INFORMATIQUE THÉORIQUE ET APPLICATIONS

Andreas Weber Helmut Seidl
 On finitely generated monoids of matrices with entries in \mathbb{N}

Informatique théorique et applications, tome 25, no 1 (1991), p. 19-38
http://www.numdam.org/item?id=ITA_1991__25_1_19_0
© AFCET, 1991, tous droits réservés.
L'accès aux archives de la revue «Informatique théorique et applications » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Informatique théorique et Applications/Theoretical Informatics and Applications (vol. $25, \mathrm{n}^{\circ} 1,1991$, p. 19 à 38)

ON FINITELY GENERATED MONOIDS OF MATRICES WITH ENTRIES IN \mathbb{N} (*)

by Andreas Weber (${ }^{1}$) and Helmut Seidl (${ }^{2}$)

Communicated by J. Berstel

> Abstract. - Let Γ be a nonempty, finite set of square matrices of size n with entries in the semiring \mathbb{N}. Consider the matrix-monoid $\Gamma^{*}=\bigcup_{\lambda} \geqq 0$ then $\Gamma^{*}=\bigcup_{\lambda=0}^{N} \Gamma^{\lambda}$ whenerated by Γ. We show: If Γ^{*} is finite, Γ has exactly one member and Γ^{*} is finite, then $\Gamma^{*}=\bigcup_{\lambda=0}^{N} \Gamma^{\lambda}$ where $N=\max _{t=0}^{n}(l+g(n-l))-1$ (g denotes Landau's function). In the last assertion N is V minimal.

Résumé. - Soit Γ un ensemble non vide et fini des matrices carrées de dimension n à entrées dans le semi-anneau \mathbb{N}. Considérons le monoïde de matrices $\Gamma^{*}=\bigcup \Gamma^{\lambda}$ engendré par Γ. Nous $\lambda \geqq 0$
démontrons: Si Γ^{*} est fini, alors $\Gamma^{*}=\bigcup_{\lambda=0} \Gamma^{\lambda}$ où $\left.N=\Gamma e^{2} \cdot n!\right\rceil-2$. Cette assertion est fausse pour ${ }^{N}$
chaque N plus petit que 2^{n-2}. Si Γ a exactement un élément et Γ^{*} est fini, alors $\Gamma^{*}=\bigcup_{\lambda=0} \Gamma^{\lambda}$ où n
$N=\max _{l=0}(l+g(n-l))-1$ (g représente la fonction de Landau). Dans la dernière assertion N est minimal.

[^0]
0. INTRODUCTION

Let $n \in \mathbb{N} \backslash\{0\}$. Let Γ be a nonempty, finite set of $n \times n$-matrices with entries in $\mathbb{N}\left({ }^{3}\right) . \Gamma^{*}=\bigcup \bigcup_{\lambda \geqq 0} \Gamma^{\lambda}$ denotes the matrix-monoid generated by Γ. In this paper we deal with the following problem: If Γ^{*} is finite, - for which N does the identity $\Gamma^{*}=\bigcup_{\lambda=0}^{N} \Gamma^{\lambda}$ hold? Note that it is decidable whether or not Γ^{*} is finite ([MaSi77], [Ja77], [Re77]), - even if the underlying semiring \mathbb{N} is replaced by $\mathbb{Q}[\mathrm{MaSi} 77]$ or by an arbitrary commutative field [Ja77]. In fact, (for the semiring \mathbb{N}) the decision can be made in polynomial time (see appendix, see also [We87], [Le87], [Ku88]).

The following values for N are known from the literature:
$-N=2^{3^{3 \cdot n^{2}+1}-1[M a S i 77] . ~}$

- $N=f(n, \# \Gamma)-1$ where f is a recursive function [Ja77].
$-N=(\operatorname{entry}(\Gamma))^{n^{2} \cdot(n-1)} \cdot 5^{n^{3} / 2} \cdot n^{n^{3}}+n^{2}-1$ where entry (Γ) is defined as the maximum of 1 and the greatest entry of a matrix in Γ (see appendix, see also [We87], [Ku88]).

Similar values for N hold true, if the underlying semiring \mathbb{N} is replaced by \mathbb{Q} [MaSi77] or by an arbitrary commutative field [Ja77]. For further results on finitely generated matrix-monoids we refer to [McZ75], [MaSi77], [Ja77], [Re77], [ChI83], chapter 7 of [We87] (presented in the appendix of this paper), [Le87], and [Ku88].

In section 2 of this paper we show: If Γ^{*} is finite, then $\Gamma^{*}=\bigcup_{\lambda=0}^{N} \Gamma^{\lambda}$ where $N=\Gamma e^{2} \cdot n!\neg-2$. For each $n \geqq 2$ there is a set Γ_{n} of $n \times n$-matrices with entries in $\{0,1\}$ such that $\left(\Gamma_{n}\right)^{*}$ is finite and strictly includes $\bigcup_{\lambda=0}\left(\Gamma_{n}\right)^{\lambda}$ where $N=2^{n-2}-1$. In section 3 we show: If Γ has exactly one member and Γ^{*} is finite, then $\Gamma^{*}=\bigcup_{\lambda=0} \Gamma^{\lambda}$ where $N=\max _{l=0}(l+g(n-l))-1 \quad(g$ denotes Landau's function). For each $n \geqq 1$ there is an $n \times n$-matrix C_{n} with entries in $\{0,1\}$ such that $\left\{C_{n}\right\}^{*}$ is finite and strictly includes $\left\{\left(C_{n}\right)^{0},\left(C_{n}\right)^{1}, \ldots,\left(C_{n}\right)^{N}\right\}$ where $N=\max _{l=0}(l+g(n-l))-2$.

[^1]The second result of section 3 is essentially due to Ludwig Staiger. Indeed, only recently he slightly improved the corresponding result in a previous version of this paper up to optimality (!) and also exhibited an alternative proof, based on matrix theory, of the first result of section 3 [Sr 88]. Using similar methods, another proof of the latter result was obtained by Paavo Turakainen [Tu90].

The function g is considered in number theory. Landau showed: $\lim _{n \rightarrow \infty}\left[\log _{e}(g(n)) / \sqrt{n \cdot \log _{e} n}\right]=1$ ([La09], §61). Further results on the asymp$n \rightarrow \infty$
totic behavior of g can be found in [MsNRo88]. In section 3 we mention explicit upper and lower bounds for g due to Massias ([Ms84.1], [Ms84.2]).

It remains as an open problem: Where in the range between 2^{n-2} and $\left.\Gamma e^{2} \cdot n!\right\rceil-2$ is the smallest N such that for each finite monoid Γ^{*} (of $n \times n$ matrices with entries in \mathbb{N}) the identity $\Gamma^{*}=\bigcup_{\lambda=0}^{N} \Gamma^{\lambda}$ holds?

In our proofs we transform the above stated results into assertions on the degree of ambiguity of a finite \mathbb{N}-automaton (\mathbb{N}-FA). In section 2 we present a "non-ramification" lemma. This lemma allows to shorten an input word of a finitely ambiguous \mathbb{N}-FA without changing its ambiguity-behavior. The lemma and its application lead to the first result of section 2 and turn out to be a completion of methods and ideas used in [We87] and in [WeSe88]. In fact, in [Se89] the second author generalizes the above lemma to finite tree automata. In order to prove the second result of section 2 we take advantage of some properties of a finite automaton constructed in [WeSe88]. In section 3 of this paper we use direct methods and constructions.

1. PRELIMINARIES

Let K be a nonempty, finite set. $\mathbb{N}^{K \times K}$ denotes the multiplicative monoid of all square matrices with entries in \mathbb{N} and both rows and columns indexed by K; the matrix multiplication is defined "as usual". Let Γ be a subset of $\mathbb{N}^{K \times K}: \Gamma^{*}:=\underset{\lambda \geqq 0}{\bigcup} \Gamma^{\lambda}$ denotes the matrix-monoid generated by Γ. If Γ is finite, then Γ^{*} is said to be finitely generated.

The (i, j)-entry of a matrix $C \in \mathbb{N}^{K \times K}$ is denoted by $C_{i, j}(i, j \in K)$. Let $c_{i j} \in \mathbb{N}(i, j \in \mathrm{~K})$, then the (unique) matrix $C \in \mathbb{N}^{K \times K}$ such that for all $i, j \in K$ $C_{i, j}=c_{i j}$ is denoted by $C=\left(c_{i j}\right)_{i, j \in K}$. We define $\{0,1\}^{K \times K}:=\left\{C \in \mathbb{N}^{K \times K} \mid \forall i, j \in K: C_{i, j} \in\{0,1\}\right\}$. Let $n \in \mathbb{N}: \mathbb{N}^{n \times n}$ denotes the
multiplicative monoid $\mathbb{N}^{[n] \times[n]}$ of all $n \times n$-matrices with entries in $\mathbb{N}\left({ }^{4}\right)$. We define $\{0,1\}^{n \times n}:=\{0,1\}^{[n] \times[n]}$.

