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ON DOT-DEPTH TWO (*)

by F. BLANCHET-SADRI

Communicated by A ARNOLD

Abstract - For positive integers mu , mk, congruences ~{m t m,} related to a version of
the Ehrenfeuchi-Fraissé game are defined which correspond to level k of the Sraubtng hierarchy of
star-free ïanguages Given any fîmte alphabet A, a necessary and sufficient condition is given for
the monoids A*/~(rrti m% m^ to be of dot-deàth exactly 2

Résumé - Étant donnés des entiers positifs mu , mk, on définit des congruences
~(mlt ,m)en relation avec une versuin du jeu de Ehrenfeucht-Fraissè, et qui correspondent au
niveau k Je la hiérarchie de concaténation de Straubing Étant donné un alphabet fini A, une
condition nécessaire et suffisante est donnée pour que les monoides définis par ces congruences
soient de dot-depth exactement 2

1. INTRODUCTION

Let A be a given finite alphabet. The regular Ïanguages over A are those
subsets of A*, the free monoid generated by A, constructed from the finite
Ïanguages over A by the boolean opérations, the concaténation product and
the star. The star-free Ïanguages are those regular Ïanguages which can
be obtained from the finite Ïanguages by the boolean opérations and the
concaténation product only. According to Schutzenberger[15], L<=A* is star-
free if and only if its syntactic monoid M (L) is finite and aperiodic. General
références on the star-free Ïanguages are McNaughton and Papert[10], Eilen-
berg [6] or Pin [12].

Natural classifications of the star-free Ïanguages are obtained based on the
alternative use of the boolean opérations and the concaténation product. Let
A+ =./4*\{ 1}, where 1 dénotes the empty word. Let
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522 F. BLANCHET-SADRI

A + @0 = { L g Af | L is fini te or cofmite},
A+ ^ k + 1 = { L c ^ + ' |Z, is a boolean combination of languages of the form

Lx . . . LH(n^l) vntii Ll9 . . ., LneA+<%k}.
Onîy nonempty words over A are considered to define this hierarchy; in

particular, the complement opération is applied with respect to A +. The
language classes A+ ^ 0 , A+ Mx, . . . form the so-called dot-depth hierarchy
introduced by Cohen and Brzozowski in [4], The union of the classes
A+ <%0, A+ âSl9 . . . is the class of star-free languages.

Our attention is directed toward a closely related and more fundamental
hierarchy, this one in A*, introduced by Straubing in [18]. Let

A* i^k+x = {L<=A*\L is a boolean combination of languages of the form
L0alL1a2 . . . anLn(n^0) with Lo, . . ., LneA*-Tk and al9 . . ., aneA}.

L<=;4* is star-free if and only if LeA*ir
k for some A:^0. The dot-depth

of L is the smallest such k.

Using Eilenberg's correspondent, we have that for each A:^0, there is a
variety Vk of fini te monoids such that for L<i^4*, LeA^i^k if and only if
M{L)eVk. An outstanding open problem is whether one can décide if a
language has dot-depth &, L e., can we effectively characterize the varieties Vkl
The variety Vo consists of the trivial monoid alone, Vx of all finite ^"-trivial
monoids [16]. Straubing [19] conjectured an effective characterization, based
on the syntactic monoid of the language, for the case k = 2. His characteriza-
tion, formulated in terms of a novel use of catégories in semigroup theory
recently developed by Tilson [22], is shown to be necessary in gênerai, and
sufficient for an alphabet of two éléments.

In the framework of semigroup theory, Brzozowski and Knast [1] showed
that the dot-depth hierarchy is infinité. Thomas [21] gave a new proof of
this resuit, which shows also that the Straubing hierarchy is infinité, based
on a logical characterization of the dot-depth hierarchy that the obtained in
[20] (Perrin and Pin gave one for the Straubing hierarchy [11]) and the
following version of the Ehrenfeucht-Fraissé game.

First, one regards a word we A* of length \w\ as a word model
W = < { 1 , . . ., |w|}, <w , (Qa)asA) where the universe {1, . . ., \w\} repre-
sents the set of positions of letters in w, <w dénotes the <-relation in w,
and Ql are unary relations over {1, . . ., | w\} containing the positions with
letter a, for each aeA. For a séquence m = (mu . . ., mk) of positive integers,
where kTtO, the game ^ ( w , v) is played between two players I and II on
the word models u and v. A play of the game consists of k moves. In the
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z-th move, player I chooses, in u or in v, a séquence of mî positions; then
player II chooses, in the remaining word, also a séquence of mt positions.
After k moves, by concatenating the séquences chosen from u and v, two
séquences p1 ...ƒ?„ from u and qx , . . qn from v have been formed where
n = m1-\- . . . + rak.

