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ON A CLASS OF INFINITARY CODES (*)

by NGUYEN HUONG LÂM and Do LONG VAN (*)

Communicated by J. E. PIN

Abstract. - The notion ofinfïnitary codes has been introduced and studied in [2]-(7]. We consider
in this paper a special class of these codes called strict codes i. e. codes which involve infinité
product of words.

Résumé. - La notion de codes infînitaires a été introduite et étudiée dans [2]-[7]. Nous considérons
dans cet article une classe spéciale de tels codes appelés codes stricts i. e. des codes qui concernent
un produit infini de mots.

1. PRÉLÏMEVARIES

Let A be a finite or countable alphabet. Each symbol of A is called a
letter. As usual, we dénote A* the free monoid generated by A whose éléments
are called finite words. For each word w of A*, we dénote | w | the length of
w. The unit of A* is the empty word denoted by e, | e | — 0. We dénote AN the
set of ail fonctions u:N^> A from the set N of the natural numbers into the
alphabet A. Such a function u is also written in the form of infinité séquence
of letters,

u = u1u2. . .

with ut = u(i) ( i = l , 2 , . . .) and called an infinité word over A. We say by
convention that the length of every infinité word is ÛD = card N.

(*) Received June 1988, revised September 1989.
O Institute of Mathematics, P. O. Box 631 Bo Ho, Hanoï, Vietnam.
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442 NGUYEN HUONG LÂM AND DO LONG VAN

The set Aœ = AN{J A* whose éléments we call simply words can be equip-
ped with a product defined by

oc. P = ot if aeAN and a. (3 = aP if aeA*

where a|3 is the concaténation of a and |3. Clearly, this product makes Aœ a
monoid. In the sequel, for the sake of simplicity, we shall write a(3 instead
of oc. p. We call infinitary (finitary, purely infinitary) language any subset X of
4̂°° (resp. A*, AN). Given an infmitary language X, we dénote I f i n = i n ^ * ,

Xin{ = X OAN. Also, the following notations are used:

X*\ the submonoid of A generated by X.

X*: the set of all the infinité words of the form u = x1x2. . • with
xt e X{in - { s }. Obviously Am = AN.

n=l ,2 , . . .

X(a={(xux2, . . .

A word a is said to admit an X^-factorization (resp. X^-factorization) if
0L = x1x2- • • with (x1,x2, . . .)eX^ (resp. Xœ). Obviously a admits an
X^-factorization (resp. X^-factorization) if and only if a e l * (resp. Xe0).

Let X, Y be two subsets of A*°, we dénote

X2 = XX.

When Y is a singleton, y = { a } , we write simply a"1 X, I a " 1 instead of
{*}-ix,x{*}-i

An infïnitary language X is said to be an infinitary code if each word of
4̂°° admits no more than one A^-factorization. The concept of infïnitary

codes was introduced in [3] and for them an extension of Sardinas/Patterson
criterion was proved in [5] which provides a procedure to verify whether a
given infïnitary language is a code. We now recall it.

Informatique théorique et Applications/Theoretical Informaties and Applications
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To every subset X of A00 we associate a séquence of subsets U„ (X) defined
by

THEOREM 1.1: (Generalized Sardinas/Patterson criterion [5]). A subset X
of Aœ — {s} is a code if and only if f or ail n^\, Un(X) does not contain the
empty word e.

Our aim in this paper is to study a special class of infini tary codes obtained
by replacing in the définition of codes the condition "every word has no
more than one X^-factorization" by a stronger one. More precisely, we have

DÉFINITION 1.2: An infînitary language X is said to be a strict infinitary
code if each word of A* admits no more than one X^-factorization.

Throughout this writing, without otherwise stated, a strict code means a
strict infinitary code. L. Staiger [11] has introduced and considered infinitary
fmite-length codes, these are not other but strict codes, which are finitary.

By définition, the class of strict codes is contained in the class of codes.
The following example shows that the inclusion is proper.