Following [E74], we define a finite \mathbb{N}-automaton (short form: \mathbb{N}-FA) as a 5-tuple $M=\left(Q, \Sigma, \gamma, Q_{I}, Q_{F}\right)$ where Q and Σ denote nonempty, finite sets of states resp. input symbols, $Q_{I}, Q_{F} \subseteq Q$ denote sets of initial resp. final (or accepting) states, and γ is a total function $\gamma: Q \times \Sigma \times Q \rightarrow \mathbb{N} . \Sigma$ is called the input alphabet of M, γ is called the multiplicity function of M. Each $(p, a, q) \in Q \times \Sigma \times Q$ denotes a transition of M with multiplicity $\gamma(p, a, q)$. A transition is called proper, if its multiplicity is nonzero. For each $a \in \Sigma \gamma(a):=(\gamma(p, a, q))_{p, q \in Q} \in \mathbb{N}^{Q \times Q}$ denotes the transition matrix for a in M. If $\gamma(Q \times \Sigma \times Q) \subseteq\{0,1\}$, then M is called a (nondeterministic) finite automaton (short form: FA).

The mode of operation of M is described by paths. A path π (of length m) for x in M leading from p to q is a word $\left(q_{1}, x_{1}\right) \ldots\left(q_{m}, x_{m}\right) q_{m+1} \in(Q \times \Sigma)^{m} \cdot Q$ so that $\left(q_{1}, x_{1}, q_{2}\right), \ldots,\left(q_{m}, x_{m}, q_{m+1}\right)$ are proper transitions of M and the equalities $x=x_{1} \ldots x_{m}, p=q_{1}$ and $q=q_{m+1}$ hold. π is said to consume x. $\gamma(\pi):=\prod_{i=1}^{m} \gamma\left(q_{i}, x_{i}, q_{i+1}\right)$ denotes the multiplicity of π. In particular, if $m=0$, then $\gamma(\pi)=1 . \pi$ is called accepting, if $p \in Q_{I}$ and $q \in Q_{F}$. The language recognized by M, denoted by $L(M)$, is the set of words consumed by all accepting paths in M.

Let $x=x_{1} \ldots x_{m} \in \Sigma^{*}\left(x_{1}, \ldots, x_{m} \in \Sigma\right)$, and let $p, q \in Q$: We define $\mathrm{da}_{M}(p, x, q)$ as the sum of the multiplicities of all paths for x in M leading from p to q. In particular, $\operatorname{da}_{M}(p, \varepsilon, q)=\#(\{p\} \cap\{q\})$ and, for each $a \in \Sigma$, $\operatorname{da}_{M}(p, a, q)=\gamma(p, a, q)$. It is easy to show by induction on m : $\operatorname{da}_{M}\left(p, x_{1} \ldots x_{m}, q\right)=\left(\gamma\left(x_{1}\right) \ldots \gamma\left(x_{m}\right)\right)_{p, q}($ see [E74], chapter VI.6). We will use this result as a second definition of the da_{M}-operator. The transition relation of M is the set $\delta:=\delta_{M}:=\left\{(p, x, q) \in Q \times \Sigma^{*} \times Q \mid \mathrm{da}_{M}(p, x, q) \neq 0\right\}$.

The degree of ambiguity of $x \in \Sigma^{*}$ in M [short form: $\mathrm{da}_{M}(x)$] is defined as the sum of the multiplicities of all accepting paths for x in M, i.e., $\mathrm{da}_{M}(x)=\sum_{p \in Q_{I}} \sum_{q \in Q_{F}} \mathrm{da}_{M}(p, x, q)$. The degree of ambiguity of M [short form: $\mathrm{da}(M)]$ is the supremum of the set $\left\{\operatorname{da}_{M}(x) \mid x \in \Sigma^{*}\right\} . M$ is called finitely ambiguous, if $\mathrm{da}(M)$ is finite.

[^2]A state of M is called useful, if it appears on some accepting path in M; otherwise, this state is called useless. Useless states are irrelevant to the degree of ambiguity in M. If all states of M are useful, then M is called trim.

A state $p \in Q$ is said to be connected with a state $q \in Q$ (short form: $p \leftrightarrow q$), if some paths in M lead from p to q and from q to p. An equivalence class $w . r . t$. the relation " \leftrightarrow " is called a strong component of M. A proper transition (p, a, q) of M is called a bridge, if p is not connected with q.

Let $x=x_{1} \ldots x_{m} \in \Sigma^{*}\left(x_{1}, \ldots, x_{m} \in \Sigma\right)$. The graph of accepting paths for x in M [short form: $G_{M}(x)$] is the directed multigraph (V, E) where

$$
\begin{aligned}
& V:=\left\{(q, j) \in Q \times\{0, \ldots, m\} \mid \exists q_{I} \in Q_{I}, \exists q_{F} \in Q_{F}:\right. \\
& \\
& \left.\quad\left(q_{I}, x_{1} \ldots x_{j}, q\right) \in \delta \text { and }\left(q, x_{j+1} \ldots x_{m}, q_{F}\right) \in \delta\right\}, \\
& E:=\{((p, j-1), i,(q, j)) \in V \times \mathbb{N} \times V \mid \\
& \\
& \left.\quad j \in[m] \text { and }\left(p, x_{j}, q\right) \in \delta \text { and } i \in\left[\gamma\left(p, x_{j}, q\right)\right]\right\}
\end{aligned}
$$

[an edge $((p, j-1), i,(q, j))$ is assumed to lead from vertex $(p, j-1)$ to vertex (q, j).]

Note: The number of all paths in $G_{M}(x)$ leading from $Q_{I} \times\{0\}$ to $Q_{F} \times\{m\}$ equals the degree of ambiguity of x in M. Each vertex of $G_{M}(x)$ is situated on such a path.

The connection between finite generating sets of matrix-monoids in $\mathbb{N}^{n \times n}$ and finite \mathbb{N}-automata with n states is established by the two following propositions:

Proposition 1.1: Let $\Gamma=\left\{C_{1}, \ldots, C_{t}\right\}$ be a nonempty, finite subset of $\mathbb{N}^{n \times n}$. We associate to Γ the \mathbb{N}-FA $M=([n], \Sigma, \gamma,[n],[n])$ where $\Sigma:=\left\{a_{1}, \ldots, a_{t}\right\}$ and $\left(\gamma\left(i, a_{\gamma}, j\right)\right)_{i, j \in[n]}:=C_{\tau}(\tau \in[t])$. Then, the following assertions are true:
(i) Γ^{*} is finite, if and only if M is finitely ambiguous.
(ii) $\forall \lambda \in \mathbb{N}, \forall C \in \Gamma^{\lambda}, \exists x \in \Sigma^{\lambda}: C=\left(\mathrm{da}_{M}(i, x, j)\right)_{i, j \in[n]}$.
(iii) $\forall y \in \Sigma^{*}, \exists D \in \Gamma^{|y|}:\left(\mathrm{da}_{M}(i, y, j)\right)_{i, j \in[n]}=D$.

Proposition 1.2: Let $M=(Q, \Sigma, \gamma, Q, Q)$ be an $\mathbb{N}-F A$. We associate to M the subset $\Gamma:=\{\gamma(a) \mid a \in \Sigma\}$ of $\mathbb{N}^{2 \times Q}$. Then, the following assertions are true:
(i) M is finitely ambiguous, if and only if Γ^{*} is finite.
(ii) $\forall y \in \Sigma^{*}, \exists D \in \Gamma^{|y|}:\left(\mathrm{da}_{M}(p, y, q)\right)_{p, q \in Q}=D$.
(iii) $\forall \lambda \in \mathbb{N}, \forall C \in \Gamma^{\lambda}, \exists x \in \Sigma^{\lambda}: C=\left(\mathrm{da}_{M}(p, x, q)\right)_{p, q \in Q}$.

