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A LIMIT THEOREM FOR "QUICKSORT" (*)

by Uwe RÖSLER (*)

Communicated by P. FLAJOLET

Abstract. - Let Xn be the number of comparisons needed by the sorting algorithm Quicksort to
sort a list of n numbers into their natural ordering. We show that (Xn — E(Xn))/n converges weakly
to some random variable Y. The distribution of Y is characterized as the fixed point of some
contraction. It satisfies a recursive équation, which is used to provide recursive relations for the
moments. The random variable Y has exponential tails. Therefore the probability that Quicksort
performs badly, e. g. that. Xn is larger thon 2 E (Xn) converges polynomially f ast of every order to
zero.

Résumé. - Soit Xn le nombre de comparaisons utilisées par la procédure Quicksort pour trier
une liste de nombres distincts. Nous démontrons que (Xn — ^(XJ)/n converge faiblement vers une
certaine variable aléatoire Y. La distribution de Y est le point fixe d'une contraction et peut être
calculée numériquement par itération.

Ö. INTRODUCTION

Probably the most widely used sortîng algorithm is the algorithm "Quick-
sort" invented by C. A. R. Hoare in 1961, 1962, It is, for instance, the
standard sorting procedure in Unix Systems, The basic idea is as follows:

A list of n (different) real numbers is given. Select an element x from this
list. Divide the remaining into sets of numbers smaller and larger than x.
Next apply the same procedure to each of these two sets if they contain
more than one element. Finally, we end up with a sorted list of the original
numbers.

Our sélection of .the element x is by random choice with equal probability,
The reason for this is given at the end of the introduction.

(*) Reœived September 1988, acceptée May 1990.
(1) Matematiska Institutionen, Thunbergsvâgen 3, S-752 38 Uppsala, Sweden and Institut fur

Mathematische Stochastik, Lotzestrasse 13, 3400 Göttingen, Fédéral Republic of Germany.
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86 U. RÖSLER

Quicksort has many nice features, such as working in situ (using only a
small auxiliary stack). For this and the importance of Quicksort we refer the
reader to the gênerai literature (Knuth, 1973; Sedgewick, 1988). Quicksort is
the fastest known algorithm for sorting. This is mainly due to the conceptually
very simple "inner loop".

Dénote by Xn the total number of comparisons between numbers used to
sort a list of length n. We will neglect all other aspects of the algorithm
(Sedgewick, 1977) and deal exclusively with the random variable Xn. We
think of the time used by the procedure as proportional to Xn.

In gênerai the average of Xn for any sorting algorithm is greater than or
equal to the entropy Y,Pn I°ê2/V Here the summation is over all
permutations % of {1, . . . , « } and/?n dénotes the probability of the
permutation n. (Obviously one can identify any list of length n with a permut-
ation of 1, . . . , « . ) In case that all permutations have the same probability
l/n\ we obtain the lower bound «log2n. This bound is also called the
information theoretical lower bound. The random variables themselves have
no lower or upper bound. (Under fairly gênerai assumptions n is a sharp
lower bound for Xn.)

The average of Xn for Quicksort is known to be of the order 2 n In n (Knuth,
1973). In the best case Quicksort uses approximately 2n \og2n^\.4. . .n\nn
comparisons, the best theoretical lower bound for the average. In the worst
case Quicksort needs a horrendous number of n2/2 comparisons. One of our
purposes is to show that such bad behavior happens very seldom.

We are interested in the asymptotic behavior of Xn. Our main resuit is the
convergence of Yn : = (Xn — E(XJ)/n to a random variable called Y. This is
done in the Wasserstein ^2-metric (dp-metric) on the space of distribution
fonctions. The Wasserstein ^p-metric is defined by (Cambanis et al. 1976;
Major, 1978)

where the infimum is over all X with distribution function F and all Y with
distribution function G. Here ||. ||p dénotes the Lp-norm, 1 Sp< oo. Notice dp

convergence is the same as weak convergence and the convergence of the
absolute moments of order/? (Denker and Rösler, 1985).

