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A PARTIALLY PERSISTENT DATA STRUCTURE
FOR THE SET-UNION PROBLEM (*)

by C. GAIBISSO (*), G. GAMBOSI (*) (2) and M. TALAMO (l) (2)

Communicated by G. AUSIELLO

Abstract. - We consider an extension of the well known Set-Union problem, where a search in
the history of the partition is possible. A partially persistent data structure is presented which
maintains a partition of an n-item set with no overhead on the worst case complexity of the
ephemeral structure, i.e. it performs each Union in 0(1) time, each Find in O(lgw) time and
each search in the past in O(\g n) time. The space complexity for such a structure is O(n).

Résumé. - On considère une extension du problème bien connu de l'Union des ensembles, où il
est possible d'effectuer une recherche de l'histoire de la partition. L'article introduit une structure
de données partiellement persistante qui maintient une partition d'un ensemble de n-éléments sans
aucun coût additionnel, même dans le cas de la complexité de la structure éphémère.

1. INTRODUCTION

The Set-Union problem and its variants have been extensively studied in
recent years [1, 2, 3, 6, 8, 9, 10, 11, 12, 14, 15].

The original problem was [9] that of maintaining a représentation of a
partition of a set S= { 1, 2, . . . , « } under the foliowing two opérations:

Union (X, Y, Z): return a new partition of S in which subsets X and Y are
merged into one subset Z = X{J Y;

Find (x): given an item xeS, return the name of the (unique) subset
containing x.
Initially, each element is assumed to be a singleton.

(*) Received in February 1988, revised in December 1988.
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A first naive solution, proposée by Galler and Fischer [7], requires 0(1)
time per Union and O (n) time per Find in the worst case.

This bound has been remarkably improved by the use of balanced tech-
niques of linking (link by rank, link by size) [7, 14], which made it possible
to dérive solutions requiring O{\) time per Union and 0(lg n) time per Find
in the worst case.

The best solution with this type of approach is due to Blum [2] and requires
O (lg «/lg lg n) single opération worst-case time complexity.

After the introduction of the path compression technique [1], the problem
has been extensively studied from the point of view of worst-case time on
séquences of Union and Find opérations, L e. of the amortized complexity of
opérations [13].

In this direction Fischer [5] derived an upper bound of O(plglgn), where
p is the number of opérations (both Unions and Finds) performed; Hopcroft
and Ullman [9] improved such bound to O(p\g*ri), where lg*« is the
iterated logarithm, defïned by lg(O)n = n, lg(0« = lg(ï'"1)lg«s for z^l , and

The best solution has been given by Tarjan in [14]. It requires
Q(ma(w + /i, n)-\-n) running time, where m is the number of Find opérations
performed and a is a very slowly growing (almost constant) function.

It is worth noting that all these time bounds refer to data structures with
O (n) space complexity.

Several variants of this problem have been approached, introducing further
opérations.

Mannila and Ukkonen in [10] introduced a new opération Deunion which
undo the last Union performed, L e. returns to the partition just bef ore the
exécution of such Union.

In [10] one algorithm has been proposed for maintaining a partition under
séquences of Union, Find and Deunion opérations and its amortized time
complexity has been analyzed. The space complexity of such approach, which
was left as an open problem by the authors, has been successively proved to
be non linear [8],

After that, the problem has been completely characterized in [16], where
lg «/lg lg n upper and lower bounds on the amortized time complexity are
derived.

A further generalization of the problem to the case where a (real) weight
w is associated to each Union opération performed has been proposed in [8].
In such a paper the authors condidered the substitution of the Deunion
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opération with a Backtrack one, whose effect is to return to the situation
immediately before the exécution of the Union of maximum weight thus far
performed, Le, to undo all the Union opérations performed as long as the
Union of maximum weight has been removed. They also show how to perform
each Union in O (\g\g ri), each Find in O(lgfl) and each Backtrack in O(\)
worst-case times with a space complexity O (ri).

In this paper we consider an extension of the classical Set-Union problem,
introducing a new kind of Find, referred as PFind, defined as follows:

PFind(x, k)\ given an item xeS, return the name of the (unique) subset
containing x after the k-th Union opération was performed.