Proof of proposition 1.1: By the definition of the $\mathrm{da}_{M^{-}}$-operator we observe:

$$
\begin{aligned}
& \forall \tau_{1}, \ldots, \tau_{m} \in[t], \quad \forall i, j \in[n]: \\
& \qquad \operatorname{da}_{M}\left(i, a_{\tau_{1}}, \ldots, a_{\tau_{m}}, j\right)=\left(\gamma\left(a_{\tau_{1}}\right) \ldots \gamma\left(a_{\tau_{m}}\right)\right)_{i, j}=\left(C_{\tau_{1}} \ldots C_{\tau_{m}}\right)_{i, j} .
\end{aligned}
$$

From this follows the proposition.
Proof of proposition 1.2: By the definition of the $\mathrm{da}_{M^{-}}$-operator we know:

$$
\forall x_{1}, \ldots, x_{m} \in \Sigma, \quad \forall p, q \in Q: \quad \operatorname{da}_{M}\left(p, x_{1} \ldots x_{m}, q\right)=\left(\gamma\left(x_{1}\right) \ldots \gamma\left(x_{m}\right)\right)_{p, q}
$$

From this follows the proposition.
Landau's function $g: \mathbb{N} \rightarrow \mathbb{N}$ (see [LO9], §61) is defined as follows:

$$
g(n):=\max \left\{\operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right) \mid n_{1}, \ldots, n_{k} \in \mathbb{N} \backslash\{0\}, n=n_{1}+\ldots+n_{k}\right\}
$$

Note that 1 cm()$=1$, and thus $g(0)=1$. Clearly, for all $n \in \mathbb{N}$, $g(n) \leqq g(n+1)$.

2. THE GENERAL CASE

In this section we prove the two following theorems:
Theorem 2.1: Let $n \in \mathbb{N} \backslash\{0\}$. Define $N:=\Gamma e^{2} \cdot n!\neg-2$. Let Γ be a nonempty, finite set of matrices in $\mathbb{N}^{n \times n}$. If Γ^{*} is finite, then $\Gamma^{*}=\bigcup_{\lambda=0} \Gamma^{\lambda}$.

Theorem 2.2: Let $n \in \mathbb{N} \backslash\{0,1\}$. Define $N:=2^{n-2}-1$. Then, a set Γ_{n} of at most $n+2$ matrices in $\{0,1\}^{n \times n}$ effectively exists such that $\left(\Gamma_{n}\right)^{*}$ is finite and strictly includes $\bigcup_{\lambda=0}\left(\Gamma_{n}\right)^{\lambda}$.

Note that in theorem 2.1 the reversal of the implication is trivially true. Theorem 2.2 means that theorem 2.1 is incorrect for any N less than 2^{n-2}. Thus, 2^{n-2} is a lower bound for the smallest possible N in theorem 2.1.

In order to prove the theorems 2.1 and 2.2 we transform them into assertions on the degree of ambiguity of an \mathbb{N}-FA which are stated in the lemmas 2.3 and 2.4. Using the propositions 1.1 and 1.2 we will show that theorem 2.1 resp. 2.2 follows from lemma 2.3 resp. 2.4. After that we will prove these two lemmas, successively.

Lemma 2.3: Let $M=\left(Q, \Sigma, \gamma, Q_{I}, Q_{F}\right)$ be a finitely ambiguous \mathbb{N} - $F A$ with n states.

Define $N:=\left\ulcorner e^{2} \cdot n!\neg-2\right.$. Then, the following assertion is true:

$$
\begin{gather*}
\forall x \in \Sigma^{*}, \quad \exists y \in \Sigma \leqq N, \quad \forall q_{I} \in Q_{I}, \quad \forall q_{F} \in Q_{F}: \\
\operatorname{da}_{M}\left(q_{I}, x, q_{F}\right)=\operatorname{da}_{M}\left(q_{I}, y, q_{F}\right) \quad\left(^{5}\right) . \tag{}
\end{gather*}
$$

Lemma 2.4: Let $n \in \mathbb{N} \backslash\{0,1\}$. Define $N:=2^{n-2}-1$. Then, a finitely ambiguous $F A M_{n}=(Q, \Sigma, \gamma, Q, Q)$ with n states and $n+2$ input symbols effectively exists such that the following assertion is true:

$$
\exists y \in \Sigma^{*}, \quad \exists p, q \in Q, \quad \forall x \in \Sigma^{\leqq N}: \quad \operatorname{da}_{M_{n}}(p, x, q)<\mathrm{da}_{M_{n}}(p, y, q) .
$$

Proof of theorem 2.1: Let $M=([n], \Sigma, \gamma,[n],[n])$ be the \mathbb{N}-FA associated to Γ in proposition 1.1. We conclude from proposition 1.1 and lemma 2.3:

$$
\begin{aligned}
& \#\left(\Gamma^{*}\right)<\infty \Rightarrow \operatorname{da}(M)<\infty \\
& \Rightarrow \quad \forall x \in \Sigma^{*}, \quad \exists y \in \Sigma^{\leqq}, \quad \forall i, j \in[n]: \quad \operatorname{da}_{M}(i, x, j)=\operatorname{da}_{M}(i, y, j) \\
& \Rightarrow \quad \forall C \in \Gamma^{*}, \quad \exists D \in \bigcup_{\lambda=0}^{N} \Gamma^{\lambda}: \quad C=D \\
& \\
& \Rightarrow \Gamma^{*}=\bigcup_{\lambda=0}^{N} \Gamma^{\lambda} .
\end{aligned}
$$

Proof of theorem 2.2: Take the FA $\mathrm{M}_{n}=(Q, \Sigma, \gamma, Q, Q)$ whose existence is claimed in lemma 2.4, and consider the subset $\Gamma_{n}:=\{\gamma(a) \mid a \in \Sigma\}$ of $\{0,1\}^{Q \times Q}$ associated to M_{n} in proposition 1.2. According to lemma 2.4, \# $Q=n$ and \# $\left(\Gamma_{n}\right) \leqq \# \Sigma=n+2$. Lemma 2.4 claims:

$$
\operatorname{da}\left(M_{n}\right)<\infty
$$

and

$$
\exists y \in \Sigma^{*}, \quad \exists p, q \in Q, \quad \forall x \in \Sigma \leqq N: \quad \mathrm{da}_{M_{n}}(p, x, q)<\mathrm{da}_{M_{n}}(p, y, q) .
$$

[^3]By proposition 1.2 this implies:

$$
\#\left(\Gamma_{n}\right)^{*}<\infty
$$

and

$$
\exists D \in\left(\Gamma_{n}\right)^{*}, \quad \exists p, q \in Q, \quad \forall C \in \bigcup_{\lambda=0}^{N}\left(\Gamma_{n}\right)^{\lambda}: \quad C_{p, q}<D_{p, q}
$$

N
Thus, $\left(\Gamma_{n}\right)^{*}$ is finite and strictly includes $\bigcup_{\lambda=0}\left(\Gamma_{n}\right)^{\lambda}$.
In order to prove lemma 2.3 we give some technical definitions and we state a "non-ramification" lemma (lemma 2.5). This lemma guarantees certain pieces of a graph of accepting paths in a finitely ambiguous \mathbb{N}-FA to be free from ramifications of edges. This property allows to shorten a sufficiently long input word of such an \mathbb{N}-FA without changing its ambiguity-behavior and therefore leads to a proof of lemma 2.3. Having established lemma 2.5, we prove this lemma and lemma 2.3, successively.

Let $M=\left(Q, \Sigma, \gamma, Q_{I}, Q_{F}\right)$ be an \mathbb{N}-FA. Let $x=x_{1} \ldots x_{m} \in \Sigma^{*}\left(x_{1}, \ldots, x_{m} \in \Sigma\right)$.
Consider the multigraph $G_{M}(x)=(V, E)$. Let $j \in\{0, \ldots, m\}$: We define

$$
\begin{gathered}
\operatorname{att}(x, j):=\left\{q \in Q \mid \exists q_{I} \in Q_{I}:\left(q_{I}, x_{1} \ldots x_{j}, q\right) \in \delta_{M}\right\}, \\
\operatorname{der}(x, j):=\left\{q \in Q \mid \exists q_{F} \in Q_{F}:\left(q, x_{j+1} \ldots x_{m}, q_{F}\right) \in \delta_{M}\right\}, \\
\operatorname{set}(x, j):=\{q \in Q \mid(q, j) \in V\}=\operatorname{att}(x, j) \cap \operatorname{der}(x, j) .
\end{gathered}
$$

$\operatorname{att}(x, j), \operatorname{der}(x, j)$ and set (x, j) denote the set of states attainable from Q_{I} with $x_{1} \ldots x_{j}$, the set of states derivable to Q_{F} with $x_{j+1} \ldots x_{m}$, and the set of states at column j in $G_{M}(x)$, respectively. Let $j_{0} \in[m]$: A pair $\left(e_{1}, e_{2}\right)$ of edges in $G_{M}(x)$ is called a ramification of edges at column j_{0} in $G_{M}(x)$, if e_{1} and e_{2} are distinct and start at the same vertex in $Q \times\left\{j_{0}-1\right\}$, i.e., for some state $p_{0} \in Q$ and some distinct $\left(i_{1}, q_{1}\right),\left(i_{2}, q_{2}\right) \in \mathbb{N} \times Q, e_{1}, e_{2} \in E$ are of the form $e_{1}=\left(\left(p_{0}, j_{0}-1\right), i_{1},\left(q_{1}, j_{0}\right)\right)$ and $e_{2}=\left(\left(p_{0}, j_{0}-1\right), i_{2},\left(q_{2}, j_{0}\right)\right)$. Let $0 \leqq j_{1}<j_{2} \leqq m: G_{M}(x)$ is said to be ramification-free between columns j_{1} and j_{2}, if there is no ramification of edges at any of the columns $j_{1}+1, \ldots, j_{2}$ in $G_{M}(x)$.

