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ON ALGEBRAIC SPECIFICATIONS
OF COMPUTABLE ALGEBRAS

WITH THE DISCRIMINATOR TECHNIQUE (*)

by G. GAGLIARDI and S. TULIPANI (*)

Communicated by G. AUSIELLO

Abstract. - Algebraic spécifications of computable data types with respect to the initial and the
final algebra semantics are discussed.

The method consists ofusing a special equational theory, well known in universal algebra, which
axiomatizes the behaviour of an opération called discriminator.

Résumé. - On discute des spécifications algébriques des types de données calculables par rapport
aux sémantiques initiales et finales.

La méthode consiste à utiliser une théorie èquationnelle particulière, bien connue en algèbre
universelle, qui axiomatise le comportement d'un opérateur appelé discriminateur.

0. INTRODUCTION

An abstract data type can be identified with an isomorphism class of
a (multisorted) minimal algebra of finite signature. The finite equational
spécification problem with enrichment of hidden opération, without new
sorts, goes back to pioneering work on algebraic spécifications of data types
[10].

This problem was investigated for the class of semicomputable data types
and it was solved positively by Bergstra and Tucker [5] for the class of
computable data types with respect to the initial and final algebra semantics
and it was also solved for the class of cosemicomputable data types with
respect to the final algebra semantics.

(*) Received November 1988, revised December 1988.
O University of Camerino, Dipartimento di Matematica e Fisica, 62032 Camerino (MC),

Italy.
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4 3 0 G. GAGLIARDI AND S. TULIPANI

In this paper we prove that a computable infinité algebra can be specified
by a single équation with enrichment of four hidden opérations and a hidden
constant with respect to the initial and final algebra semantics. Moreover,
we prove the following for fînite algebras. Only one hidden opération suffices
and the obtained spécification is w-complete. Finally, we discuss the co-
incompleteness for finite spécifications of infinité computable algebras.

Our approach uses a particular technique well known in Universal Algebra
under the name of the discriminator theory. This method consists of using a
special finite equational theory which axiomatizes the behaviour of a ternary
opération called a discriminator. One of the useful aspects of the discriminator
theory is its extreme simplification of the structure of equational classes {see
Fact 2.1 in the proof of Theorem 2.1 and Fact 4 in the proof of Theorem
3.1). A second aspect is the possibility of reducing properties defined by
universal sentences to properties defined by équations [see (1.5)]. The discri-
minator has recently come under investigation in Computer Science by several
authors, Mekler and Nelson [16], Blum and Tindel [7], Guessarian and
Meseguer [11], in papers where they studied data algebras with an opération
which models the "if-then-else" opération.

In Section 1 we will briefly recall the main définitions and results that we
will use and we define the terminology.

In Section 2 we revisit the Bergstra and Tucker Theorem for the spécifica-
tion of computable data types in the light of the discriminator theory. We
give a new proof of this Theorem and observe that this proof yields a
spécification which consists of a single équation.

In Section 3 we prove that a finite algebra can be specified by a single
équation and one hidden opération with respect to the initial and final algebra
semantics. This problem was solved in [4] with three hidden opérations and
two équations. Furthermore, our spécification turns out to be co-complete.

In Section 4 we discuss œ-incompleteness for the spécification of infinité
computable algebras. This property arises in many cases. In fact, we prove
that all the spécifications obtained along the line of Theorem 2.1 cannot be
co-complete.

1. PRELIMINAIRES AND NOTATION

The terminology and notation are standard, see [10], [8], [6] as main
références. We recall briefly the main définitions and the results we are going
to use for the sake of clarity.

Informatique théorique et Applications/Theoretical Informaties and Applications
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A minimal algebra A of (multisorted) signature E is an algebra without
subalgebras, i.e. it is generated by the interprétations of the constants of E.
A spécification of A with respect to the initial algebra semantics is a pair
(E, E), where E is a set of algebraic équations, alias identities, which proves
all and only the ground équations, i. e. without variables, which are true in
A. When this happens, A is isomorphic to the initial algebra I (E, E) of the
category ALG (E, E) of all minimal algebras of signature E which are models
of E. A is specified as final algebra by (E, E) if the final object F (E, E) in the
category ALG (£,£), of the non trivial members of ALG(E,£), exists and A
is isomorphic to FÇL.E). When A is specified as final algebra by (E, E), we
have that a ground équation is consistent with E if and only if it is true in
A.