The PFind opération is indeed a search in the history of the partition.
Thus our aim is to obtain a partially persistent [4] version of the Set-Union
problem, introducing a data structure which supports accesses to all versions
in its history, while only the newest version can be modifïed.

It is worh noting that such an opération includes the usual Find as a
particular case.

Motivations for the study of the Union-PFind problem may arise for
example from the implementation of search heuristics in the framework of
logic programming environment design.

The main results of the paper are concerned with the worst-case per
opération analysis of the Union and PFind opérations.

We show how to perform each Union in 0(1), and each PFind in 0(\gn)
worst-case times, using a partially persistent data structure which requires
O (n) space complexity. It is worth noting that no overhead is introduced on
the worst-case time and space complexity of the ephemeral structure, even if
it does not satisfy the condition introduced in [4] for an efficient [O(l)
overhead] transformation from ephemeral to partially persistent data
structures.

The remainder of this paper is organized as follows: in section 2 we
introducé a data structure for the Union-PFind problem, in section 3 we
analyse its worst-case time and space complexity. Section 4 contains some
concluding remarks.

2. THE DATA STRUCTURE

Recalling the concepts introduced in the last section, the problem we
consider is that of mantaining a représentation of a partition of a set
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S={\92, . . ., ft } under the following two opérations:

Union (X, Y, Z): return a new partition of S in which subsets X and Y are
merged into one subset Z—X\J Y;

PFind (x, k): return the name of the (unique) subset containing xeS just
after the k-th Union opération (l^k^n— 1) was performed. If ri<n— 1
Unions have been performed thus far and k>n\ PFind (x5fc) reduces to
PFind (x, n').

In order to support the PFind opération the data structure used to support
the classical Set-Union problem has been modified in the following way:

— if a link has been introduced by the i-th Union opération performed,
such a link is marked with the integer L The mark associated to a link / will
be referred as Mark(l)\

— each node n in the data structure has an associated binary search tree
Tree (ri), such that each node in Tree (n) corresponds to a link / entering n
and stores the name associated to such a node after the Union introducing /
was performed. Initially to each node n is associated a BST with only one
node (0, n).

In the sequel Root (X) will refer to the root of the tree representing subset
X in the data structure.

The different opérations can now be implemented as follows:

Union (X, Y, Z): a new link, (Root (X), Root (Y)) or (Root (Y), Root (X)\
is introduced according to the [15] linking "by size" or linking "by rank"
stratégies, depending on the size or the rank of the involved trees. Further-
more if such an opération is the i-th Union performed, a new node (z, Z) is
added to Tree (Root (Y)).

PFind (x, k): starting from node x, traverse the path from this node to
Root(T) until a node n is reached such that either n = Root(T) or for
the (unique) link / outgoing from n the condition Mark{ï)>K holds. Let
D~{x\x = Mark(l), l enters n, x^k): return the name stored by the node
in Tree(n) corresponding to the link Lf = maxD.

The following example illustrâtes the concepts just introduced, as far as
the implementation of the Union and PFind opérations is concerned.

Figure 2Aa shows the data structure representing the initial partition of
a set 5= { 1, 2, 3, 4, 5}, while figures 2.1 b, 2.1 c, 2.1 d and 2.1 e how such
a structure evolves when the specified Union opération is performed [the i-th
Union opération performed is referred as Union{i)).
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Q00OO
(0,A) <0,B> (0,C) (0,D) (0,E) Tree(n)

(a)

Union 1> (A,B,F);

<Q,A>

Union2 ' (FtC(G);

<0,A)

* A
(2.G)

(c)

Uniont3> (D,E,H);

Union** (Q,H,I)Ï

(0,A)

* A
t / \ 2 (0,B) (2,G)

(e)

Figure 2 . 1 . a Figure 2 . 1 . & Fig, 2.. 1. c

Figure 2 . 1 . d Figure 2 . 1 . e
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Once Union (4) has been performed we have:

PFind(3, 2) = G, since starting from node "3" in figure 2.1e the link
leaving suh a node is marked 2, and in Tree (2) the mark 2 is associated to
G;

PFind{\, 3) = G, since starting from node " 1 " and moving to the root of
the tree, the link leaving node "2" is marked 4, and in Tree (2) the node
corresponding to the maximum mark less than or equal to 3 is (2, G);

PFind(4, 4) = /, since starting from node "4" the root of the tree is reached,
and the node corresponding to the maximum mark less than or equal to 4
in Tree (5) is (4, 7).