Lemma 2.5 (Non-Ramification Lemma): Let $M=\left(Q, \Sigma, \gamma, Q_{I}, Q_{F}\right)$ be a finitely ambiguous $\mathbb{N}-F A$. Let $x=x_{1} \ldots x_{m} \in \Sigma^{*}\left(x_{1}, \ldots, x_{m} \in \Sigma\right)$. Let $0 \leqq j_{1}<j_{2} \leqq m$ so that set $\left(x, j_{1}\right)$ and set $\left(x, j_{2}\right)$ coincide. Then, $G_{M}(x)$ is ramification-free between columns j_{1} and j_{2}.

Proof of lemma 2.5: Let $G_{M}(x)=(V, E)$. Assume that there is a ramification of edges $\left(e_{1}, e_{2}\right) \in E^{2}$ at some column $j_{0} \in\left\{j_{1}+1, \ldots, j_{2}\right\}$ in $G_{M}(x)$. Then, a state $p_{0} \in Q$ and distinct $\left(i_{1}, q_{1}\right),\left(i_{2}, q_{2}\right) \in \mathbb{N} \times Q$ exist such that $e_{1}=\left(\left(p_{0}, j_{0}-1\right), i_{1},\left(q_{1}, j_{0}\right)\right)$ and $e_{2}=\left(\left(p_{0}, j_{0}-1\right), i_{2},\left(q_{2}, j_{0}\right)\right)$.

Ler $t \in \mathbb{N} \backslash\{0\}$. We define $u:=x_{1} \ldots x_{j_{1}}, \quad v:=x_{j_{1}+1} \ldots x_{j_{2}}$, $w:=x_{j_{2}+1} \ldots x_{m}$, and $y:=u v^{t} w=y_{1} \ldots y_{1}$ where $l:=|y|=m+(t-1) \cdot\left(j_{2}-j_{1}\right)$ and $y_{1}, \ldots, y_{1} \in \Sigma$. Pumping that segment of $G_{M}(x)$ which corresponds to v, and which contains e_{1} and e_{2}, yields the directed multigraph $\widetilde{G}=(\widetilde{V}, \widetilde{E})$ and the edges $e_{1}^{(0)}, e_{2}^{(0)}, \ldots, e_{1}^{(t-1)}, e_{2}^{(t-1)} \in \widetilde{E}$ (see fig. 1):

G:

$A:=\operatorname{set}\left(x, j_{1}\right)=\operatorname{set}\left(x, j_{2}\right)$

Figure 1.

$$
\begin{gathered}
\tilde{V}:=V \cap Q \times\left\{0, \ldots, j_{1}\right\} \cup \cup_{\tau=0}^{t-1}\left\{\left(q, j+\tau \cdot\left(j_{2}-j_{1}\right)\right) \mid j_{1} \leqq j \leqq j_{2},(q, j) \in V\right\} \\
\cup\left\{\left(q, j+(t-1) \cdot\left(j_{2}-j_{1}\right)\right) \mid j_{2} \leqq j \leqq m,(q, j) \in V\right\}, \\
\tilde{E}:=\left\{((p, j-1), i,(q, j)) \in \tilde{V} \times \mathbb{N} \times \tilde{V} \mid j \in[1] \wedge\left(p, y_{j}, q\right) \in \delta_{M} \wedge i \in\left[\gamma\left(p, y_{j}, q\right)\right]\right\}, \\
e_{1}^{(\tau)}:=\left(\left(p_{0},\left(j_{0}-1\right)+\tau \cdot\left(j_{2}-j_{1}\right)\right), i_{1},\left(q_{1}, j_{0}+\tau \cdot\left(j_{2}-j_{1}\right)\right)\right), \\
e_{2}^{(\tau)}:=\left(\left(p_{0},\left(j_{0}-1\right)+\tau \cdot\left(j_{2}-j_{1}\right)\right), i_{2},\left(q_{2}, j_{0}+\tau \cdot\left(j_{2}-j_{1}\right)\right)\right) \quad(\tau=0, \ldots, t-1) .
\end{gathered}
$$

Since set $\left(x, j_{1}\right)$ and set $\left(x, j_{2}\right)$ coincide, each vertex of \tilde{G} is situated on some path in that graph leading from $Q_{I} \times\{0\}$ to $Q_{F} \times\{1\}$, and \widetilde{G} is a subgraph of $G_{M}(y)$.

We construct pairwise distinct paths $\pi_{0}, \ldots, \pi_{t-1}$ in \widetilde{G} leading from $Q_{I} \times\{0\}$ to $Q_{F} \times\{1\}$. Let $\tau \in\{0, \ldots, t-1\}$: Select a path π_{τ} in \widetilde{G} leading from $Q_{I} \times\{0\}$ to $Q_{F} \times\{1\}$ such that π_{τ} runs through $e_{1}^{(\tau)}$ and does not run through any of the edges $e_{1}^{(\tau+1)}, \ldots, e_{1}^{(t-1)}$ [and may run through $e_{2}^{(\tau+1)}, \ldots, e_{2}^{(t-1)}$ instead]. Let $0 \leqq \sigma<\tau \leqq t-1: \pi_{\sigma}$ and π_{τ} are distinct, since π_{τ} runs through $e_{1}^{(\tau)}$ and π_{σ} does not.

In conclusion, we know for all $t \in \mathbb{N} \backslash\{0\}: \mathrm{da}_{M}\left(u v^{t} w\right) \geqq t$. Hence, da (M) is infinite. (Contradiction!)

In order to prove lemma 2.3 we need the following proposition:
Proposition 2.6: Let $n \in \mathbb{N}$. Then, $\sum_{A \subseteq B \subseteq[n]}(\# A)!<e^{2} \cdot n!$.
Proof: We estimate:

$$
\begin{aligned}
\sum_{A \subseteq B \subseteq[n]}(\# A)! & =\sum_{d=0}^{n}\binom{n}{d} \cdot 2^{n-d} \cdot d!=n!\cdot \sum_{d=0}^{n}\left(2^{n-d} /(n-d)!\right) \\
& =n!\cdot \sum_{d=0}^{n}\left(2^{d} / d!\right)<e^{2} \cdot n!. \quad \square
\end{aligned}
$$

Proof of lemma 2.3: We prove the lemma by induction on the length of $x \in \Sigma^{*}$. Let $x=x_{1} \ldots x_{m} \in \Sigma^{*}\left(x_{1}, \ldots, x_{m} \in \Sigma\right)$.

Base of induction: $|x| \leqq N$. Select $y:=x$.
Induction step: Let $\left.|x| \geqq N+1=\Gamma e^{2} \cdot n!\right\urcorner-1$. Consider the multigraph $G_{M}(x)=(V, E)$. By proposition 2.6, a subset J of $\{0, \ldots, m\}$ and sets A and B with $A \subseteq B \subseteq Q$ exist such that $\# J>(\# A)$! and $\{(\operatorname{set}(x, j), \operatorname{att}(x, j)) \mid j \in J\}=\{(A, B)\}$. Define $j_{1}:=\min (J)$ and $j_{2}:=\max (J)$. By lemma 2.5 we observe:
$\left(^{*}\right) G_{M}(x)$ is ramification-free between columns j_{1} and j_{2}.
Let us fix pairwise different states r_{1}, \ldots, r_{d} such that $A=\left\{r_{1}, \ldots, r_{d}\right\}$ (see fig. 2).

Let $j \in J: \varphi(j)$ is defined to be, according to (*), the uniquely determined d-tuple $\left(s_{1}, \ldots, s_{d}\right) \in Q^{d}$ such that $\left\{s_{1}, \ldots, s_{d}\right\}=\operatorname{set}(x, j)=A$ and for all $i=1, \ldots, d\left(r_{i}, x_{j_{1}+1} \ldots x_{j}, s_{i}\right) \in \delta_{M}$. Thus, we have defined a mapping $\varphi: J \rightarrow Q^{d}$ such that $\# \varphi(J) \leqq d!$.