Example 1.3: Consider the subset X= { a, ab, bb} over the binary alphabet
{a,b}. An application of Theorem 1.1. shows that X is a code. It is not a
strict code because the word abm for example admits two different Xa-
factorizations (a,bb,bb,. . .) and (ab,bb,bb,. . .).

The rest of the paper consists of two sections. In Section 2 we establish a
relationship between strict codes and codes and also some criteria for strict
codes, which are analogous to that of Sardinas/Patterson. In Section 3 a
criterion for strict codes similar to that of Schützenberger for finitary codes
is given. It is noted that in the case of infinitary codes the freeability alone is
not enough for a submonoid of A™ to have a code as base (see [4], [6]).

2. TESTS OF STRICT CODES

Given a new symbol c not belonging to the alphabet A. To each subset X
of A™ we associate a subset X of (A\J {c})™ defined by

*fin = { X1CX2/X1 X2 6 l f i n }

^inf = ^Tin U ^?in ̂ inf U { *i CX2/x1 G Xfin, X± X2 G Xinf }
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444 NGUYEN HUONG LÂM AND DO LONG VAN

The following theorem establishes a connection between codes and strict
codes.

THEOREM 2 . 1 : For any subset X of A™, X is a strict code if and only if X is
a code.

Proof: If X is not a code then we have a word S admitting two différent
Â^-factorization (xl9x2, . . .9xH_x) and (yuy29 - --9ym-i) w i t h w,«^0,
xx*yl9 Le.

*1*2- • - ^ n + ^ i 7 ! ^ - * .j^m+l^â (1)

For every $e(A\J {c})°°, dénote P the word obtained from p by erasing
all the occurrences of c. Then from (1), we have

*1*2- • 'Xn+X=yxy2. • -Jm+l^a (2)

By the définition of X it is easy to check that xl9x2, . . ,9xn9

J>i»J>2> • • - J / 4 ; *n + i, ym+itX™' A1so, X i ^ ^ and (1) imply that xxïyx

which proves that X is not a strict code.
Conversely, let X not be a strict code. There exist then two différent Xœ-

factorizations (xl9x29 . . .) and (yl9y2i . . .) with Xi^j^i of some word a of
4̂°°. We always can suppose that aeAN, since if aeA* and admits two

different J^-factorizations, so does a0*. The words xl9y1 cannot both belong
to Xinf9 otherwise x1=y1. If xx and^i are both in Xfin, assume that | x t \<\yi
which implies y1^xxzl9 z1eA+=A*-{&}. We put xx—xxc9 y1=xlcz1,
x2 = x2 x3. . ., y2 = y2y3. . . Clearly xux29 yu y2 are in X and xx ¥yx- From
the equality

it follows

which shows that X is not a code.
Suppose xxsXfîn9 y1eXin{9 frim (3) it follows y1 = x1y with yeXœ C\AN.

We put x1=x1c, yx—x1cy, x2=x2x3, , . Then we have xxx2 = yx and thus
X is not a code. This complètes the proof.

The use of Theorem 2.1 lies in the fact that instead of checking whether
X is a strict code it suffices to verify whether X is a code or not. For the
latter can be applied Generalized Sardinas/Patterson criterion given in Theo-
rem 1.1, and since X is a rational and constructible language whenever X is

Informatique théorique et Applications/Theoretical Informaties and Applications
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rational language, the Theorem 2.1, provides an aîgorithm for testing whether
a rational language is a strict code.

Example 2,2: Let

Then

X= {ça, ac, caba, acba, abca, abac } U { acbm} (J {a, aba }tö \J {a, aba }* ab".

We have

Ux(Z) = {ba9b*}9 U2m=0

Thus ^ is a code and therefore X is a strict code.

Example 2.3: Let

4 = { Û, é }, 2f = {flfl, Aa, baa}.

Then

Jf ̂  {caa, acaaacy cba, bca, bac, cbaa, bcaa, baca, baac }{J {aa, ba, baa }w.

We have Ux(^)^{a}9 U2($)^{ca,ac} U {a} {aa?ba,baa}w and s e U2{Z)
because Xinf O {a } {&&> ha, baa }fù¥:0. Thus X is nöt a code and therefore X
is not a strict code,

Now if using directly the séquence of subsets U„ (X) mentioned in Theorem
1.1, we shall get a sufficient criterion for strict codes formulated as follows.

