.2). Informally, Pt is the greatest prefix of ei9 lying to the left of the
boundary b.

The computation is described by a tree U, Each node of U is labeled by
(f s, a), where ƒ is an équation, s is a scheme applicable to f and a is a
morphism or.L* -> L*, connected with an équation already visited. We define
a by a set of ail pairs (/, ot(/)) such that a( /)^/ , /eL. Initially, the root of U
is labeled by {ey s0, ( )), where ( ) is the identical mapping.

Suppose that we visit the node n = (ƒ, s, a) with ƒ = (fuf2) and oc is connected
with the pair {gug2) already visited.

Let (Pi,P2) be the smallest pair of préfixes of (fi,f2), associated with
a boundary b of s, such that P1 and P2 are two non empty words. Let
(SuS2) — (Pï1fuP21f2) be the pair of suffixes associated with the boundary
b, and let s' be the suffix of s beginning in the boundary b. Note that
Z > e { < 5 = , > } .

Consider the following relation:

a(P1)ba(P2). (*)
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If neither aCPJ nor a(P2) is a word with one letter, or if ^ ( P ^ ^ l ,
| a (P2) | > 1 and b is equal to < , then the successors of n in U are labeled by

with s" eSa{Pl)ba{p2y This set is the sufficient set of applicable schemes
described in (2.2).

Otherwise, suppose that | a (Px) | = 1, and b is not equal to <, then (*) has
the following trivial solution a':

- if b is equal to = , then a' is given by: a/ = a'(a(P1)) = a(JP2), and the
successor of n is labeled by

((S1,S2),s\a'oaL).

— Otherwise, suppose that b is equal to >, then a' is given by:
a' = a'(a(P1)) = a(P2)?, with ? is a new variable. The successor of n is labeled
by:

Hère is an example illustrating the construction of U: (see/ïg. 11).

We give hère the values of <x( and at (Px) b 0Lt (P2), associated with the nodes
of the levels L (0), L (1). . . of U.

): {(z,Ax)},y>Ax.

L(2): {(y,Ax/) U ax }, y'x<Axy'.
L(3) [This level is constituted by four nodes. We develop hère the first

one only, the others can be developed in the same way.]

:a2,y' = A.

L(8) :{ ( j c , ,B)Ua 5 } , ( ) = ( ) . •

One can observe that

a8 (z) = AB, ot8 (y) = ABA, a8 (x) = B,

is a solution of e = (Axyxz, zzyB).

PROPOSITION (3.1): Let s be a scheme applicable to an équation e, and
suppose that s has a solution. The previous algorithm computes a solution of e.
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Proof: We say first that a node n — (f s, a) has a solution when ƒ has the
solution

a(0= if t is a variable vt then F; else t.

where Vt is given by the solution of s (cf. [2.2.1]).
The proof of this algorithm is based on the following two observations:
1. Suppose that n has a solution. Let lx be the length of a minimal solution

of n. Then successor (successor (n)) contains a node having a minimal solution,
whose length l2 satisfy !2<h-

2. If successor (n) contains a node having a solution, then n has a solution.
These two observations permit to show that there exists an integer k sueh

that (0^À:^2*/e>, with le is the length of a minimal solution of the root of
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£/, and L(k) contains a node labeled by ((( ),( )), ( = ),p). A solution of e
can be deduced easily from p. •

4. OTHER RESULTS

We now give a summary of other results, given in [1], and used in our
implementation.

Concerning the transformation and the normalization of a position équa-
tion (these opérations are the core of the algorithm), we show that the
position équations resul ting from any of four types of transformations (among
five) are always normalized. We show also that one of the three conditions
of normalization is always satisfied. These results play an interesting rôle,
reducing the cost of testing the normalization.

Another important opération on position équations is to test whether an
équation is admissible. We show how to construct effîciently the linear
diophantine System associated with every position équation, and how to
adapt the "cutting plane" method [6] for solving such a System.

For what concerns the tree j / 5 we provide from one side some impro-
vements for the bound of its size. More precisely.

THEOREM (5.1)[1]: The cardinal of se is bounded by the number

(n+ 1) * (t+ 1) * rf* mm + 1 * k22n+m * 22 ( 2" + 1 ) t ( m + d ) + m + d

with:

n = Card (V), m = Card (C), d= \ e |,

t = the maximal length of a connection =2d(2d+l)(4d+l)s0,

k = the maximal number of boundaries = d(2n+ If + d. M

The previous böund improves the one given in [11] and reduces the
complexity of the algorithm by one exponential. Essentially^ the gain is based
on the élimination of the équivalence test among the levels of se,

We provide, from the other side, a strategy for the construction of A
allowing a faster halting of the algorithm when the initial équation has a
solution.

The représentation of a position équation, in our implementation, is desig-
ned to achieve conveniently the basic opérations of the algorithm. One of
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these opérations is to test whether, given a position équation, there exists an
equivalent équation in se.

We give an efficient algorithm to test the équivalence between position
équations.

An interesting family of équations is the one which générâtes some position
équations whose connection length grows continually. We provide some
examples of this family illustrating the growth of connection length. The
concept of generalized équivalence between position équations is then introdu-
ced. Informally, it identifies two position équations which differ by a periodi-
cal factor. We conjecture that the élimination of every position équation
having an equivalent équation (in the sensé of the generalized équivalence)
permits to remove from the algorithm the test which éliminâtes every position
équation containing a connection whose length is greater than the bound
given by Makanin.

5. ACTUAL COMPUTER JMPLEMENTATION

Our implementation ([1], [2]) présents an interactive System written in LISP
and running on VAX780 under UNIX, and on LISP Machine. This System
visualizes the position équations, computes a solution whenever there exists
one, and provides a tool permitting to understand, experiment with and study
the algorithm.

The complete text of the LISP program is available in [1],

Hère are in milliseconds some running results on a LMI LISP Machine.

1. Equation {zxzyCBzxzx, yAByzxB) has no solution: (433 ms).

2. Equation (xAByCBzxtzux, yABytzuxB) has no solution: (757 ms).

3. Equation (xxAyBy, CAyvABD) has solution x^CAABD, v = CAAB-
DAABDB, y = ABD: (19 ms).

4. Equation (BIABIABIA, rouDouDou) has solution l^ADABADAB,
o = ABA, r = BADABADABABADABADAB, u=\\ (43ms).
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