Figure 2.

Since $\# J>(\# A)!=d!$, integers $j_{3}, j_{4} \in J$ and states $s_{1}, \ldots, s_{d} \in Q$ exist such that $j_{1} \leqq j_{3}<j_{4} \leqq j_{2}$ and $\varphi\left(j_{3}\right)=\varphi\left(j_{4}\right)=\left(s_{1}, \ldots, s_{d}\right)$. Let us consider the decomposition $x=u v_{1} v_{2} v_{3} w$ where $u:=x_{1} \ldots x_{j_{1}}, v_{1}:=x_{j_{1}+1} \ldots x_{j_{3}}$, $v_{2}:=x_{j_{3}+1} \ldots x_{j_{4}}, v_{3}:=x_{j_{4}+1} \ldots x_{j_{2}}, w:=x_{j_{2}+1} \ldots x_{m}$. From the definition of φ and from (*) we derive (see fig. 2):

$$
\begin{gathered}
\left\{s_{1}, \ldots, s_{d}\right\}=\operatorname{set}\left(x, j_{3}\right)=\operatorname{set}\left(x, j_{4}\right)=A, \\
\forall i_{1}, i_{2} \in[d]: \quad \operatorname{da}_{M}\left(s_{i_{1}}, v_{2}, s_{i_{2}}\right)=\#\left(\left\{i_{1}\right\} \cap\left\{i_{2}\right\}\right) .
\end{gathered}
$$

From the above we conclude (see fig. 2):

$$
\begin{aligned}
\forall q_{I} \in Q_{I} & , \quad \forall q_{F} \in Q_{F}: \quad \operatorname{da}_{M}\left(q_{I}, x, q_{F}\right) \\
& =\sum_{i_{1}=1}^{d} \sum_{i_{2}=1}^{d} \operatorname{da}_{M}\left(q_{I}, u v_{1}, s_{i_{1}}\right) \cdot \mathrm{da}_{M}\left(s_{i_{1}}, v_{2}, s_{i_{2}}\right) \cdot \mathrm{da}_{M}\left(s_{i_{2}}, v_{3} w, q_{F}\right) \\
& =\sum_{i=1}^{d} \mathrm{da}_{M}\left(q_{I}, u v_{1}, s_{i}\right) \cdot \mathrm{da}_{M}\left(s_{i}, v_{3} w, q_{F}\right) .
\end{aligned}
$$

We define $y:=u v_{1} v_{3} w \in \Sigma^{*}$. Clearly, $|y|<|x|$. Consider the multigraph $G_{M}(y)=(\widetilde{V}, \tilde{E})$. Since

$$
\operatorname{att}\left(y, j_{3}\right)=\operatorname{att}\left(x, j_{3}\right)=B=\operatorname{att}\left(x, j_{4}\right)
$$

and $\operatorname{der}\left(y, j_{3}\right)=\operatorname{der}\left(x, j_{4}\right)$, we observe:

$$
\begin{aligned}
\operatorname{set}\left(y, j_{3}\right)=\operatorname{att}\left(y, j_{3}\right) \cap \operatorname{der}\left(y, j_{3}\right) & =\operatorname{att}\left(x, j_{4}\right) \cap \operatorname{der}\left(x, j_{4}\right) \\
& =\operatorname{set}\left(x, j_{4}\right)=A=\left\{s_{1}, \ldots, s_{d}\right\} .
\end{aligned}
$$

From this follows:
$\forall q_{I} \in Q_{I}, \quad \forall q_{F} \in Q_{F}:$

$$
\operatorname{da}_{M}\left(q_{I}, y, q_{F}\right)=\sum_{i=1}^{d} \operatorname{da}_{M}\left(q_{I}, u v_{1}, s_{i}\right) \cdot\left(\mathrm{da}_{M}\left(s_{i}, v_{3} w, q_{F}\right)\right.
$$

Therefore, the assertion of the lemma follows from the induction hypothesis.

Let M be an FA. In [We87] and in [WeSe88] the criterion (IDA) is introduced which is proved to characterize the infinite degree of ambiguity of M. The concept of a ramification of edges may be used to furnish an alternative proof of this characterization. The essential idea is to derive the criterion (IDA) from such a ramification of edges in some graph of accepting paths in M which lies between two columns with coinciding sets of states. Note that the relation " $\leftrightarrow M^{\prime}$ " is not used in this alternative proof.

For the proof of lemma 2.4 we adopt from [WeSe88] the two following propositions:

Proposition 2.7 ([WeSe88], lemma 5.2): For all $n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}$ a trim $F A$ $M:=M_{n_{1}, n_{2}}=\left(Q, \Sigma, \gamma, Q_{I}, Q_{F}\right)$ with $n_{1}+n_{2}$ states and $n_{1}+n_{2}+2$ input symbols effectively exists such that the following assertions are true:
(i) M has two strong components with n_{1} and n_{2} states, respectively. For some order Q_{1}, Q_{2} of these components, $\left(p_{1}, p_{2}\right),\left(q_{1}, q_{2}\right) \in Q_{1} \times Q_{2}$ exist such that $Q_{I}=\left\{p_{1}\right\}, Q_{F}=\left\{q_{2}\right\}$, and every bridge of M is of the form $\left(q_{1}, a, p_{2}\right)$ where $a \in \Sigma$.
(ii) M is finitely ambiguous.
(iii) There is a word $y \in \Sigma^{*}$ so that $\operatorname{da}_{M}(y)$ is at least $2^{n_{1}+n_{2}-2}$.

Proposition 2.8 ([WeSe88], assertion (*) in the proof of lemma 4.5): Let $M=\left(Q, \Sigma, \gamma, Q_{I}, Q_{F}\right)$ be an $F A$ with the following properties:
(i) M has two strong components. For some order Q_{1}, Q_{2} of these components, $\left(p_{1}, p_{2}\right),\left(q_{1}, q_{2}\right) \in Q_{1} \times Q_{2}$ exist such that $Q_{I}=\left\{p_{1}\right\}, Q_{F}=\left\{q_{2}\right\}$, and every bridge of M is of the form $\left(q_{1}, a, p_{2}\right)$ where $a \in \Sigma$.
(ii) For every useful state $q \in Q$ and every word $v \in \Sigma^{*} \operatorname{da}_{M}(q, v, q)$ is at most 1.

Then, for all $x \in \Sigma^{*}, \mathrm{da}_{M}(x)$ is at most $|x|$.
Proof of lemma 2.4: Choose $n_{1}, n_{2} \in \mathbb{N} \backslash\{0\}$ so that $n=n_{1}+n_{2}$. Consider the FA $M:=M_{n_{1}, n_{2}}=\left(Q, \Sigma, \gamma, Q_{I}, Q_{F}\right)$ whose existence is claimed in proposition 2.7. By the assertions (i) and (ii) of proposition 2.7 we can apply proposition 2.8 to M which yields for all $x \in \Sigma^{*}: \operatorname{da}_{M}(x) \leqq|x|$. Consider $M^{\prime}:=(Q, \Sigma, \gamma, Q, Q) . M^{\prime}$ is a finitely ambiguous FA with n states and $n+2$ input symbols [in fact, since M is trim, da $\left(M^{\prime}\right) \leqq n^{2} \cdot \mathrm{da}(M)<\infty$]. Taking $y \in \Sigma^{*}$ as in assertion (iii) of proposition 2.7, we observe for all $x \in \Sigma \leqq N$:

$$
\mathrm{da}_{M^{\prime}}\left(p_{1}, x, q_{2}\right)=\mathrm{da}_{M}(x) \leqq|x| \leqq N=2^{n-2}-1<\mathrm{da}_{M}(y)=\mathrm{da}_{M^{\prime}}\left(p_{1}, y, q_{2}\right)
$$

Thus, M^{\prime} is the FA M_{n} we are looking for.

3. MONOIDS GENERATED BY ONE MATRIX

In this section we prove the two following theorems the second of which is essentially due to Staiger [Sr88]:

Theorem 3.1: Let $n \in \mathbb{N} \backslash\{0\}$. Define $N:=\max _{l=0}(l+g(n-l))-1$. Let C be a matrix in $\mathbb{N}^{n \times n}$. If $\{C\}^{*}$ is finite, then $\{C\}^{*}=\left\{C^{0}, C^{1}, \ldots, C^{N}\right\}$.