THEOREM 2.4: For any subset X of Azo-{&} if Ui(X) = 0 for some z^l
then X is a strict code.

Proof Suppose on the contrary X is not a strict code, we shall prove that
£ƒ. (X) ̂  0 for ail i è 1. It is noted that if Ut (X) = 0 for some i then Ui (X) = 0
for dXlj>L

If X is not a code then, by Theorem 1.1 and the above remark, it is easy
to see that Ui(X)^0 for ail z'^L

Suppose now X is a code not being a strict code, There exist then
(yx,y2*. * Oe-JT^ with ^ ^ ^ such that

Clearly the proof will be completed if the foUowing assertion is approved:
For every k^\ there exist a non-empty word zeUk(X) and two integers

vol. 24, n° 5, 1990
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hjè 1 such that holds one of the following cases:

ZXt+1 Xt+2 . . . = > ' j + 1 > ' 7 - + 2 . . . , |Z|<CO

Xi . . .x , — y< - . . v,

(*) .. . . _
* t + 1 Xt + 2 ' z <©

We now prove it by induction on k.
\ï\x1\>\y1\ there exists then a nonempty finite word z such that

x1=y1z

and so zeUx{X).
If | Xi | < | yx | < co, there exists then a nonempty finite word z such that

x1z=y1

x 2 x 3 . . . = z y 2 j 3 . . .
and so ze Ux (X).

If\x1\<\y1\ = (ù then there is an infinité word z such that

x1z = y1

x 2 x 3 . . , = z

and so z e ^ (JT). Thus the assertion is true for k= 1. Suppose now it is true
for &> 1, we prove it true for k+1. By the induction assumption there exists
a nonempty word z of t/ft (JQ such that one of the conditions (a), (b), (c),
holds. We treat only the case when (à) holds, for the other cases the arguments
are similar. We have yj+1 ^z because if not the equality x1. . ,xi — y1. . .y^z
implies xx. . •xi=y1. . -y^yj+i which contradicts the fact that X is a code.
So the following three cases are possible.

If | z |>\y j + ! | then there is a nonempty finite word zx such that z =
So zx E Uk + 1 (X) and from (à) we have

/. e, (à) holdk for zl5 i9j+ 1.
If | Z | < | J > J + 1 |<co then there is a nonempty finite word z2 such that

i' So z2e Uk(X) and from (a) we have

z. e. (b) holds for z2, i, j+ 1.

Informatique théorique et Applications/Theoretical Informaties and Applications
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If 121<|yj+11 = œ then there exists an infinité word z3 such that zz3=yj+1.
So z3 e Uk+1 (X) and from (à) we have

Xt+1 Xt+2' * • Z 3

/. e. (c) holds for z3, z, j + 1.
Thus the assertion is tnxe for k+ 1. This complètes the proof.
The converse fails, as it is shown in the following example.

Example 2.5; Let X={aa,ba,baa{aa)*{ba,baa}}. It is easy to verify
that X is a regular strict code, but U1 — a{aaY{ba,baa) and for ail n>0,

The converse of Proposition 2.4 holds if we restrict ourselves to fînite
languages, to wit

THEOREM 2.6: For any finite subset X of A00 — {e}, X is a strict code if and
only ifU1 = 0 for some i ̂  1.

Remark: The Example 2.5 above also shows that the Theorem 2.6 does
not hold for the regular languages, for which we develop another criterion
in the sequel (Theorem 2.10).

Proof: It suffîces to prove the "only if' part. To do this we make use of
the following resuit of D. König which has an interest of its own.

LEMMA (König [8]): Let G = (V,E) be a directed graph whose set V of
vertices is an infinité union of nonempty finite subsets Vu /= 1,2, . . . such
that for each y^Vi+i(i>0) there exists xeV1 such that x and y are joined by
an edge: x —• y in E. Then there exists and finite path
xi ~* X2 ~* . . . —> JtB -> . . . with x{ G Vt for 2=1,2,. . .