R is a recursive algebra of (multisorted) signature E if the carriers of R are
sets of natural numbers and if the interprétations of the opération symbols
are total recursive functions. A pair (R,p) is a recursive coordinatization of
the minimal algebra A if R is a recursive algebra and p:R^>A is an
epimorphism. A is called computable (semicomputable or cosemicomputable)
if the partition, induced by p in every carrier, is recursive (r. e. or co-r. e.).
This turns out to be independent of the recursive coordinatization (R,p) (see
[14], [6]).

A computable infinité algebra of signature E cannot necessarily be specified
as initial algebra or as final algebra by a finite set E of équations in the
signature E (see [10], [6]). Bergstra and Tucker ([2], [5]), found finite spécifica-
tions by allowing hidden opérations. (E',£") is a spécification for A of
signature E with respect to the initial (or the final) algebra semantics with
enrichment of hidden opérations if the following hold. E' is a finite signature
extending E with possible new opérations, but no extra sorts, and (E',£")
spécifies an expansion A' to the signature E' of A.

An algebraic spécification is (ù-complete if and only if ail équations, possibly
containing variables, which are valid in its initial algebra 7(E,£) are also
provable from E by the rules of the equational logic.

To simplify notation we treat single sorted algebras. AU main results extend
easily to multisorted signatures. Throughout the paper
Z={/ r

1 , . . .,Fk,cu . . . ,cr} dénotes a fixed signature in a single sort, where
Fu . . ,,Fk are opération symbols and cls . . .,cr are constant symbols. The
symbols in {0, S, + , . } will be called arithmetical symbols and they will be
interpreted on the natural number N as zero, successor opération, sum and
product, respectively. The arithmetical terms S"(0), defîned by induction by
50(0) = 0 and Sn + 1 (0)^5(^(0)), are called numerals. If p(xl9 . . .,xk) is a
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4 3 2 G. GAGLIARDI AND S. TULIPANI

polynomial with non négative integer coefficients, then there is an arithmetical
term P (xu . . ., xk) obtained by p with the substitution of the coefficients for
the corresponding mimerais. We are going to use the Davis-Matijasevic-
Robinson [9] Theorem in the following form. For every total recursive
function ƒ : N -> TV there are two polynomials p (x, y, z), q (x, y, z) in the variab-
les { xl9 . . -9xk,y,zl9 . . ., zh } and non négative integer coefficients such that

Vml5 . . .,mk,neN3ru . . .,rheN(f(mu . . .9mk) = nop(m9n9r) = q(m9n9r)).

The last equality is true if and only if in any algebra expanding the natural
numbers the équation P(m,n,r) = Q(m,n9r) is satisfied, where any natural
number is replaced by the corresponding numéral.

We will call Peano équations the usual équations which define sum and
product in Peano arithmetic, L e.

;c.0 = 0 l '
x.S(y) = x + (x.y)

Now, we briefly recall the main tools of the discriminator theory (see [15],
[8]). A ternary function rfona set A is called a (ternary) discriminator and
quaternary function s on A is called a switching function if,

Va,b,ceA, if a^bthend(a,b,c) = celsed(a,b,c) = a.

Va,b,u,veA, if a =

Let t(x,y,z) be a ternary term of a signature S, then we call the following
set E(t9T) McKenzie équations, for t with respect to S, {see [15]).

t(x,x,y) = y
t{x9y9x) = x
t(x,y,y) = x (1.2)

t(x,t(x,y,z),y) = y
t(x9y,F(zl9 . . .,zn)) = t(x,y,F(t(x,y,z1\ . . .9t(x9y9zj))

for ail opération symbols
The main properties that we are going to use are the following (see [15],

[8]).

Informatique théorique et Applications/Theoretical Informaties and Applications
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(1.3) If a term t(x,y,z) is interprétée! as a discriminator function in an
algebra A9 then the term sw(x9y9u9v)9 defined by t(t(x,y,u\ t(x,y,v),v), is
interpreted in the switching function on A.

(1.4) A non trivial algebra A of signature E is a subdirectly irreducible
(abbr. SI) model of E(t,ü) if and only if the interprétation tA of Mn A is
the discriminator function.

(1.5) For every universal sentence <I> in the signature 2 it is possible to
compute an équation e, in the same signature, such that e is logically
equivalent to <D on the 5/models of E(t,2,).

(1.6) Every finite set E of équations in the signature E which contains
) is logically equivalent to a single équation computable from E.