3. COMPLEXITY ANALYSIS

As far as the worst-case time and space complexity are concerned, the
following theorem can be stated:

THEOREM 1: With the previously introduced data structure it is possible to

perform:

(à) the Union opération in 0(1) worst case time;

(b) the PFind opération in O(logri) worst case time;

(c) the amount of space to store the data structure is S(n) = O(ri).

Proof: Let us first prove the following lemma:

LEMMA 1: If I is a set (eventually infinité) whose éléments are ordered by
some linear order " < " , then V set S={au a2, . . ., att}, such that a^I,
i = 1, 2, . . ., n, it is possible to construct a binary search tree T„ ( | T„ | = n) for
S, inserting éléments from Sn in increasing order and in such a way that the
insertion ofeach element can be performed in constant time. Futhermore Height
(Tn) = | lg n] + 1 and the space requiredfor such a construction is O (ri).

Proof: Let us consider the following algorithm:

let us suppose, without loss of generality, that at<aj iff i<j: to each
element to insert at, the algorithm associâtes a node n{ in the structure which
is a quadruple

LEFT(nt);
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where:

• INF(nt) is the information associated to the node, Le. at;

• RIGHT (nt) is a pointer to a node n} such that i<j;

• LEFT (nt) field is a pointer to a node nk such that k< i;

• HEIGHT (n^ is defined as follows: if nt is inserted as a leaf then
HEIGHT (n^=\, otherwise if nt is inserted as parent of a node rij then
HEIGHT (nt) = HEIGHT(nj) + 1.
As described in the following, the algorithm only inserts nodes of outdegree
Oor 1.

In the sequel a nodes n will be referred as an "incomplete node" if
HEIGHT{n)>\ and at least one among RÏGHT(n) and LEFT(n) is nil9

and as an "out of level node" if in the structure HEIGHT (Father («))-
HEIGHT(n)>\.

The algorithm builds the structure according to a left-to-right and
bottom-up strategy. That is, for each node n in the structure, if
HEIGHT (ri) = k>\y then n has been introduced in the structure after the
2fc~1- 1 nodes belonging to the left subtree of n and before any node in its
right subtree.

The algorithm acts as follows: for each new node p to insert
(à) if an incomplete node n is present in the structure, then HEIGHT (p)

is set to 1 and p is inserted as right as right son of n (fig. 3.1a). It will be
proved that at most one incomplete node can exist during the construction
and that, in such a case, it appears on the rightmost path of the structure;

(b) if no incomplete node is present in the structure but there is at least
one out of level node, let n be the last out of level node inserted: then p is
inserted as right son of Father (ri) and n becomes its left son (fig. 3.1 b). As
will be proved later, all out of level nodes, if exist, appear on the rightmost
path of the structure. Furthermore HEIGHT (p) is set to HEIGHT'(«)+!;

(c) if no incomplete or out of level node is present and r is the root of the
structure, then p is inserted as the new root of the structure and r becomes
its left son (fig. 3.1c).

In the following a more formalized version of the algorithm is presented
using a Pascal-like notation.

In such a program each node of the built structure is represented as a
record of type "Node", while the information related to out of level nodes is
contained in a stack implemented as a list of records of type "StackEntry".
Two variables "Root" and "Incomplete" of type "NodePointer" stores
respectively the référence to the root of the built structure, and the référence
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(a)

(c)

Figure 3 . 1 . a Figure 3 . 1 . b Figure 3 .1 ,c
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to the incomplete node, if exists, while a variable "S" of type "Stack of
StackEntry" stores the référence to the top of the stack.