We now turn to proving Theorem 2.6. Suppose on the contrary that
Ut (X) # 0 for ail i ̂  0 and X is a strict code. Put Vi = U( (X) i = 1,2,. . . The
vertices aeF i ? (ÎG F i + 1 , for every z, are joined by an edge if and only if there
is u of X such that P = oc~1w or $ = u~1a. Since X is finite, so is each V(.
That each |3G Vi+1 is joined with some ae Vt by an edge (a, P) for every i is
obvious from the définition of subsets U^X). Thus, from Lemma it follows
that there exists an infinité path 04 -» ot2 -* . . . with ate V{. We now construct
by induction on k two séquences of words of X:uuu2,. . . and vuv2,. • .
with the property: for every k>0 there exist i(k) andy"(fc)>0 such that either

« i - • •«i<*)Qtfc = ' ü i - . - -vj(h) ( 1 )

vol. 24, n° 5, 1990
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or

Wi* • .«f(fc) = ï>i- - -vj(k)^k ( 2 )

For &=1, since aieU1(X) there exist u, v of X such that ua1~v and
W^Ü. We put i(l)=j(l)=l and «Ï(D = W, vH1) = v. Suppose now for k>0
wl5 . . ., «i(ft), tJ1? . . .,vj{k) have been defined already such that (1) or (2) holds.

Since ocfc -> ak+ x is an edge, there exists then u of X such that either

ak+1=u"1ak => uak+1 = ak (3)

or

(4)

We must have in (3) ueXfin and in (4) |afc|<a>, otherwise s = afc+1 and JSfis
no more a strict code (not even a code: Theorem 1.1).

Four possible combinations are (1) & (3), (1) & (4), (2) & (3), and (2) &
(4). We treat first the case of (1) & (3). Then

Thus we can take uiik+1) = u, i(k+ï) = i(k)+l andj(k+l)=j(k).
For the case of (2) & (4), from (2) and (4) it follows

It suffices to take i(k+ l) = i(k),j(k+ l)=j(k)+ 1, vjik+1) = u. The other cases
are treated similarly. Note that when treating the combinations, we take
i (*+l ) = i(*) andy(Jfc+l)=y(*)+l o r ï ( H l ) = /(k)+l and j(k+ l)=y(*)
iff (2) or (4) appears in them respectively. Thus the required séquences are
constructed.

Now we distinguished two possibilités, both leading to contradictions
(i) | (Xi j = co for some s.
We have, for instance, :ux. . -ui{s)aLs = v1. . .ui(5)| and \vt. . .^ ( s ) | = a> and

for ail Ï ̂  i (5): | «,-1 < © (otherwise ux. . . M£ (S) = f j . . . ̂  (s)).
Furthermore, by construction from s on we have for allk^s: i(k+l) = i(k)

and | ut m I < œ and | ak | = © [(1) & (3) always happens]. Hence
u1 u2. . . —yi * • -^(s) ̂  a contradiction with X is a strict code.

(ii) For ail s > 0 | a£ | < © => M£, ^ G Jffin for ail z, ƒ
If the séquence (w£) is finite then there exists 5 such that for every k>s

i(s) = i(k), hence there is k, k>s such that \ux. . .«,-(*>|<|ui- • -̂ j(fc)| (since

Informatique théorique et Applications/Theoretical Informaties and Applications
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for ail k>s i(k+\) = i(k) implies j(k+ l)=j(k)+ 1 that is (vj) is infinité).
That is to say we are in the case (1), it follows that i{k+ l) = z(&)+ 1: a
contradiction with i(s) = i(k+l). So (ut) must be infinité. As X is a strict
code ii|tt2. . . #Ï>Iv2• • • There rnight be then integers m and n^\ such that
each of the words ut. . .un, vt. . .vm is not a prefix of the other which is
impossible because of (1) and (2). Theorem is proved.

Example 2.7: Let A = {a, b }, X= {ba, bab, b (baby }. We have Ux (X) = { b },
t/2(J!0 = {fl,a6,(6a6)*}. Hence (6aè)œe t/,(*) for every i £ 3 . By Theorem 2.6
^ is not a strict code. In fact, the word (baby0 has two different X^-
factorizations (bab.bab,. . .) and (ba,b(bab)m).