A conséquence of our results are the following estimâtes of probabilities
by the Markov inequality,

Informatique théorique et Applications/Theoretical Informaties and Applications



A LIMIT THEOREM FOR "QUICKSORT' 87

The order of ln~p is pretty weak. Ho wever, we will show that Yn has fînite
Laplace transforms. Using this Markov inequality gives for any positive X
and any neN,

P(Xn^2E(Xn))^E(exp(X YJ)exp(-XE(Xn)/n)^Const. (X)/n2X,

The probability of bad behavior of Quicksort becomes extremely small for
large n, so we may conclude that Quicksort is relîable.

We took hère Xn^2E(Xn) as our standard of bad performance by Quick-
sort. If one compares the sorting algorithm Heapsort with Quicksort, then
Heapsort has the advantage of always using less then 4nlnn comparisons.
Therefore we look at the event that Quicksort needs more than
2E(Xn)&4n In n comparisons. The average for some version of Heapsort is
about n log2 n, the best one can get. But simulations show that Heapsort uses
more time than Quicksort on the average (Loeser, 1974).

We dénote the distribution fonction of some random variable X by L(X).
We characterize L(Y) as the fixed point of the function S. The function S
maps the set of distribution functions, which have finite variance and zero
expectation, to itself and is defined by

S(F): = L(XV+(1-Ï)V+C(T;)).

The random variables x, V, V are independent, x has a uniform distribution
on [0, 1] and the distribution of V and V is F. Hère C dénotes some measur-
able function, see (1.4).

The function S is a contraction with respect to the Wasserstein J2-metric.
This is the main mathematical tool we use. Any séquence F, S (F), S2 (F), . . .
converges to the unique fixed point L(Y) of S. The distribution of Y satisfies
the fixed point relation

From this relation we obtain recursive formulas for the higher moments
of Y, For example, the variance of Y is three times the variance of C(x),

Jo
Var Y=\ C(x)2dx = 7-2/3n2.

Jo

For higher moments the calculations become tedious. Hennequin calculated
moments, cumulants and other values numerically to identify the distribution.
Assuming always that Y exists, he obtained numerical results as well as a
nice structural conjecture on the cumulants.

vol. 25, n° 1, 1991



88 U. RÖSLËR

Not much more is known about thé distribution of F. For example^ it is
unknown whether L(T) has a density.

The existence of Y was independently shown by Régnier using martingale
arguments. Oüf results prövidè more than just the existence^ e. g, thé fixed
point relation, the représentation by an infinité sum and ïïnîté Laplace
transforms.

The Yh converge to Fin any rfp-metriCj 1 ^ / K C O . Möreoveï*, the Laplacé
transform öf F„ converges to that of Y This implies an exponential tâil of
every order.

Sedgewick used a variant of Quicksort in this paper. För smâlî files he
switched from Quicksort to a different sorting algorithm, which seemed to
speed up sorting. However, ari analysis on the number Xn of eornpafisons
for this variant shows that the expectation of Xn has an asymptotic behavior
of 2«lnfï-hCönstti/2 4-smaller terms ïn n (and cöuld be analysèd much für-
ther), Notice that the leading term 2n\nn is the same as for standard
Quicksort. The Jinear terms in n may bé different. The asymptotic distribution
of (Xn-Ë(Xn))/n converges to Y> L{Y) the fixed point for Quicksort as
before, in any ^p-metric, l ^p<öo . Moreövef all Laplace transforms con-
verge* in particular Lemma 4.1 and its conséquences rernain true.

We éo not prove this fèsult. The proof is à Variant of the given ene and
requires only obvious changes.

In section 5 we discUSs the ^médian version (Höare, 1962).

Devroye (1985) usêd a variant "Find" to find thé k'th largest element of a
list. Thé main object of hls study is also a fixed point, akhough he never
usés this fact. He exploits thé exponential moments öf this fixed point to
obtàin probability estiniates.

Therè is a Wèll kriown connection of Quicksort to tree sorting (see Frazéf
and McKéllar, 1970, for more details).

We would like to point öut that ouf results are complétely independent of
the given list we start with. In particular the results are true even if thé list is
alfeady sorted. The randornness in óur appfoach is given purely by the
équipfobabie way we piek a random element x out of the list (Hoare, 1962).