Player II has won the play if

Pi<uPj ifandonlyif qt<
vqp (1)

and

Qu
apt ifandonlyif Qv

aqi9 as A for l^ij^n. (2)

If there is a winning strategy for II in the game ^ (u, V) to win each play
we write u^^v. ~^ naturally defînes a congruence on A* which we dénote
also by ~^. The standard Ehrenfeucht-Fraissé game [5] is the special case
»{1 !)(«,!»). Thomas [20], [21] and Perrin and Pin [11] imply that
LeA*^],. if and only if L is a ~^-language for some m = (m1, . . ., mfc) (or
L is a union of classes of the congruence ~^) . This congruence characteriza-
tion implies that the problem of deciding whether a language has dot-depth
k is equivalent to the problem of effectively characterizing the monoids
M=;4*/~with ~ ^ ~^ for some m = (m1, . . ., mk), i.e.,

K*={,4*/~ | ~ 2 ~,s for some m = (ml9 . . .,/wk)}.

This paper is concerned with an application of the above congruence
characterization. We show that A*/~imu m2 m3) is of dot-depth exactly2 if
and only if m2 = 1. The proof relies on some properties of the congruences
~^ stated in the next section. [2] and [3] include other applications: among
them are an answer to a conjecture of Pin [13] concerning tree hiérarchies of
monoids and also Systems of équations satisfied in natural subievels of level
1 of the Straubing hierarchy. The reader is referred to the books by Eilenberg
[6], Lallement [9], Pin [12], Enderton [7] and Fraissé [8] for all the algebraic
and logical terms not defïned here.

2. SOME PROPERTÏES OF THE CHARACTERIZING CONGRUENCES

2 . 1. An induction lemma

The foliowing lemma is a basic result (similar to one in [14] regarding
~(i, ..., ij) which allows to résolve games with &-f 1 moves into games with
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524 F. BLANCHET-SADRI

k moves and thereby allows to perforai induction arguments. In what follows,
w<p(w>p) dénotes the subword of u to the left (right) of position p and w>£
the subword of u between positions p and q.

LEMMA 2 .1 . : Let m = (mu . . ., mk). u~(nti mi mfc) v if and only if

(1) for every pu . . ., p^uip^ . . . g/>J
(tfi^ • - • ûq^ such that

(i) ÖS/>< if and only ifQv
aqt, asAfor l S i ^ / n ,

(iii) M ĵ + i -^ t

(iv) W > p m ~ m - z , > 4 m

(2) /or every ^1? . . ., qmev(q^ . . . ^qm) there are pl9 . . .,
(/?x ^ . . . Spm) such that (i), (ii), (iii) and (iv) hold.

2 . 2 . A lemma for inclusion

Define

One can show that x N - ( m i mk)x
N+1 {N=JT(mit >s mfc)) and that iV is the

smallest « such that xn~imi> mj)x
n+1 (the proof is similar to the one of a

property of ~ ( 1 s 1} in [21]). We see that if u, veA* and w~ (mi mfc)tJ,
then | w | û = | i ) | û < > ( m i mjk)) or |M | a , | tï |a^^K (M1 mk) (hère |w|fl dénotes
the number of occurences of the letter a in w). The foliowing lemma follows
easily from Lemma 2.1 and the above remarks.

LEMME 2 . 2 :

t . . . t mft))> ÛW^ ~ ( m i , . . ., mfe) $ ~(-/K (mi , . . .

x<Jk = k' such that m^JT^^^ ^ /or

i i . . . . mk).

3. A SEQUENCE OF MONOIDS OF DOT-DEPTH 2

In this section, we show that for positive integers mu m2 and m3,
^*/~(m l f m2, m3) i

s °^ dot-depth exactly 2 if and only if m2— 1. The following
lemma shows the necessity of the condition.

LEMMA 3 .1 : Let mr and m3 be positive integers. Then A*/~imit 2, M3) ^s °f
dot-depth exactly 3.
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Proof: Let m>0. Consider um = ((xy)mx(xy)2my(xy)m)m,
vm=^((xy)my(xy)2mx(xy)m)m. A resuit of Straubing [17] implies that monoids
in V2 are 2-mutative and hence satisfy um = vm for ail sufficiently large m.
However, for every N^Jr

{lt 2j i), % x a, 2, I)VN- TO see this, we illustrate a
winning strategy for player I in the game ^(1> 2i D(WN, %)• (/, 0 dénotes a
position chosen by player I in the i-th move, i= 1, 2, 3. Similarly, (II, î)
dénotes a position chosen by player II in the z-th move. Player I, in the first
move, chooses the