The kernel of the program is the procedure "Insert" which is invoked each
time a new element has to be inserted in the structure.

main ( )
Type
Stack = Stack of StackEntry;
Node Pointer =~ Node;
Node — record

Inf': Integer;
Left : NodePointer;
Right : NodePointer;
Height : Integer
end;

StackEntry = record

Son : NodePointer;
Parent : NodePointer
end;

Var

Root, Incomplete : NodePointer;
S : Stack;
Begin

Root : = nil;
Incomplete : = nil;
Init{S);

For ("Each Inf to insert") Do Insert(Inf)

~Ënd;

Procedure Insert{Inf: Integer);

Var
AuxNode : NodePointer;
AuxStack : StackEntry;
Begin

New(A uxNode) ;
AuxNode Î . Inf : = Inf,
AuxNode f. Right : = nil;
AuxNode f- Left : = nil;
(*Empty Structure*)
If(Root = nil)Then

Begin

Root : = AuxNode;
AuxNode f. Height : = 1
End;

EÏsë~
(*The Structure Contains an Incomplete Node*)
If {Incomplete ^nit) Then

Begin

AuxNode f . Height — 1 ;
Incomplete j . Right := AuxNode; (* (1) *)
If {{Incomplete ] . Height - AuxNode f . Height) > 1)

Then Push {S, AuxNode, Incomplete);

vol. 24, n° 2, 1990
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Incomplete : = nil;
End;

ElsëT
(*The Structure Contains No Incomplete Nodes but at Least One Out of Level Node*)
If {Not{Empty{S)) Then

Begin
AuxStack : = Pop{S);
AuxNode | . Left : = AuxStack f. Son;
AuxStack T.Parent \.Right : = Auxnode; (* (4) *)
AuxNode Î . Height : = {AuxNode f . Left f. Height) + 1;
Incomplete := AuxNode; (* (2) *)
7f {AuxStack f. Parew/ f . Height- AuxNode | . Height) > 1

77*e« PMJ/Ï (S, AuxNode, AuxStack | . Parent)
End;

EJse~~
(* The Structure Contains neither Incomplete nor Out of Level Nodes *)

AuxNode Î . /togA/ : = Root Î . Height+ 1;
AuxNode f. Le// : = itoof;
Root : = AuxNode; (* (5) *)
Incomplete : = Root (* (3) *)

End;

In the sequel the BST obtained after the insertion of the j-th element will
be referred as Ty

To prove the correctness and the performances of the algorithm the follow-
ing lemmas will be proved V«, V set S={a1, a2> . . ., an}, and Tt,
f = l , 2 , . . . , / i .

In each proof the présence of an incomplete node, the présence of no
incomplete nodes but of at least one out of level node, and the présence of
neither incomplete nor out of level nodes, will be referred respectively as case
(i), (ii) and (üi).

LEMMA 2: V/, 1^/^w, T,- contains at most one incomplete node n, and for
such a node, if it exists, RIGHT(n) = nil and LEFT{n)

Proof: the proof is by induction.

For 7= 1 the thesis is true, since T1 contains no incomplete node.

Assume the induction hypothesis true for Tj_1.

If they-th element has to be introduced:

(i) let ri be an incomplete node in 7 } ^ : then, by the inductive hypothesis,
n' is the only incomplete node and only RIGHT (n) is equal to nil\ n' will be
completed by the algorithm [point (1)], and hence Tj contains no incomplete
node;
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(ii) rij will become the only incomplete node [point (2) of the algorithm] of
Tj and the algorithm leaves only RIGHT (rij) equal to nü\

(iii) as point (ii) [point (3) of the algorithm]. •

LEMMA 3: Vj, 1 ^jf^n, all out of level nodes and the incomplete node appear
in the rightmost path of Tjt

Proof: The proof is by induction.

For j - 1 the thesis is true, since 7\ contains neither incomplete nor out of
level nodes.

Assume the induction hypothesis true by T^x.