Assume nôw that wé dö not piek a random number, but have a particular
sélection rule for the partitioning element. Thétl Xn dépends deterrninistically
on thé Spécifie liât, Our probability space Cl is in this case thé sét of all
permutations of n given numbers. If every permutation has the same probabil-
ity, then the récürsive structure of Xn remains valid and our results apply.

Informatique théorique et Applications/Tàeoreticaî Informaties ând Applications



A LIMIT THEOREM FQR "QUICKSORT" 8 9

One way to overcome the difficulty of uniformity assumptions is to shuffte
the given n numbers fïrst Assuming a perfect shuffiing, ail permutations have
the same probability. Another way out is to close the eyes and hope for the
best, A good ehoice, adopted by Unix is to choose a numbçr in the middle
position. If the list is already in natural or reverse order, then Xn takes îts
minimum, the lower theoretical bound n Iog2 n of the average. For lists with
preordered parts this version proceeds faster on the average than the random
Quiçksort version.

In order to avoid any complication in the discussion of the sélection rule
we have prefered the randomized version of Quicksort as presented,

1. RECURSIVE EQUATION

Let Xn dénote the random number of comparisons needed to sort a list of
length n by Quicksort. Then the distribution L(Xn) of Xn satisfies the recursive
relation Xo = 0s Xx = 0, X2 ̂  1,

L(XJ = L(X2^x + Xn^n + n-l\ n^Z (1.1)

Observe that n—\ comparisons are used to compare every element of the
list with the randomly chosen one. Then we have to sort a list of length
Z „ - l , the list of smaller numbers; and a list of length n—Zn, the list of
larger numbers. The sortings of the lists are independent. The distribution
of Zn is a uniform distribution on (1 , . . . , « } . Furthermore the random
variables Z„, Xiy ï i } ï = 0, . . . , « - 1 , are obviously independent.

In order to avoid ambiguity we assume all numbers of the list are different.
It is easy to calculate the expectation of Xn. By (1.1) we obtain

and
E(Xn)_E(Xn.1)^2(rt-l)_
n+1 n n(n+l) '" h=x h n+\

Therefore E(Xn) is approximately

with y = 0.577 21. . .being Euler's constant (see Knuth, 1973). We shall con-
sider the random variables Yn: = (Xn — E(Xn))/n. Then immediately from (1.1)

vol 25, n° 1, 1991



90 U. RÖSLER

we obtain Yo = 0, Yt=09

2 ^ r ^ \ (1.2)

For any fixed n the random variables Zni Yt, Yt, l^i^n are independent,
Zn is uniformly distributed on {1, . . . , « } and Cn is a function defined by

^ + ( ^ ( Z ) + £ ( X ) ^ ( X J ) (1.3)

As « goes to infinity ZJn converges in distribution to some random
variable x, which is uniformly distributed on [0, 1], Furthermore Cn{nZJn)
converges to C(x),

C(jt): = 2;clnx + 2 ( l - j c ) l n ( l - x ) + l , xe[0, 1] (1.4)

(see Proposition 3.2). If we assume for a moment that Yn converges in
distribution to some Y9 we expect from (1.2)

with x5 Y, F independent, L(Y) = L(Y). In section 2 we show the existence
of some Y satisfying (1.5) by a fixed point argument. In section 3 we show
that Yn converges in fact to the fixed point 7.

2. FIXED POINT ARGUMENT

Let D be the space of distribution functions .F with finite second moment

x2 dF(x)<oo and the first moment xdF(x) equal to zero. We use on D

the Wasserstein (Mallow) metric

d(F,G) = M\\X-Y\\2

where ||. ||2 dénotes the L2 norm (see Cambanis et al, 1976 or Major, 1978).

The infïnimum is over all random variables X with distribution F and ail
Y with distribution function G.

Informatique théorique et Appîications/Theoretical Informaties and Applications



A LIMIT THEOREM FOR "QUICKSORT" 91

The infimum is attained for a uniformly distributed random variable x on
[0, 1],

a i y/2

\ ' \ 2 \

Hère F~x (x) = inf{b\F(b)^x} dénotes the left-continuous inverse of F.