Now we give another modification of the Sardinas/Patterson algorithm.
To any language X ^ A00 we associate the foliowing séquence of subsets
of^00:

PROPOSITION 2.8: For any subset X of A00-{e}, if Vt(X)^0 for some
i^ 1 then X is a strict code.

Proof: Suppose on the contrary that X is not a strict code. There exist
then two different J^-factorizations (xl9x29 • • . J a n d ^ j j , . . .) with xl^=yl

such that

x1x2...=y1y2... (1)

We now show that Vt(X)^0 for ail ij£ 1. Indeed, by (1) and x1 ^y1 we can
assume | JCX |-<| ƒ11 and then xxz1=y1 for some zx^e. Thus z1eV1(X) and
V.(X)=£0. It follows from (1) that

If | zx | = co then zt = x2 x3. . . G X00. Hence V2 (X) contains s, for
e = zïxzxe VI1 (X)Xe0 = V2(X). Since 8eXe0 it follows zeV^X) for all i^2 ,
ï.e. F f (JO#0. If |zi |<© we put ^ = ^ ^ 3 . . . Clearly. z2eX°° and
z2 = zï1(x2x3:..)eV;1(X)Xco=V2(X). Consequently, e = z2

1z2e V3(X).
By the same argument as above, we have e e Vt(X) for all z^3 and therefore
YiÇO±0 for ail Ï ^ 1. This concludes the proof.

The following example shows that the converse of Proposition 2.8, is not
true.

vol. 24, n° 5, 1990
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Example 2.9: Consider any ainfïnite prefix code Xo in A*,
X0={xl9x29. . . }. Put X1 = {xux1x2}9 Z2 = {x3 5x3x4 ,x4x5}, . . .,
Xn~ \Xn(n+l)/2> Xn{n+1)12 Xn{n+1)12+ !•> • * • J Xn (n+ l)/2 + n - 1 Xn (n+l)/2+n }> a n " P U ^

JT= U A .̂ It is easy to see that xn{n+1)I2+ne Vn(X) for all n^ 1. The fact that

X is a strict code can be verified directly.
Nevertheless, the converse holds true for the case of regular languages. We

recall that a language X of A"° is said to be regular if the family
[OL'1 X/aeA™} is finite. We call the cardinality of this family index of X. It
is noteworthy that every language recognizable by finite automata is regular
and that the class of regular languages is closed under union, intersection, *,
CD and oo.

The following theorem is a generalization of Lemma 15 in [4],

THEOREM 2.10: If X ç A™ ~ { z} is an infinitary regular language then X is
a strict code if and only if Vi(X) = 0 for some z'̂  1.

Remark: The theorem 2.10 holds also for the infinitary finite (not neces-
sarily regular) languages. The proof can be proceeded, just as in case of
Theorem 2.6, taking into account the fact that whenever X is finite
Vx a wx X

e0 U . . . U ^„1°°, for every i, with some words wl9 . . ., wneAm.

Proof: In view of Proposition 2.8, it suffices to prove that if
for all z'^ 1 then X is not a strict code. Let the index of X00 be n. We choose
m > n and any word um G Vm (X). By définition, there exist
u1eVi(X), . . .,um_1€Vm^1(X)suchthsLtui+xeur1Xœfori=l,2, . . . , / w - l .

Since Xe0 is a regular language of index n and m>n, there must be integers
p and q such that \<Lp<q^m and u~x Xe0 = u~1 Xe0. Without loss of genera-
lity we can suppose q = m and d=m—p>l. We put for every j ^ m : Uj = up +19

where t—j—m modd.
We state that for every i^ 1 ui+1eu^1 Xe0. Indeed, it is trivial for

l^i^m—l. Suppose i^m, for i—m we have wm + 1 = up+xeu~1 Xe0^u"1 Xe0

(because 1 ̂ d— 1). Suppose the statement is true for some /^m, we prove it
holds true for z+1. Let i = m + kd+t for some £^0, 0 ^ / ^ r f - l . If •/<</-1,
we have