Theorem 3.2: Let $n \in \mathbb{N} \backslash\{0\}$. Define $N:=\max _{l=0}(l+g(n-l))-2$. Then, a matrix C_{n} in $\{0,1\}^{n \times n}$ effectively exists such that $\left\{C_{n}\right\}^{*}$ is finite and strictly includes $\left\{\left(C_{n}\right)^{0},\left(C_{n}\right)^{1}, \ldots,\left(C_{n}\right)^{N}\right\}$.

Massias ([Ms84.1], [Ms84.2]) showed: There is a constant $k_{1}<1.05314$ such that for all $n \in \mathbb{N} \backslash\{0\} g(n)$ is at most $e^{k_{1} \cdot \sqrt{n \cdot \log _{e} n}}$, where equality holds for $n=1319766$ (!!). Thus, in theorem 3.1 N can be replaced by $e^{k_{1} \cdot \sqrt{n \cdot \log _{e} n}}+n-1$. Note that in this theorem the reversal of the implication is trivially true.

Theorem 3.2 means that theorem 3.1 is incorrect for any N less than $\max _{l=0}(l+g(n-l))-1$. Therefore, N in theorem 3.1 is minimal. It is a result of Massias [Ms84.1] that for all $n \geqq 906 g(n)$ is at least $e^{\sqrt{n \cdot \log _{e} n}}$. Thus, in theorem $3.2 N$ can be replaced by $e^{\sqrt{n} \cdot \log _{e} n}-2$ for all $n \geqq 906$.

In order to prove the theorems 3.1 and 3.2 we transform them into assertions on the degree of ambiguity of an \mathbb{N}-FA with one input symbol which are stated in the lemmas 3.3 and 3.4 . Using the propositions 1.1 and 1.2 we will show that theorem 3.1 resp. 3.2 follows from lemma 3.3 resp. 3.4. After that we will prove the lemmas 3.3 and 3.4 , successively. This will be done using direct methods and constructions. We want to point out that there are two other proofs of theorem 3.1, based on matrix theory, by Staiger [Sr88] and by Turakainen [Tu90]. As a side effect, this alternative proof yields a lot of knowledge about the structure of the matrices in question.

Lemma 3.3: Let $M=\left(Q,\{a\}, \gamma, Q_{I}, Q_{F}\right)$ be a finitely ambiguous $\mathbb{N}-F A$ with n states.

Then, for some $N \leqq \max _{l=0}(l+g(n-l))-1$, the following assertion is true:
$\forall x \in\{a\}^{*}, \quad \exists y \in\{a\}^{\leqq N}, \quad \forall q_{I} \in Q_{I}, \quad \forall q_{F} \in Q_{F}:$

$$
\mathrm{da}_{M}\left(q_{I}, x, q_{F}\right)=\mathrm{da}_{M}\left(q_{I}, y, q_{F}\right)
$$

Lemma 3.4: Let $n \in \mathbb{N} \backslash\{0\}$. Define $N:=\max _{l=0}(l+g(n-l)-2$. Then, an $F A$ $M_{n}=(Q,\{a\}, \gamma, Q, Q)$ with n states effectively exists such that the following assertions are true:
(i) The degree of ambiguity of M_{n} is at most n.
(ii) $\exists \mu \in \mathbb{N}, \forall \lambda \in\{0, \ldots, N\}, \exists p, q \in Q: \mathrm{da}_{M_{n}}\left(p, a^{\lambda}, q\right) \neq \mathrm{da}_{M_{n}}\left(p, a^{\mu}, q\right)$.

Proof of theorem 3.1: Let $M=([n],\{a\}, \gamma,[n],[n])$ be the \mathbb{N}-FA associated to $\Gamma=\{C\}$ in proposition 1.1. We conclude from proposition 1.1 and lemma 3.3:

$$
\begin{aligned}
\# & \left(\{C\}^{*}\right)<\infty \Rightarrow \mathrm{da}(M)<\infty \\
& \Rightarrow \forall x \in\{a\}^{*}, \quad \exists y \in\{a\}^{\leqq N}, \quad \forall i, j \in[n]: \quad \operatorname{da}_{M}(i, x, j)=\mathrm{da}_{M}(i, y, j) \\
& \Rightarrow \forall \lambda \in \mathbb{N}, \quad \exists \mu \in\{0, \ldots, N\}: \quad C^{\lambda}=C^{\mu} \\
& \Rightarrow\{C\}^{*}=\left\{C^{0}, C^{1}, \ldots, C^{N}\right\} .
\end{aligned}
$$

Proof of theorem 3.2: Take the FA $M_{n}=(Q,\{a\}, \gamma, Q, Q)$ with n states whose existence is claimed in lemma 3.4, and consider the matrix $C_{n}:=\gamma(a)$ in $\{0,1\}^{0 \times Q}$.

Note that the set $\left\{C_{n}\right\}$ is associated to M_{n} in proposition 1.2. Lemma 3.4 claims:

$$
\mathrm{da}\left(M_{n}\right) \leqq n
$$

and

$$
\exists \mu \in \mathbb{N}, \quad \forall \lambda \in\{0, \ldots, N\}, \exists p, q \in Q: \quad \mathrm{da}_{M_{n}}\left(p, a^{\lambda}, q\right) \neq \mathrm{da}_{M_{n}}\left(p, a^{\mu}, q\right) .
$$

According to proposition 1.2 this implies:
$\#\left\{C_{n}\right\}^{*}<\infty$
and

$$
\exists \mu \in \mathbb{N}, \quad \forall \lambda \in\{0, \ldots, N\}, \quad \exists p, q \in Q:\left(\left(C_{n}\right)^{\lambda}\right)_{p, q} \neq\left(\left(C_{n}\right)^{\mu}\right)_{p, q} .
$$

Thus, $\left\{C_{n}\right\}^{*}$ is finite and strictly includes $\left\{\left(C_{n}\right)^{0},\left(C_{n}\right)^{1}, \ldots,\left(C_{n}\right)^{N}\right\}$.
Proof of lemma 3.3: Let w.1. o. g. M be trim. A strong component U of M is called trivial, if $\gamma_{\mid U \times\{a\} \times U}=0$. Let $\left\{q_{1}\right\}, \ldots,\left\{q_{n_{0}}\right\}$ resp. Q_{1}, \ldots, Q_{k} be the trivial resp. nontrivial strong components of M. We define $Q_{0}:=\left\{q_{1}, \ldots, q_{n_{0}}\right\}$, and $n_{i}:=\# Q_{i}(i=1, \ldots, k)$.

First of all, we show:
(1) If $i, j \in[k]$ are distinct, then $\delta_{M} \cap Q_{i} \times\{\text { a }\}^{*} \times Q_{j}=\varnothing$.
(2) For all $i \in[k]$ there is a bijective mapping $\varphi_{i}: Q_{i} \rightarrow\left[n_{i}\right]$ such that the following holds for all $r, s \in Q_{i}$:

$$
\gamma(r, a, s)=\left\{\begin{array}{lcc}
1 & \text { if } & \varphi_{i}(s)=\varphi_{i}(r)+1 \bmod n_{i} \\
0 & \text { else }
\end{array}\right.
$$

Proof of (1): Assume that, for some distinct $i, j \in[k]$, $\delta_{M} \cap Q_{i} \times\{a\}^{*} \times Q_{j} \neq \varnothing$. Choose $r \in Q_{i}$ and $s \in Q_{j}$. Then, for some $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{N} \backslash\{0\},\left(r, a^{\lambda_{1}}, r\right),\left(r, a^{\lambda_{2}}, s\right),\left(s, a^{\lambda_{3}}, s\right) \in \delta_{M}$. Since $Q_{i} \cap Q_{j}=\varnothing$, this implies for all $t \in \mathbb{N}: \mathrm{da}_{M}\left(r, a^{\lambda_{2}}\left(a^{\lambda_{1} \lambda_{3}}\right)^{t}, s\right) \geqq t+1$. Hence, since r and s are useful, $\mathrm{da}(M)$ is infinite. (Contradiction!)