The space D with the rnetric d is a complete separable metric space,
Le, a Polish space. It may be helpful to notice that FneD converges in
d-metric to FeD if and only if Fn converges weakly to F and

f
x2dFn(x)^> x2dF(x)<oo (Denker, Rosier, 1985).

J

Define a map S : D -> D by

= L(TX+(\-T)X+C(T))

with X, X, T independent, L (X) — L (X) = F, x uniformly distributed on [0, 1]
and C : [0, 1] -> R as in (1.4). S is well defined. Notice J?(C(T)) = 0.

THEOREM 2.1: The map S : D -* D is a contraction on {D, d) and has
a unique fixed point. Every séquence F, S (F), S2 (F), . . ., FeD, converges
exponentially fast in the d-metric to the fixed point of S.

Proof: Let F, G be in D,

the random variables x, X, X be independent, also x, X9 Y be independent
and x be uniformly distributed on [0, 1].

Then

d2(S(F)iS(G))^\\TX+(l-T)X+C(x)-%Y-(l-T)Y-C(T)\\2

- Y)2).

Taking the infînum over all possible (X, Y) we obtain

vol. 25, n° 1, 1991



92 U. RÖSLER

The séquence Sn(F) is a Cauchy séquence since, for

n-l

y/2 /2\m/2

d(F, S (F)) S 3 d(F, S (F)) - .
"AV3/ \3/

The Cauchy séquence S" (F) converges exponentially fast to some limit.
This must be a fïxed point. The fïxed point is unique, as the contraction is
strict.

Q.E.D.

3. CONVERGENCE TO THE FIXED POINT

In this section we shall show that Yn of section 1 converges to Y in the
Wasserstein <i-metric, i.e. d(L(Yn)i Y)->0 with L(Y) being the fïxed point
of 5.

CO

Define the mapping T: U Dn -• D by

T(Glt . . . , G M _ J = L f y Z n „ 1 ^ ^ + f „ _ Z t t ^ ^ + C n ( Z j \ (3.1)
V n n J

The random variables Zn, Yiy Ft-5 /=0, . . . , « - 1 , are independent,
L{Y^ = L{Y^Gh Ï = 1 , . . ., n~\, Yo= Fo = 0, Z„ is uniformly distributed
on { 1, . . . , « } , C„ is as in (1.3). T is well defined. Notice £(CB(Zn)) = 0.

For every G use successively T to obtain a séquence

= <

THEOREM 3.1: Ler GeD correspond to the point measure on 0, i.e.

' = . Then Gn converges in the Wasserstein d-metric to the unique
0 :x<0

fïxed point of S.

We shall established two propositions before we give the proof. For xeR
let f x ] be the smallest integer larger equal to x.

Informatique théorique et Applications/Theoretical Informaties and Applications
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PROPOSITION 3.2: Let Cn : {1, . . . , n} -» U and C : [0, 1]

section 1. Then

sup \Cn(rnx-])-C(x)\S
xe(o, n

Proof: If 1 S[nx~]^n— 1 we estimate

93

be as in

n n

sup
\y-z\<\/n

Notice O(n x) is w.Lo.g. independent of x.

By

-1) + -
n

we obtain

sup I
jce(l-(l/n), 1)

1 - C ( 1 - -

Q.E.D.

PROPOSITION 3.3: Let an, bn, neN be two séquences of real numbers satis-

0 S bn -> O as n tend to oo

,2 "£ ^ + ^
w t = i n

Then a„ converges to 0 as n tends to oo.

Proof: Establish
2

an^ sup a£.-+Zv

vol. 25, n° 1, 1991



9 4 U. RÖSLER

From this équation we can conclude an is uniformly bounded. Defme
a = lim sup an<oo. For a given £ > 0 there exists a n0 such that for
n ̂  n0 an ̂  a + e. Then

2 "° z2 2 ""1

Therefore
2

0^a = lim sup a„^-(a + s).
n 3

This is true for all e>0.
Q.E.D.