—W

If t = d— 1, we have

= W Ar°0 = W ^ ° ° = Ui

Informatique théorique et Applications/Theoretical Informaties and Applications
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Now we put

for 1=1,2, . . . Obviously x^X™. From the fact that
u1eV1(X) = X-1X-{e] it follows

uou1=z1

for some zQ,zx in X, zo^zx,

Consider the product zou1u2u3u4r. . . We can write it by two ways

Z0 (Mls M2) (U2 M4) . . . = (ZO « l ) («2 Ws) (W4 " 5 ) • • •

which yields

which shows that X is not a strict code. The proof is completed.

Remark 2.11: When A'is finitary, we define the séquence of subsets Vt(X)
by

r ( J o K f i J f * ^ i

and state

Êw: Vi(X)*0 for ail Ï if and only if Vi(X)#0 for ail i.
Therefore we can replace in the formulation of Proposition 2.8 and

Theorem 2.10 the subsets Vt(X) by Vt(X) which are convenient for calucla-
tion.

We now outline the proof of Claim. By induction on i, we can easily
establish the following two points:

(i) ^ ( J O ^ ^ O O for i '= l ,2 , . . .
(ii) lî vte Vi(X) and there exist xl9x29 - - • eXanâ yx,y2. • - eXsuch that

vtxtx2. . •=y1y2- • •

then Vj(X)ï0 for allj>i.
(iii) Let n be the smallest integer such that VnïnîC\Xù^0. Then for

i = 2,3, . . .,«

Vi(X)Xco^Vi (1)

vol 24, n° 55 1990



452 NGUYEN HUONG LÂM AND DO LONG VAN

If Pii„f O X * 0 for all i then (1) holds for all i. Indeed, for all /: l^iSn-

vi+1 = vrx™ = vüL** u VÜL x* u vrat x*

(3)

(we write Vt instead of Vt{X) for short).
Hence

fin ~ Vi fin ^ W

for i= 1, . . . ,«= 1. Since F l f i n= F ^ Vl9 comparing (4) with (1) we obtain
^+ifin=^i+i> ^ ^ • • •»» - ! . Hence, from (3) we get

Thus (iii) is proved.
Suppose now Vi(X)j±0 for every i then by (i) Vi(X)^0 for every i.

Conversely, suppose Vi(X)^0 for all Ï = 1,2, . . . If the number n mentioned
in (iii) does not exist then (1) holds for all Z^l, therefore Vi(X)^0 for all
i ^ l . If »<oo then (1) holds for i = 2, . . . , » . From F n i n f n ^ ^ 0 and
Fn = F~_\ Z00 we must have some we F„_ l5 a = xx x2. . . e J^,
P=j;1_y2. . . e r 1 such that wa=P which gives |W|<G>. Therefore, by (1), we
can write w = u„_1z1. . .zm for some zj„_1eFn_1 and zx, . . .,zmeX. Thus we
get

V i ^ i - •.zmx1x2.. .=yxy2...

which implies that Vt^0 for all i^n- 1 (by (ii)). Claim is proved.

We now provide a procedure for calculating V^X). Let F be any finitary
subset. For any «^1 we define the subsets

Z = Y~

and

Infonnatique théorique et Applications/Theoretical Informaties and Applications
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Put

T{V,X)= U Ti

and we state that

The last formulas become evident if we pay attention to the following
relations

ï1 X

etc.
As an example we apply this procedure to show that the languages X of

{<z,£}*, X={aib,(aib)ib:i= 1,2, . . is a strict code. Such a vérification
cannot be done by using Proposition 2.4. We have

It is easy to see that

for n ^ l , and

for ail « ^ 1. Consequently

for ail n ^ l . Therefore V2 (X) = T(VuX) = 0. By Proposition 2.8, X is a
strict code.
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3. COMBINATORIAL CHARACTERIZATIONS

In this section we introducé the concept of oo-submonoid of 4̂°° and study
several properties of such oo-submonoids as well as their generator sets. As
a main resuit, we prove a necessary and sufficient condition, analogous to
that of Schützenberger [9], for an oo-submonoid of A™ to have a strict code
as the minimal generator set.