2N N

uN = . . . {xyf x (xy) (xy). . . (xy)(xy) y{xy) (xy). . . (xy) (xy)
î î î

(II, 1) (I, 2)

2N N

vN= ... (xy)Nx(xy)(xy). . . (xy) (xy) y (xy) (xy). . .(xy)(xy)

N N

(xy) (xy). . . (xy) (xy) x (xy) (xy) . . . (xy) (xy). . . (xy) (xy)
T î î

(I, 1) (II, 2)

last x followed immediately by an x in vN. Player II, in the fîrst move, has to
choose the last x followed immediately by an x in uN (if not, player I in the
next two moves could win by choosing in the second move the last two
consécutive JC'S in uN). Player I, in the second move, chooses the last two
consécutive j/'s in uN. Player II, in the second move, cannot choose two
consécutive y 's in vN to the right of the previously chosen position. Hence
he is forced to choose two y's separated by an x. Player I, in the third move,
sélects that x. But player II looses since he cannot choose an x between the
two consécutive y's chosen in the preceding move by I. The resuit folio ws. [ ]

A s s u m e \ u \ a , | t > | a > 0 . L e t u = u o a u 1 . . . a u ^ u ^ a i v = v o a v 1 . . . a v \ v \ a . I f

Q u
a P i , Q U j f o r i = l , . . . , \ u \ a i y = l , . . . , | \ > | a , t h e n « £ = «

i = l , . . . , | u | a - i , vj = vî%+i9 7 = 1 , . . . ,

U \ u \ a Z = U > P \ u \ a ' V \ v \ a = V>q\v\a'

The next two lemmas will be used in showing that for positive integers mt

and m3, A*/~imu x m3) is of dot-depth exactly2.
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5 2 6 F. BLANCHET-SADRI

LEMMA 3.2.: Assume u~(m'lt m'2)v. Then

(1)

for i = l , . . ., m2ands=\, . . ., m\ — \, (2)

Proof: (1) Let l£i^m2 and 1 ̂ s^m\ -1. Let p'l9 . . . ,pm i~ s

(Piè * • • ̂ />mi-s) be positions in u<p(s— \)m'2 + i. Consider the following
play of the game ^(mii m'2)(u, v). PlayerI, in the first move, chooses
Pm2>Pim2> • • -'Pis-Dm^ P(s-1) m2 + i> P\ • v > Pnn -s* Hence by the lemma of

Induction 2.1, there exist positions qu . . ., ̂ m i - s ( ^ i^ * • . èqmi-s) m
t?<*(,s-l)m2 + ï such that playerII, by choosing qm'2, q2nt2, . . ., q{s-1)m'2,
<7(s-i)m2 + *> ̂ i ' • • •» #mi-s f° r t n e corresponding positions, wins this play of
the game. It is clear that

(ii) utlJ+i-^vlfi for l ^ m ^ s - l ,

Note that playerll has to choose qmv q2m2, . . ., q{a-1)m'2, q{s-i)m2 + i

because there is a number of a's < m'2 between any two consécutive positions
among pm'2, p2m>2, . . . , p(s-1)m2, pis-i)m2 + i-

The proof is similar, when starting with positions in v<q(s~ \)m2 H-/.

F o r (2), we consider / > M o + 1 _ m ' 2 , P\u\a + x-2m2^ • • •> ̂ i« | f l + i-(s-i)mi»

LEMMA 3.3: Assume u~imi> m
r
2)v. Then

(2) « < p | M ] f l + l - ( j - l ) m 2 - i - ( m ' 1

2=1, . . ., m2 ands= 1, . . ., m̂ — 1.

/- Similar to Lemma 3.2. [ ]
In the following theorem we talk about positions spelling the first and last

occurences of every subword of length ^ m o f a word w. We illustrate what
we mean by this with the following example. Let A = {a, b, c} and

u = abccccaabbabbacccabababccaaaabbaa....

î î î î î î î î î î î î î î î
P
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ON DOT-DEPTH TWO 527

The six arrows on the left point to the positions which spell the first
occurences of every subword of length ^ 2 in u<p and the eight arrows on
the right (before the one pointing to p) to the positions which spell the last
occurences of every subword of length ^ 2 in u<p.

THEOREM3.4: Let mu m2 and m3 be positive integers. Then
^*/~<mi, m2, m3)

 is of dot-depth exactly 2 if and only ifm2=l.