Proof of Theorem 3.1. - Fix Y, Y independent, L(Y) = L(Y) = F the
distribution of the fixed point, neN. Choose a version of Yt, Yt independent
for each 0 ̂  i ̂  n — 1 with

Notice
Defîne

F, F: Qx[0,l]^R, V(.,x)=Vx,V(.,x)=Vx

Then for x independent of Yi9 Yh O^i^n— 1, uniformly distributed on
[0, 1],

Informatique théorique et Applications/Theoretical Informaties and Applications



A LIMIT THEOREM FOR "QUICKSORT" 9 5

s i
n i=

- i
Zf

Put ai = d2{L{Y^ F) and apply the previous proposition.
Q.E.D.

4. LAPLACE TRANSFORMS

In this section we show that Yn as in (1.2) has fmite Laplace transform.
Let G, G2=r(G)5 G3, . . . be the séquence as in (3.1). The distribution

function G corresponds to the point measure on zero, G(x) = < ' = .
{0 : x < 0

LEMMA 4.1: For ail L>0 there exists a KL, such that f or ail ne N and ail
Xe[-L,L]

^ ^ = Gn. (4.1)

Proof: Let Z„, n e N, be uniformly dis t r ibuted on { 1 , . . . , « } . Define

f (K, X, n) : = £exp (kCn(Z„) + X2 KU„), X, Ke R.

vol. 25, n° 1, 1991



96 U. RÖStER

We show fïrst that for all L>0 there exists a KLe H, such that for all ne H
and all Xe(-L, L)

\9n)£L (4.2)

We show this in several steps, ƒ (K, X, n) is well defined and at least twice
continuously differentiable.

CLAIM 1. — There exists a Kt>0 and L±>0 such that for all ne M and for
allXe[-Ll9 Lt] we have f (K, X, n )^ l . Show

ak

Choose a ^ > 0 with d2/dX2f(Ku X, n)\x = 0<0. Thenf(Kl9 X, n) has a
strict maximum at X = 0 for every n, Therefore in some neighborhood of
A, = 0 the function is less then or equal to 1 for fixed n. We may choose the
neighborhood of A, = 0 uniformly in n, because d2fdX2 f(K, X, n) is smaller
than 0 uniformly in n for X small.

CLAIM 2. — For given L>0 there exists a K2>0, such that for al! ne N we
havef(K2, L, n)^l,f(K2, —L, n)^\, A simple calculation shows

lim sup ƒ (K, X,n) = 0 for all X^ü.
K -*• oo n

Further ƒ (K, X, n) is monotone decreasing in K for fixed X and n, as the
fïrst derivative

4rf(K> *» n) E{X Un exp(XCn(Z„) + X2KUn))^0
ak

shows.

Using these two properties it is easy to verify claim 2.

Now we show (4.2), Let L>0 be given and define KL as the maximum of
K± as in claim 1 and L2IL\K2, K2 as in claim 2.

If | X | ^ L 1 thenf(KL, X, n)^\ is satisfied by claim 1 and the monotonicity
in K. If LX^\X\^L then estimate for oc = L/|A,|^l, X>0 (analogously for

Informatique théorique et Applications/Theoretical Informaties and Applications



A LIMIT THËÖREM FOR "QÜICKSÖRT" 9 7

f(KL9 X, nj^

i £exp LCfSZ^¥^rK2 VA) % 1 by claim 2,

With the help of (4.2) the Lemma 4.1 ïbllows easily by induction, The
induction step is showü nere,

. Ëvcp ( ^ KLUn±k€H (ZJ)

^ ) ƒ (KLi X, ̂ )<
Q.E.D,

THEÖREM 4/2: Le/ ^ ^ ^ ^ ( 1 . 2 ) â rf L(F) be tkèjfïxedpoint ôf S. Then
JbralikëM

Etxp (k Yn) -^ Ë exp (X Y) < co as n -^ oo.

Pr&of: We know Yn converges in distributïöïi to Y atid Ë èxp(X YJ is
unifbrmiy bötMded in n fbr fixêd X, For N large P(j Y\ = N) = Q estimate

.) 1, y„ i <iv) - ^(exp(X F) 1 ^r, ̂ ) |

p (X Yn) 1 j tn

The ïirst expression is sriiail for n large and any ïîxed N, The third is smal!
ïbr N large. The second is smal! ïbr H large by

ïbr [
iQ.E.D.