Let M be a subset of ^°°, M is said to be oo-submonoid of A™ if M00 ç M.
A subset X ^ M is called an oo-generator set of M if XCX) = M. From now on
we shall call X simply a generator set of M. The generator set X is called
minimal if it does not contain properly any generator set of M. The following
proposition gives a characterization of the minimal generator set which is
useful in the sequel.

PROPOSITION 3 .1 : Let X be a subset o f an oo-submonoid M of A"0, then X
is minimal generator set if and only if

(i) XCO = M

(ii) X{inX
+cor\X=0, whereX+0O = J r ° -{£}

Proof: Let X be a minimal generator set. Clearly (i) holds. ïf
oc e Xfin X+ ° ° n ^ then after removing oc from X, X— {oc} remains a generator
set of M which is in contradiction with the minimality of X. Thus (ii) holds.

Conversely, assume that (i) and (ii) hold and X is not a minimal generator
set. There exists then a generator set Z properly contained in X. Choose
aeX—Z, Since Z is a generator set, a is a product of éléments of Z

= z1z1 z 2 . . .

From oc£Z, we have | ̂ A | <co and thus z1eZVln ç Xfin. Hence 0isX{inX
which contradicts (ii). This complètes the proof.

Given any submonoid M, we define on Mfin the relation " < " as follows:
u < v if and only if there exists a word w e Mfin — {e} such that u = wv. Clearly,
the relation " < " is only transitive but not équivalence one. An element u of
Minf is called maximal if there is no v satisfying u<v. The set of maximal
éléments of Minf is denoted by MAX(Minf). It is well known that every
fïnitary submonoid N of A* possesses a smallest generator set in the sensé
that it is contained in any generator set of N (see, for example, [10]) which
we denoted by ATOM(AQ (see [7]). The following proposition shows that
every oo-submonoid M has a smallest generator set and therefore it has a
unique minimal generator set.
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PROPOSITION 3.2: Every co-submonoid M possesses a smallest generator set
which is Z=ATOM(M f i n)UMAX(M i n f)-M-(M f i n~{s})(M-{6}).

Proof: First, we show that Z is contained in any generator set X, In fact,
if oteZfin = ATOM(Mfin) then a is a fini te prbduct of éléments of Xfin, and
therefore, of Mfin

Since a is an element of the minimal generator set of Mfin it follows that
«=1 and thus a = x1eX. If a e Zinf = M AX (Minf ), a cannot be a product
of more than one nonempty word from X, otherwise a would belong to
(Xfin - {e }) X+ °° ç (Mfin - {£ }) (M- { 8 }) that contradicts the maximality of
a. Thus, we have aeX and Z^X.

Now it suffïces to show that Z is a generator set itself, i.e. every element
of M can be expressed as a product of éléments of Z. That every a G Miin or
aeMfinMAX(Minf) is such a product is obvious. If now
a£ Mfin U Mfin MAX (Minf), there exists then an infinité chain

a = a 1 < a 2 < a 3 < . . .

where afeMinf — MAX(Minf), £=1,2, . . . which means that

for wfeMf in-{8} and Ï = 0 , 1 , 2 , . . . Thus

a - Ml w2. . . € M£n = ATOM (Af^)" <= Z00

The proof is completed.
Now we corne to a characterization of strict codes in terms of submonoids

and oo-submonoids generated by them.

THEOREM 3.3: For any infinitary language X, X is a strict code if and only
if

(i) x{inx+«>nx=0
(ii) (x*)-1 x*nx™(x^y^x*

Proof: Suppose that X is a strict code. The fact that (i) holds is obvious
by définition of strict code. Let de(X*)~xX* C\X™ (Xe0)"1. If d=e then
deX*. If <i#e then there exist x from X* H A* and y from X* such that
xd—y. Furthermore: 3 a, peXe0 such that rfa= p. If | d| = © that implies rf= P
and thus we have x$ = y, which in turn implies d= PeX*, since Z is a strict
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code. Now if |rf|<©, as (xd)a — x(da) gives the saine factorization of xda
over X, we have deX*. Consequently, (X*)~ ' X* D Xe0 (Xœy * aX*. The
reverse inclusion is obvious and therefore (X*)"1 X* C\ Xe0 (Xco)~i = X¥.