Proof of (2): Let $i \in[k]$ and $r \in Q_{i}$. Let $s_{1}, s_{2} \in Q_{i}$ so that (r, a, s_{1}), $\left(r, a, s_{2}\right) \in \delta_{M}$. Then, for some $\lambda_{1}, \lambda_{2} \in \mathbb{N},\left(s_{1}, a^{\lambda_{1}}, r\right),\left(s_{2}, a^{\lambda_{2}}, r\right) \in \delta_{M}$. Assume that s_{1} and s_{2} are distinct, or that $\gamma\left(r, a, s_{1}\right) \geqq 2$. Then, $\mathrm{da}_{M}(r, v, r) \geqq 2$ where $v:=a^{\left(1+\lambda_{1}\right)^{\cdot}\left(1+\lambda_{2}\right)}$. This implies for all $t \in \mathbb{N}: \mathrm{da}_{M}\left(r, v^{t}, r\right) \geqq 2^{t}$. Hence, since r is useful, $\mathrm{da}(M)$ is infinite. (Contradiction!) Therefore, vol. $25, \mathrm{n}^{\circ} 1,1991$
$\sum_{s \in Q_{i}} \gamma(r, a, s)=1$. From this follows (2).
Let $\varphi_{1}, \ldots, \varphi_{k}$ be as in (2). From (2) follows by induction on λ :

$$
\forall i \in[k], \quad \forall r, s \in Q_{i}, \quad \forall \lambda \in \mathbb{N}:
$$

$$
\mathrm{da}_{M}\left(r, a^{\lambda}, s\right)=\left\{\begin{array}{cc}
1 & \text { if } \quad \varphi_{i}(s)=\varphi_{i}(r)+\lambda \bmod n_{i} \tag{3}\\
0 & \text { else }
\end{array}\right.
$$

We define the \mathbb{N}-FA $M_{0}=\left(Q,\{a\}, \gamma_{0}, Q, Q\right)$:

$$
\begin{aligned}
& \gamma_{0}(p, a, q):=\left\{\begin{array}{cc}
\gamma(p, a, q) & \text { if }\{p, q\} \cap Q_{0} \neq \varnothing \\
0 & \text { else }
\end{array}\right. \\
& (p, q \in Q)
\end{aligned}
$$

Let $m \in \mathbb{N}$. Using $\varphi_{1}, \ldots, \varphi_{k}$ introduced in (2) we define:

$$
\begin{aligned}
& \psi_{1}(m):=\left\{\left(\lambda_{1}, \lambda_{2}, i, r, s\right) \mid \lambda_{1}, \lambda_{2} \in \mathbb{N}, \lambda_{1}+\lambda_{2} \leqq m, i \in[k], r, s \in Q_{i}\right\} \\
& \psi_{2}(m):=\left\{\left(\lambda_{1}, \lambda_{2}, i, r, s\right) \mid \lambda_{1}, \lambda_{2} \in \mathbb{N}, \lambda_{1}+\lambda_{2} \leqq n_{0}, i \in[k], r, s \in Q_{i}\right. \\
&\left.\varphi_{i}(s)=\varphi_{i}(r)+m-\left(\lambda_{1}+\lambda_{2}\right) \bmod n_{i}\right\} .
\end{aligned}
$$

If $m \geqq n_{0}$, then (1) and (3) imply:

$$
\begin{align*}
& \forall q_{I} \in Q_{I}, \quad \forall q_{F} \in Q_{F}: \quad \mathrm{da}_{M}\left(q_{I}, a^{m}, q_{F}\right) \tag{4}\\
= & \sum_{\left(\lambda_{1}, \lambda_{2}, i, r, s\right) \in \psi_{1}(m)} \operatorname{da}_{M_{0}}\left(q_{I}, a^{\lambda_{1}}, r\right) \cdot \mathrm{da}_{M}\left(r, a^{m-\left(\lambda_{1}+\lambda_{2}\right)}, s\right) \cdot \mathrm{da}_{M_{0}}\left(s, a^{\lambda_{2}}, q_{F}\right) \\
= & \sum_{\left(\lambda_{1}, \lambda_{2}, i, r, s\right) \in \psi_{2}(m)} \operatorname{da}_{M_{0}}\left(q_{I}, a^{\lambda_{1}}, r\right) \cdot \mathrm{da}_{M_{0}}\left(s, a^{\lambda_{2}}, q_{F}\right) .
\end{align*}
$$

Let $x, y \in\{a\}^{*}$. If $|x|=|y| \bmod \operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right)$, then $\psi_{2}(|x|)=\psi_{2}(|y|)$. Therefore, (4) implies:
(5) $\forall x, y \in\{a\}^{*}:|x|,|y| \geqq n_{0} a d|x|=|y| \bmod \operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right)$

$$
\Rightarrow \quad \forall q_{I} \in Q_{I}, \quad \forall q_{F} \in Q_{F}: \quad \operatorname{da}_{M}\left(q_{I}, x, q_{F}\right)=\mathrm{da}_{M}\left(q_{I}, y, q_{F}\right)
$$

Thus, defining $N:=n_{0}+1 \mathrm{~cm}\left(n_{1}, \ldots, n_{k}\right)-1$, the lemma follows from (5).

Proof of lemma 3.4: Let $n_{0} \in \mathbb{N}$ and $n_{1}, \ldots, n_{k} \in \mathbb{N} \backslash\{0\}$ so that

$$
\begin{aligned}
& n=n_{0}+n_{1}+\ldots+n_{k} \\
n_{0}+g\left(n-n_{0}\right)= & \max _{l=0}^{n}(l+g(n-l))=N+2, \text { and } g\left(n-n_{0}\right) \\
= & \operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right) .
\end{aligned}
$$

We construct an $F A M_{n}=(Q,\{a\}, \gamma, Q, Q)$ with n states:

$$
\begin{gathered}
Q:=\bigcup_{i=0}^{k} Q_{i}, \quad Q_{i}:=\left\{q_{i, 1}, \ldots, q_{i, n_{i}}\right\} \quad(i=0, \ldots, k), \\
\gamma\left(q_{i_{1}, j_{1}}, a, q_{i_{2}, j_{2}}\right):=\left\{\begin{array}{cc}
1 & \text { if } \begin{array}{c}
i_{1}=i_{2} \in[k] \text { and } j_{2}=j_{1}+1 \bmod n_{i_{1}} \\
0
\end{array} \\
\text { or } i_{1}=i_{2}=0 \text { and } j_{2}=j_{1}+1
\end{array}\right. \\
\left(i_{1}, i_{2} \in\{0, \ldots, k\}, j_{1} \in\left[n_{i_{1}}\right], j_{2} \in\left[n_{i_{i_{2}}}\right]\right)
\end{gathered}
$$

Let $\lambda \in \mathbb{N}$. We observe:
(6) $\forall i_{1}, i_{2} \in\{0, \ldots, k\}, \quad \forall j_{1} \in\left[n_{i_{1}}\right], \quad \forall j_{2} \in\left[n_{i_{2}}\right]$:

$$
\operatorname{da}_{M_{n}}\left(q_{i_{1}, j_{1}}, a^{\lambda}, q_{i_{2}, j_{2}}\right)=\left\{\begin{array}{cc}
1 & \text { if } \quad i_{1}=i_{2} \in[k] \text { and } j_{2}=j_{1}+\lambda \bmod n_{i_{1}} \\
& \text { or } i_{1}=i_{2}=0 \text { and } j_{2}=j_{1}+\lambda \\
0 & \text { else }
\end{array}\right.
$$

From (6) follows: $\operatorname{da}_{M_{n}}\left(a^{\lambda}\right)=\max \left\{0, n_{0}-\lambda\right\}+\sum_{i=1}^{k} n_{i} \leqq n$. Therefore, M_{n} has property (i) claimed in the lemma.

Let $\lambda \in \mathbb{N}$ such that for all $p, q \in Q \mathrm{da}_{M_{n}}\left(p, a^{\lambda}, q\right)=\mathrm{da}_{M_{n}}\left(p, a^{N+1}, q\right)$. According to (6) this implies:

$$
\left(\forall i \in[k], \forall j_{1}, j_{2} \in\left[n_{i}\right]: j_{2}=j_{1}+\lambda \bmod n_{i} \Leftrightarrow j_{2}=j_{1}+N+1 \bmod n_{i}\right)
$$

and

$$
\left(\forall j_{1}, j_{2} \in\left[n_{0}\right]: j_{2}=j_{1}+\lambda \Leftrightarrow j_{2}=j_{1}+N+1\right)
$$

Since $N+1 \geqq n_{0}$, this implies:

$$
\left(\forall i \in[k]: \lambda=N+1 \bmod n_{i}\right) \quad \text { and } \quad \lambda \geqq n_{0} .
$$

Hence, $\lambda=N+1 \bmod g\left(n-n_{0}\right)$ and $\lambda \geqq n_{0}$. Since $N+1=n_{0}+g\left(n-n_{0}\right)-1$, this implies: $\lambda>N$.

Thus, we have shown:

$$
\forall \lambda \in\{0, \ldots, N\}, \quad \exists p, q \in Q: \quad \mathrm{da}_{M_{n}}\left(p, a^{\lambda}, q\right) \neq \mathrm{da}_{M_{n}}\left(p, a^{N+1}, q\right)
$$

This proves that M_{n} has property (ii) claimed in the lemma.

Figure 3.