4.3: W% übïamfor X>0, 8>Ö

:- We shall use the Markov inequality

vol. 25, â° 1,



98 U. RÖSLER

Then

Y\)n~2U,
Q.E.D.

The interprétation of this corollary is that Quicksort is reliable. For
numerical estimâtes of the probability one has to calculate Const. (k, e) or
the constant KL of Lemma 4.1 .

5. MISCELLANEA

In this section we consider higher moments of Y, the &-median variant of
Quicksort and give a représentation by an infinité sum.

The random variable Y has flnite moments of any order p, 1 ^p< oo. This
follows for example by a standard argument from the finiteness of the Laplace
transform E exp(A,| Y\\ for some \>0 (see section 4). It would also be
possible to use refined methods exploiting the contractive behavior of 5.
(This will be published in a more gênerai paper on these fïxed point ideas.)
The convergence of G, S(G), S2(G), . . . to L(Y) is exponentially fast in the
Wasserstein ^-metric (replace ||.||2 by ||.||p) for any l:gp<oo. Also Yn will
converge to Fin the ö^-metric, l ^ < o o .

The higher moments satisfy, by the fixed point relation, the following
récurrence relation, n^2,

M + l j=0

The summation is over all i—(iu i2> h)

i3e{0, . . . , / i } , ^ z2e{0, 2, 3,

J~UA i2
The explicit calculation of the moments is tedious, but could be done for
example with the help of a computer (Hennequin, 1989).

The function \nEcxp(X Y) is an analytic function in X. The coefficient Kt
n

of X1 in the powerseries £ (KJi !) V is called the cumulant of order i.

Hennequin conjectured in this paper

Informatique théorique et Appiications/Theoretical Informaties and Applications



A LIMIT THEOREM FOR "QUICKSORT" 99

ot; rational, p(z) being the Riemann zêta function ^ « " ' . By the fixed point
characterization we could obtain a recursive relation for the cumulants.
However we were not able to prove or disprove Hennequin's conjecture,

The fixed point property of Y implies a représentation by an infinité sum.
00

Define 1=0 [J U {0, 1 }". Let xc, a e / , be independent random variables
n=l

with the uniform distribution on [0, 1], Let | a | dénote the length of a, a | i
the first i coordinates of a, at the fth coordinate. Then

Y= C(xa) + E E f C(TO) n (x„, (J- D (1 - a,) + (1 - TO , y . 1}) a A
i = l | a | = î \ j = l /

Another variant is the fc-median Quicksort (Hoare, 1962). Hère the sélec-
tion rule is to choose randomly 2/c+l éléments and select the médian of
these (see Knuth, 1973, for a discussion). Our method gives the foliowing
results.

The recursive relation (1.1) remains true with Zn having a different distribu-
tion described by the sélection procedure. The expression ZJn converges
weakly to some random variable T. The distribution of x is the same as of
the (k+l) largest random variable in the set of random variables
Ul9 . . ., U2k+u which are independent and uniformly distributed on [0, 1].
The distribution of x has the density

The expectation E(Xn) behaves asymptotically like

E{Xn) = cn\nn+0(n)

with c such that £(CC (T)) = 0,

The random variables (Xn-E(Xn))/n= Yn converge to Y, L(Y) the fixed point
of the analogous mapping S,

F, Y, x independent, L(Y) — L(Y), x, Cc as above.
The proof folio ws the contraction idea of this paper. There are qui te a lot

of details to be checked. This has been done by the author.

vol. 25, n° 1, 1991



100 U. RÖSLER

6. CONCLUSION

We shôwed the existence of a limiting distribution for the number of
comparisoüs performed by Quicksort. This distribution is a fixed point of
some map. This enables us to give a représentation as an infinité sum. The
moments satisfy some recursive relations. The exponential moments are finite.
This gives good estimâtes of probabilities as for example the probability of a
bad behavior of Quicksort. As a final conclusion, Quicksort is reliable.
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