2. ON SPECIFICATIONS OF INFINITE COMPUTABLE ALGEBRAS

In this Section we apply the discriminator technique to the problem of
specifying computable algebras. We obtain a new proof of a noteworthy
Theorem of Bergstra and Tucker [2] about the existence of a finite spécifica-
tion using hidden opérations and no extra sorts. Also here as in [5] we
make use of the Davis-Matijasevic-Robinson Theorem about the Diophantine
représentation of the r. e. sets. However, by the use of the discriminator as
hidden opération we may reduce the number of specifying équations to one.
The revisited version of Bergstra and Tucker Theorem is the following

THEOREM 2 . 1 : Let A be a minimal algebra of finite signature Z, then the
following are equivalent

(i) A is computable;

(ii) A has a spécification (Z\ET) with enrichment of hidden opérations under
initial algebra and under final algebra semantics. E' is a single équation; the
hidden opérations are the arithmetical opérations and the discriminator,

Proof: The proof of (ii) -» (i) is by the well known fact that the initial
algebra IÇL\E') is semicomputable and the final algebra F{L\E') is co-
semicomputable (see [5]). To prove (i) -• (ii) we assume that A is infinité. The
finite case is easier and it will be discussed in the next section (Theorem 3.1).

By the représentation Lemma (see [14], [6]) A is isomorphic to a recursive
algebra R — (Nifu . . .,fk9mu . . . ,wr). Now, we consider the signature
X' = S U { 0,S, + , . , / ) } , where the new symbols added to S are intended to
be interpreted on the natural numbers as zero, successor opération, addition,

vol. 24, n° 5, 1990



4 3 4 G. GAGLIARDI AND S. TULIPANI

multiplication and ternary discriminator. Let R' be the expansion of R to Z'
with the given interprétation of the new symbols.

We consider the following set E'o of équations in the signature E'.

(2.1) The Peano's équations for { 0, S, +, . };

(2.2) The McKenzie's équations for the term D (x, y, z) with respect to the
signature Z';

(2.3) ci = Sm^(0) for i = l , . . .,r;

ÇL_.4) sw(P((x,y,z), Qt(x,y,z)9 Ft(x,y)=y9 for i = 1, . . .,fc, where
Pi (x, y, z), Qi (x, y, z) are the arithmetical terms corresponding to the polyno-
mials which are given by the Davis-Matijasevic-Robinson Theorem for defïn-
ing the graph of the recursive function ft.

It is easy to see that the algebra R is a model of the équations E'Q. Now,
we are going to prove the following.

(2.5) The kern, ker{ev), of the évaluation ev : T(L') -> R' is the congruence
on TÇL') determined by the equality modulo the equational theory E'o.

(2.6) Every équation of signature £' is consistent with E'o if and only if it
is true in R'.

The statements (2.5) and (2.6) follow by the Theorems of completeness
and subdirect représentation of G. Birkhoff and the following

Fact 2.7: Let B be a SI non trivial model of E'o, then there exists a
monomorphism O : R' -• B.

To prove Fact 2.1 vie define $ by O: n\-^evB(Sn(0)). Since B is model of
Ef

0, hence of (2.1) and (2.3), O preserves the arithmetic opérations and the
interprétations of the constants cu . . .,cn. Moreover, for (2.2), (1.3) and
the assumption that B is SI, the interprétation of the switching term sw on
B must be the switching function. This, together with the Davis-Matijasevic-
Robinson Theorem and (2.4) proves that O preserves the opérations which
interprète Fu . . ., Fk. We prove, now, that <D is injective. Assume the contrary.
Then <5 must be a constant function since R' is a simple algebra for the
présence of the discriminator. Hence, evB(0) = evB(S(0)). This would imply
that B be trivial since the équations X;0 = 0, x.S(0) = x are provable from
E'o and therefore they are true in B.

Now, by the McKenzie technique [see (1.6)] it is possible and easy to
compute an équation 8 which is logically equivalent to the set of équations
in E'o. Then, for (2. 5) and (2.6), E' = { 8} fulfïls the request in the statement
(ii) of the Theorem.

Informatique théorique et Applications/Theoretical Informaties and Applications
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3. cû-COMPLETE SPECIFICATIONS FOR FINITE ALGEBRAS

Let (£,£) be an co-complete and r. e. spécification. Then, also the set of
identities valid in the initial algebra I{Z,E) is r. e. On this account Heering
[12] raised the following problem: Suppose that the set of équations valid in a
minimal algebra A of finite signature is recursively enumerable. Then, is it true
that A posses an (ù-complete finite spécification with hidden opérations and no
extra sorts with respect to the initial algebra semantics?