APPENDIX

For the sake of completeness we report here on chapter 7 of [We87]. Indeed, we apply two basic results on the degree of ambiguity of finite automata presented in [WeSe88] to finitely generated matrix-monoids.

Let $M=\left(Q, \Sigma, \gamma, Q_{I}, Q_{F}\right)$ be an \mathbb{N}-FA with n states. We define entry $(M):=\max (\{1\} \cup \gamma(Q \times \Sigma \times Q))$ and the FA $\underline{M}:=\left(Q, \Sigma, \underline{\gamma}, Q_{I}, Q_{F}\right)$ where $\quad \underline{\gamma}(p, a, q):=\min \{1, \gamma(p, a, q)\} \quad((p, a, q) \in Q \times \Sigma \times Q)$. Let $Q_{1}, \ldots, Q_{k}^{-} \subseteq Q$ be those strong components of M which contain only useful states (note that $k \leqq n$).

Let us assume that, for some $U \in\left\{Q_{1}, \ldots, Q_{k}\right\}, \gamma(U \times \Sigma \times U) \nsubseteq\{0,1\}$. Let $(p, a, q) \in U \times \Sigma \times U$ and $v \in \Sigma^{*}$ so that $\gamma(p, a, q) \geqq 2$ and $(q, v, p) \in \delta_{M}$ (see fig. 3). Then, we observe for all $i \in \mathbb{N}: \mathrm{da}_{M}\left(q,(v a)^{i}, q\right) \geqq 2^{i}$. Hence, since q is useful, da (M) is infinite.
${ }^{k}$
Now we assume that $\bigcup_{i=1} \gamma\left(Q_{i} \times \Sigma \times Q_{i}\right) \subseteq\{0,1\}$. Let π be an accepting path in M (or equivalently, in \underline{M}). π only visits equivalence classes from $\left\{Q_{1}, \ldots, Q_{k}\right\}$ and each such class at most once. Thus, according to the assumption, π has multiplicity at most $[\text { entry }(M)]^{k-1}$. From this follows for all $x \in \Sigma^{*}: \operatorname{da}_{\underline{M}}(x) \leqq \mathrm{da}_{M}(x) \leqq[\operatorname{entry}(M)]^{k-1} \cdot \operatorname{da}_{\underline{M}}(x)$. Hence, we know: $\mathrm{da}(\underline{M}) \leqq \mathrm{da}(M) \leqq[\operatorname{entry}(M)]^{k-1} . \mathrm{da}(\underline{M})$.

Summarizing the above, we have shown:

Lemma A.1: Let M be an $\mathbb{N}-F A$ as above. Then, the following assertions are true:
(i) $\mathrm{da}(M)<\infty \Rightarrow \mathrm{da}(M) \leqq[\operatorname{entry}(M)]^{k-1} \cdot \mathrm{da}(\underline{M})<\infty$.
(ii) $\mathrm{da}(M)=\infty \Leftrightarrow$

$$
\left(\exists U \in\left\{Q_{1}, \ldots, Q_{k}\right\}: \gamma(U \times \Sigma \times U) \nsubseteq\{0,1\} \vee d a(\underline{M})=\infty\right)
$$

Let $n \in \mathbb{N} \backslash\{0\}$. Let Γ be a nonempty, finite set of matrices in $\mathbb{N}^{n \times n}$. We define entry $(\Gamma):=\max \left(\{1\} \cup\left\{C_{i, j} \mid C \in \Gamma, i, j \in[n]\right\}\right)$ and $\left\|\Gamma^{*}\right\|:=\sup \left\{\sum_{i, j=1}^{n} C_{i, j} \mid C \in \Gamma^{*}\right\}$. From lemma A.1, proposition 1.1, and from the theorems 2.1 and 3.2 of [WeSe88] follows:

Theorem A. 2 ([We87], theorems 7.1-7.3; see also [Ku88]): Let $\Gamma \subseteq \mathbb{N}^{n \times n}$ be as above. Then, the following assertions are true:
(i) If Γ^{*} is finite, then $\left\|\Gamma^{*}\right\|$ is at most $[\text { entry }(\Gamma)]^{n-1} \cdot 5^{n / 2} \cdot n^{n}$.
(ii) It is decidable in time $O\left(n^{6} . \# \Gamma\right)$ whether or not Γ^{*} is infinite.
(iii) If Γ^{*} is finite, then $\#\left(\Gamma^{*}\right)$ is at most $[\text { entry }(\Gamma)]^{n^{2} \cdot(n-1)} \cdot 5^{n^{3} / 2} \cdot n^{n^{3}}+n^{2}$.

ACKNOWLEDGMENTS

We thank Joachim Herzog for communicating to us results on Landau's function. We gratefully appreciate Ludwig Staiger's interest in this work. In particular, he sharpened our original lower bound for N in the one matrix case up to optimality. A clever observation of the referee inspired us to improve the upper bound in the general case.

REFERENCES

ChI83. T.-H. Chan and O. Ibarra, On the Finite-Valuedness Problem for Sequential Machines, TCS, 1983, 23, pp. 95-101.
E74. S. Eilenberg, Automata, Languages, and Machines, Academic Press, New York, N.Y., 1974, A.
Hs78. M. Harrison, Introduction to Formal Language Theory, AddisonWesley, Reading, Mass., 1978.
HoU79. J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Reading, Mass., 1979.
Ja77. G. Jacob, Un algorithme calculant le cardinal, fini ou infini, des demigroupes de matrices, T.C.S., 1977, 5, pp. 183-204.
Ku88. W. Kulch, Finite Automata and Ambiguity, Report 253 of the IIG, Technische Universität Graz, 1988.
La09. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, 1909.
Le87. H. Leung, An Algebraic Method for Solving Decision Problems in Finite Automata Theory, Ph.D.Thesis, The Pennsylvania State University, 1987.
MaSi77. A Mandel and I. Simon, On Finite Semigroups of Matrices, T.C.S., 1977, 5, pp. 101-111.
Ms84.1. J.-P. Massias, Ordre maximum d'un élément du groupe symétrique et applications, Thèse 3^{e} cycle, Université de Limoges, 1984.
Ms84.2. J.-P. Massias, Majoration explicite de l'ordre maximum d'un élément du groupe symétrique, Annales Faculté des Sciences Toulouse, 1984, VI, pp. 269-281.
MsNRo88. J.-P. Massias, J.-L. Nicolas and G. Robin, Evaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique, Acta Arithmetica, 1988, 50, pp. 221-242.
McZ75. R. McNaughton and Y. Zalcstein, The Burnside Problem for Semigroups, J. Algebra, 1975, 34, pp. 292-299.
Re77. C. Reutenauer, Propriétés arithmétiques et topologiques de séries rationnelles en variables non commutatives, Thèse 3^{e} cycle, Université Paris-VI, 1977.
Se89. H. Seidl, On the Finite Degree of Ambiguity of Finite Tree Automata, Acta Informatica, 1989, 26, pp. 527-542.
Sr88. L. Staiger, personal communication.
WeSe86. A. Weber and H. Seidl, On the Degree of Ambiguity of Finite Automata, Proc. M.F.C.S., 1986, in: L.N.C.S. 233, Springer-Verlag, pp. 620-629.
Tu90 P. Turakainen, On the Finitness of the Multiplicative Monoid generated by a Nonnegative Matrix. Bull. EATCS, 1990, 40, pp. 270-272.
We87. A. Weber, Über die Mehrdeutigkeit und Wertigkeit von endlichen Automaten und Transducern, Dissertation, Goethe-Universität Frankfurt am Main, 1987.
WeSe88. A. Weber and H. Seidl, On the Degree of Ambiguity of Finite Automata, Preprint, Goethe-Universität Frankfurt am Main, 1988, T.C.S. (to appear).

[^0]: (*) Received August 1988, revised September 1989.
 ${ }^{1}$) Fachbereich Informatik, J.W. Goethe-Universität, Postfach 111 932, D-6000 Frankfurt am Main 11, R.F.A.
 (${ }^{2}$) Fachbereich Informatik, Universität des Saarlandes, Im Stadtwald, D-6600 Saarbrücken 11, West Germany.

 Informatique théorique et Applications/Theoretical Informatics and Applications 0988-3754/91/01 19 20/\$4.00/© AFCET-Gauthier-Villars

[^1]: $\left.{ }^{3}\right) \mathbb{N}$ denotes the semiring of all nonnegative integers.

[^2]: ${ }^{(4)}[n]$ denotes the set $\{1, \ldots, n\}$.

[^3]: $\left(^{5}\right) \Sigma \leqq N$ denotes the set $\bigcup_{\lambda=0}^{N} \Sigma^{\lambda}$.