If the y'-th element has to be introduced:

(i) let n' be the only incomplete node in T}^; by the inductive hypothesis,
n' appaears on the rightmost path of such a structure and by lemma 2.
RIGHT(n') = niL The algorithm sets RIGHT {ri) [point (1)] making it point
to n, hence if n results to be an out of level node it still appears on the
rightmost path of Tp

(ii) let n' be the parent of the last inserted out of level node in the structure:
by the inductive hypothesis n' appears on the rightmost path of Tj_t. Once
inserted n becomes the only incomplete node of T,-, but since it has been
inserted as right son of n' [point (4)], it still appears on its rightmost path;

(iii) once inserted n becomes the only incomplete node of Tp but since it
has been inserted as the new root of such a structure [point (5) of the
algorithm], it still appears on its rightmost path. •

It is now possible to prove the correctness of the algorithm proving that:

V/, l è / ^ / i , Tjis aBST,

Proof: the proof is by induction.
For 7= 1 the thesis is obviously true.

Assume the induction hypothesis true for T^v

If the y-th element has to be introduced:

(i) let n be the only incomplete node in Tj_1\ by lemma 2. RIGHT(n) = nil
and by lemma 3. n appears on the rightmost path of such a structure. Since
Qj follows ai9 i- 1, 2, . . . ,j— 1, and «;. will become the right son of n, 7} will
still be a BST;

(ii) let n be the parent of the last inserted out of level node in Tjml: by
lemma 3 it appears on the rightmost path of such a structure. Since a} follows
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aiy i—l, 2y . . ., j— 1, and n} will become the right son n, Tj will still be a
BST;

(iii) in such a case the thesis is trivially true. •

As far as the algorithm performances are concernée it is easy to dérive
that the time required to insert an element is constant and the space required
to manage insertions if O {ri), due to the fact that each node in the BST,
each element in the stack and the information related to an incomplete node
requires a costant arount of memory to store it, at most one incomplete node
appears in the structure* and no element is duplicated in the stack.

Let us now prove that [lg n\ + 1 is an upper bound for Height (Ts):

Proof: the proof is by induction.

For 7= 1 the thesis is obviously true;

Assume the induction hypothesis true for Tj_v

If the j-th element has to be introduced:

(i) in this case Height (TJ) = Height (Tj^^); but for the inductive hypothesis

hence
Height (Tj) ̂  lig (ƒ" 1)J + 1S Lig (ƒ)] + 1 ;

(ii) as case (i);

(iii) if neither incomplete not out of level nodes appear in the structure then
such thaty = 2k and Height (Tj-1) = k. Now Height (Tj) = Height

It is now possible to prove theorem 1.

Proof: (a) by Lemma 1 the insertions of a new element in the BST
associated to any node in the data structure takes 0(1), thus each Union
opération can be performed in constant time;

(b) each PFind(x, k) implies two searches in the structure:

the first, starting from node x to locate either a node such that for its
leaving link /, mark (l)>k or the root of the tree containing x. This search
takes obviously O (log n) time.

The other one, in the BST associated to such a node, to access to the
name of the subset containing "x" after the k-th Union opération was
performed; by lemma 1 also this second search takes O (log n) time.

Hence each PFind opération takes O (log n) time;
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(c) since by lemma 1 to manage insertions in each BST T associated to
each node in the data structure it is required an amount of space which is
O (m), where m is the number of éléments in 7", and since the sum of the
éléments in such BSTs is obviously O (ri), S(n) = O (ri). •

4. CONCLUSIONS AND FURTHER WORK

In this paper we have considered an extension of the Set-Union problem,
where a search in the history of the partition is possible.

We have proposed a partially persistent data structure which supports each
Union in 0(1) and each PFind in 0(lg ri) worst case times, while the space
required is O (ri), making this structure compétitive with the ephemeral ones
proposed for the classical problem.

In this direction the following topics seems worth of further study:

— an amortized complexity analysis, perhaps introducing an alternative
path compression technique to the ones proposed in [1];

— effectiveness of using self adjusting data structures;

— a further extension to the problem allowing updates to all the versions
in the history of the partition (fully persistent data structure [4]).
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