A remark in [3] shows that every finite minimal algebra has a finite
spécification with respect to the initial algebra semantics. This method,
which is substantially a collection of the opération tables, was called graph
enumeration. However, a finite algebra does not necessarily have a finite
cû-complete spécification without hidden opérations. This was known in
Universal Algebra a long time ago [13] and started investigations on the
finite basis problem for identities (see [8]).

In this Section we exhibit a finite œ-complete spécification with respect to
the initial and final algebra semantics for every finite algebra of finite
signature. We use the discriminator as unique hidden opération and we prove
that the given spécification consists of a single équation.

THEOREM 3.1: Let A be a finite minimal algebra of finite signature Z. Then
there exists a finite (ù-complete spécification (S', E') of A with only one hidden
ternary opération with respect to the initial and final algebra semantics. E' can
be choosen to contain a single équation.

Proof: Expand A to A' by adding the ternary discriminator as new opéra-
tion. From Baker Theorem {see [1], [8]) we can get a finite basis E' for the
identities of the equational class generated by A''. This yield a finite
co-complete spécification for A with the discriminator as hidden opération.
However, the number of identities in E' is large if compared with the
cardinality of A. We exhibit the required spécification for A' using the
properties of the discriminator and the graph enumeration method to specify
A {see [3]).

Let r = I U { ^ } , where D is a ternary opération symboL Dénote the
cardinality of A by n and take R={ tl9 ...,*„} a system of représentatives
(transversal) in the partition of T(Z) induced by the kern of the canonical
epimorphism evA :T(L)-+A.

Now, consider the set E' of équations in the signature X'.

EL Cj=tijfoTj=ls . . .,r, where ttjeR and evA{cj) = evA{tij).

vol. 24, n° 5, 1990



4 3 6 G. GAGUARDI AND S. TULIPANI

E2. fj(tiv . . .,*is) = /hj. for a i l 7=1 , . . .,k and teR such that the équation
holds in A.

E3. D(th,tm,y) — th, where th, tmeR, h^m and y is a fîxed variable.

E 4. The McKenzie's équations for the term D{x,y,z) with respect to the
signature S'.

E 5. The équation which is equivalent on the SI models of E 4 to the
following universal sentence. Note that this is possible for (1.5).

V (x=tk))

We prove that (S', E') is a ©-complete spécification of A' with respect to
the initial and final algebra semantics. After that we can take E of a single
équation for (1.6) since E contains E4. To this end consider the foilowing
Facts.

Fact 1 : A' is a SI model of JE*.

Fact 2: For every ground term f'eT(S') there exists a. teR such that
EYt' = U

Fact 3: The interprétation of D on the initial algebra ƒ(£',£") is the
discriminator function.

Fact 4: If B' is a non trivial SI model of E then the unique morphism
from IÇL',E) to B' is an isomorphism.

Fact 1 is true by construction of A' and E. Fact 2 can be proved by
induction on the structural complexity of t' using E1-E2-E3-E4. Fact 3
follows from the following simple observation

E\-th = tm implies E h D (th9 tmi tq) = tq;

E\fth = tm implies mïhandEVD (th, tm9 tq) = th.

To prove Fact 4, let B' be a SI non trivial model of E. Then, from E 5 the
unique morphism O from IÇL'9E) to B' is surjective. But, since I(L\E') is
simple, for Fact 3, and since B' is of cardinality greater than 1, O must be
injective.

Now, Fact 4 proves that A* is the unique, up to isomorphism, SI model of
E'. Therefore, (L',E) is a ©-complète spécification of A' with respect to the
initial and the final algebra semantics.

Informatique théorique et Applications/Theoretical Informaties and Applications
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4. ©COMPLETE SPECIFICATIONS FOR INFINITE COMPUTABLE ALGEBRAS

In this Section we prove (Theorem 4.1) that the fïnite spécification given
in Theorem 2.1 is not ©-complete when A is infinité. The œ-completeness of
spécifications of infinité algebras is rare for incompleteness phenomena like
the one discovered by Gödel. We will use, in the proof, the Gödel incomplete-
ness Theorem in the form given by Davis-Matijasevic-Robinson [9],

THEOREM 4 .1 : Let A be an infinité algebra of signature X' such that

(i) £' contains the arithmeticalsymbols {0,S} andevery aeAis the interpré-
tation of a numéral, i.e. there exists k such that a = ev(Sk(0)).

(ii) S' contains the arithmetical symbols { + , . } and A satisfies the Peano
équations.