Proof: If A*/~imu m^ m3) is of dot-depth exactly 2, then m2<2 by

LEMMA 3 . L: Conversely, for \A\ = r>\, we show that for any positive

integers ml9 m2, ~ ( m i + ( m i +1>2mi (r + D ^ , m'2)= ~{m\, i, m2y

To see this, suppose u^im'l + im'1 + 1)2m'2ir+1)m2, m'2)v. Then there is a winning
strategy for playerII in the game ^im'l + (m1 + i)2m2(r + i)m2t m'2)(u, v) to win each
play. A winning strategy f or player II in the game ^ ( m i lt m'2)(u, v) to win each
play is descrïbed as follows. Let p\, . . ., /?mi (p\ S • • • ̂ Pm'^) be positions in u
chosen by player I in the first move. Player II chooses positions
4u - • *> <7mi(#i= • • • =<7mi) by considering the following play of the game
^(Mi+(Mi + i)2™i(r+ir2f m'2)(u, v). In the first move, player I chooses
Pu • • • s Pm'i and the positions which spell the first and last occurences of every
subword of length ;gm'2 in u<Pl, w>^5 . . ,s u^p^i-iCind u>p'^ for a total of
no more than m\ H-{rn\ + 1)2m2 (r + Y)™2 positions {there are r™2 possible words
of length m'2for a total ofno more than m'2{r+ Y)™2 positions to spell the first
(last) occurences of every subword of length ^m2). More details follow for the
special case w^(1+4m^(r+1)m'2> m2)v. We have a winning strategy for player II
in the game &{1 +4m'2 {r+1)«'2( m*2) (w, v) to win each play. Let us describe a winning
strategy for player II in the game &{lt lt m'2)(w, v) to win each play. Let p be a
position in u chosen by player I in the first move. Suppose Q"p for some a e A.
If p is the i-th occurence o f a in u (\^i^^{1 m^ = 2 /n 2 +1) , then player II
chooses the same occurence of a in v, say position q. The fact that
w < P ~ ( i , m'2)

v<q and u>P~(it m'2)
v>q follows from Lemmas 3.2 and 3.3

'2)è(4m2(r+l)m2)m2). If p is the |w | f l +l - i - t h occurence of a in u

m'2)), player II chooses the \v\a+l— i-th occurence of a in v. If p
is among p2m'2 + 2> • • •> P\u\a-2m2-i>

 tnen pl&yerll chooses position q, an a,
among q2m

i
2 + 2, . . ., q\v\a-2m'2-1 by considering the following play of the game

^(i+4m2<r+i)m2, m2) ("> ̂ )- /« the first move, player I chooses p, the positions
which spell the first and last occurences of every subword of length ^m2 in
u<p and in u>p. Hence there exists a position q in v such that playerII, by
choosing q, the positions which spell the first and last occurences of every
subword of length ^m2 in v<q and in v>q, wins the play of the game. Let us
show that w< p~(i ( m'2)V

<q (the proof that u>p~{1 m'2)V>q is similar). Let p1 be
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528 F. BLANCHET-SADRI

a position in u<p (the proof is similar when starting with a position in v<q).
Assume Qu

aip'.

Case 1; p' is among the first m2 occurences of ai in u<p.

Let q' be the same occurence among the first m2 occurences of ax in v<q. It

is clear that K^~< m i ) f> | ' and u<p'~{m'2)v
<q>-

Case 2: p' is among the last m2 occurences of at in u<p. Similar to case 1.

Case 3: p' is not among the first m2 nor the last m2 occurences of at in
u<p.

Let p" and p'" (p"</>"') be the closest positions to p' in u<p' and i*>£
respectively among the chosen positions by player I. Let q" and q"1' (q"<q'")
be the corresponding positions chosen by player IL

Since uZÇ~im2)vîf9 there is q' in vlÇ such that Q°aiq\

Let us show that utp
p>~{m'2)vtq

q>. u<p'~{m'2)v
<q' follows similarly.

Let w=^w1 . . . W|W|, | w | ^ m 2 in v>\- The proof is similar when starting
with w in w>^,. If weu>£~, it is clear that weutP">, hence in M>^,. SO let us
assume w^v>;^ . Let/?W1? . . . , />W | w | inv^J , at least/?W1 being in u>J"', which
spell wx . . . W| w |. pwi, . . ., /7W| w are hence positions which spell an occurence
of a subword of length ^rri2 in v<q. Hence they are smaller than or equal to
those positions which spell the last occurence of w in v<q which are in v^l*"-
Hence wew>£. [ ]

The following corollary gives another resuit for inclusion (one was
Lemma 2.2).

COROLLARY 3.5: Let \A\ = r. Then

~(mi+(mi + l)2m2(r+l)m2, mi) Ü ~(mi , JT{it m'2))

Proof: From Theorem 3.4 and Lemma 2.2. [ ]
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