For the converse, let (i), (ii) hold and suppose X is not a strict code.
There exist then x, y e X( ih, a, P e Xe0 such that xu = y$ and |x|<|}>| (yeXUn

a c c o r d i n g t o (i)) . H e n c e x'1 ye^X*)'1 X* UX™(X™)'1]- {&}, Le,

x~1yeX+
t It foliows that yeXnnX

+ OX: a contradiction, which shows that
X must be a strict code. The theorem is proved.

Let M be a subset of A™, M is said to be freeable if M~i M C\ MM~* = M.
The following theorem, analogous to a resuit of Schützenberger, characterizes
the oo-submonoid generated by a strict code.

THEOREM 3.4: Let M be a oo-submonoid then M is freeable if and only if
its minimal generator set is a strict code.

Proof: Let Z be the minimal generator set of M and suppose Z is not a
strict code. There exist then x,yeZ, a, PeZ00: xa—^P with | x | < | j ; | (hence
x e Zfin). Therefore y — xw implies w e M~x M— { e } and a == ooP implies
\veMM~1. Hence weM— {e}. Consequently: yeZnnZ

+co HZ, which is a
contradiction with Z is a minimal generator.

Conversely, let Z be a strict code and let suppose that
3we(M'1MniMM~1)~M^0- There exist then ueMfin (since
w 7̂  e) : uw e M and v e M : wv e M. If \w \ = GO then v = s hence v e M that is a
contradiction. If | w | < œ then from u (wv) = (uw) v being the same factorization
over Z we get w e Z * c M : a contradiction again. This complètes the proof.

Finally, in the following theorem, we characterize the freeability of oo-
submonoids via their special subsets. Note that the subset M—Mfin need not
be a submonoid in gênerai.

THEOREM 3.5: Let M be an œ-subrnonoid, then M is freeable if and only if

(i) Mf7n is a freeable oo-submonoid

(ii) The subset M—Mfin is a freeable submonoid.

Proof: First, we recall some notions and results in our previous papers. A
monoid M is called regular if Mfin O Afinf = 0 and quasi-free if M—X* with
X is a code. It has been proved that every quasi-free submonoid is freeable
(see [2], [4]). The following statement is the Corollary 3.11 from [2] (see also
[4]): A regular submonoid is quasi-free iff it is freeable.

Now if M is freeable then M is generated by a strict code
X: M= Xe0 = Xfin U X*. Since X is a strict code, then Xfin O X* = 0. Hence
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M- X?in = M- Mfin = X* is a submonoid generated by a (strict) code, conse-
quently it is freeable. Further, Mgn = Xgn is generated by a strict code Xfin,
therefore M£n is a freeable oo-submonoid by Theorem 3.4. Thus the "only
if' part is proved.

Suppose now (i) and (ii) hold. Put M=M—Mfin which is a submonoid
by our assumption, Since Mfin ~ Mfin it follows that
Mf>

i nnMinf=^ i nnM i n f = 0 . This means that Mis a regular submonoid.
In virtue of the statement aforementioned, M is quasi-free, Le, M=X* for
some code X. We have Mfin = Mfin = Xfin and Min{ = X?inXnn, hence

X*UX?in = Xco- On the other hand
0. Furthermore, by (i) and Theorem 3.4 M£n is

generated by a strict code X:Mgn = X. Since Mgn = Xnn and the code Xfin

and the strict code X satisfy (i) and (ii) of Proposition 3 .1 , it follows that
both Xîin and X are the minimal generator set of M£n, so in view of
Proposition 3.2 Xfin = X. Thus Xfin is a strict code. Finally, note that a code
X satisfying Xfin D X* = 0 whose finitary part Xfin is a strict code is a strict
code itself. The proof is completed.
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