(iii) There exists a ternary term D (x, y, z) of signature X' such that A satisfies
the McKenzie équations for D with respect to X'.

Then A has no w-complete r. e. spécification, even if we allow hidden opéra-
tions, with respect to the initial algebra semantics.

We call an algebra which satisfies (i) and (ii) of Theorem 4.1 peanian if it
has a binary opération, say, such that the following équations hold in A:

x-0 = x, O-JC

COROLLARY 4.2; Every non trivial peanian algebra has no r.e. (ù-complete
spécifications, even if we allow hidden opération, with respect to the initial
algebra semantics.

Before the proofs we need a technical lemma.

LEMMA 4.3: Let A be an infinité algebra. Suppose that A satisfies (i) and
(iii) of Theorem A A. Then, the interprétation DA of the term D in A is the
ternary discriminator on A.

Proof: Let us consider a subdirect représentation of A with SI algebras

iel

vol 24, n° 5, 1990



438 G. GAGLIARDI AND S. TULIPANI

Then, the interprétation DAi of D on every At must be the discriminator
for (1.4). A priori we may distinguish three cases.

Case 1: There exists je I such that A} is infinité.
Case 2: There exists a positive integer k such that |^4£|<k for every iel.
Case 3: Neither Case 1 nor Case 2.
Assume first Case 1. Then, it is enough to prove that qj = h°pj is injective.

If it is not, then it would exist m, n with m<n such that Aj satisfies the
équation iS (̂O) = S"(O). This would imply As finite, in fact \A}\^n.

We prove, now, that Case 2 cannot occur. Assume Case 2. Then, for every
ie I there exist integer s pt, qt such that O^q^p^q^k and At satisfies the
équation

The bounded family [pt : iel} hàs a liest common multiple p. Then, in every
At the équation

= Sp+k(Q)

is true. Therefore, this équation is true in A. This would imply that A is
finite, which is a contradiction.

Assume Case 3. We define c : ƒ -> TVwith c(î) = \Ai\. Let 6 be the équivalence
on I induced by c, Le. iQj if and only if c(i) = c(J). It is easy to prove that
the family

^ = { X | X ç Iandl-Xis a finite union of classes ofQ } (4.4)

is a filter basis. Let °U be an ultrafilter on I extending «F. Call the map which
commutes the diagram q

iel

iel

where p is the canonical projection on the ultraproduct. Observe that the
interprétation of the term D on the ultraproduct must be the discriminator
function since it is so on every factor. Then, to obtain the resuit, it is enough
to prove that the morphism q is injective. Assume that q is not injective.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Then, there are m, n such that m<n and there exists Y such that

(4.5)

Therefore, zeTimplies |^4f|^«. Then,

rsz^u^W (4.6)

But, from (4.4) and the choice of % we have that I-Ze°U. This together
with (4.6) and (4.5) leads to contradiction.

Remark 4 .1: The hypothesis t(A infinité" in Lemma 4 .3 is necessary. Let A
be A2 x A3, where An = ({0, . . . ,n— 1}, 0, succ, d) with d ternary discriminator
and succ (i) = (/+ 1) mod «. It is easy to prove that A satisfies all the hypothesis
of Lemma 4 .3 except to be infinité. However, A does not satisfy the thesis.

PROOF OF THEOREM 4.1: Assume by hypothesis of contradiction that (£',£")
is a r. e. ©-complete spécification of A with hidden opérations with respect
to the initial algbra semantics. Then, from the Gödel incompleteness Theorem
in the Davis-Matijasevic-Robinson form [9], there exist arithmetical terms,
i. e. polinomials with numerals as coefficients, such that

(4.8)

E' [J {S(Q)^0}\fV x(P(x)ïQ(x)) (4.9)

Then, from (4.8), from Lemma 4.3, from (1.3) and (1.4), the équation
sw(P(x), ô(Jc),5f(0),0):=0 is true in A. Hence, from the initial hypothesis to
be contradicted

FhVx(jw(P(x),ÔW^(0),0) = 0) (4.10)

Now, from (4.9) there exists a model B' of E' \J {S (0) ̂  0 } and there exists
a M-tuple bl9 . . .,è„ such that

B'ÏP(b) = Q(S) (4.11)

Then, from (4.11), (4.10) and (1.2), we have that B' satisfies S(0) = 0. This
contradicts the choice of B\

PROOF OF COROLLARY 4.2: It is easy to prove that every non trivial peanian
algebra A is infinité. Moreover, there exists a term whose interprétation on
A is the discriminator, namely

where |*~j>| dénotes (x—
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