
INFORMATIQUE THÉORIQUE ET APPLICATIONS

USCHI HEUTER
First-order properties of trees, star-free
expressions, and aperiodicity
Informatique théorique et applications, tome 25, no 2 (1991),
p. 125-145
<http://www.numdam.org/item?id=ITA_1991__25_2_125_0>

© AFCET, 1991, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1991__25_2_125_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 25, n° 2, 1991, p. 125 à 145)

FIRST-ORDER PROPERTIES OF TREES,
STAR-FREE EXPRESSIONS, AND APERIODICITY (*)

by Uschi HEUTER (X)

Abstract. - We characterize the first-order definable sets offinite trees in terms of certain star-
free tree expressions and show that for regular sets offinite trees, first-or der definabUity is a more
restrictive notion than aperiodicity. These two theorems show how far the results of McNaughton
and Schützenberger on star-free sets ofwords (stating the équivalence between first-order definabU-
ity, star-freeness, and aperiodicity) can be transferred to the context of trees. Both results of the
paper rely on the method of the Ehrenfeucht-Fraissé-game.

Resumé. - Nous caractérisons les ensembles d'arbres finis définissables au premier ordre en
termes de certaines expressions sans-étoile et nous montrons que pour les ensembles réguliers, le
fait d'être définissable au premier ordre est une notion plus restrictive que Vapériodicité. Ces deux
théorèmes montrent jusqu'à quel point on peut étendre aux arbres les résultats de McNaughton et
Schützenberger sur les ensembles de mots sans-étoile {qui établissent l'équivalence entre « être
définissable au premier ordre», apèriodicité et sans-étoile). Les deux résultats reposent sur la
méthode des jeux de Ehrenfeucht-Fraissé.

1. INTRODUCTION

McNaughton and Schützenberger showed in [8] and [11] that first-order
defïnability, star-freeness and aperiodicity are equivalent notions for regular
sets of words. Since the usual characterizations of regular word sets (in terms
of regular expressions, monadic second-order logic, finite automata) have
been carried over to sets of trees ([14, 2]), the question arises whether this
transfer is also possible for the results of McNaughton and Schützenberger
on star-free languages. In [13] first-order logic over trees, usuaî regular tree
language expressions restricted to the star-free case, as well as aperiodicity
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126 U. HEUTER

over trees were considered. It was observed there that these star-free expres-
sions are strictly more expressive than first-order logic and also yield nonap-
eriodic sets. Concerning the relation between first-order definability and
aperiodicity it is shown as in the corresponding proof for star-free word
languages (see e.g. [9]) that first order defïnable sets are aperiodic; however,
it remained open whether the converse also holds.

The present paper offers on one hand a restricted notion of star-freeness
which exactly captures the strength of first-order logic over trees, and on the
other hand it shows that there are aperiodic languages which are not first-
order defïnable. This shows that the équivalence of the notions "first-order",
"star-free" and "aperiodic" for regular word languages completely fails in
the corresponding case of tree ianguages and that hence the analogy between
regular sets of words and regular sets of trees does not extend to the
important subclass of star-free sets.

Both main results of the paper rely on the method of the Ehrenfeucht-
Fraissé-game over trees. In the characterization of first-order logic by certain
star-free expressions the games are used to justify a décomposition of first-
order formulas into conditions which speak only about certain parts of trees.
In the construction of a non first-order defmable but aperiodic set the games
are applied to show indistinguishability of trees by first-order formulas.

The paper is structured as follows: After technical preliminaries (Section 2)
we will formulate and prove in Section 3 the characterization of first-order
logic over trees in terms of regular expressions. For this purpose we define
"special trees", i. e. trees over an alphabet E which can be labeled at the
frontier with extra symbols of a "concaténation alphabet" D. Each such
symbol may occur at most once at the frontier. So the resulting concaténation
of trees is a restriction of the usual one defined in [14, 2]; it corresponds to
speaking about single nodes in first-order logic (as opposed to sets of nodes
in monadic second-order logic used in [14, 2]). Our result will state that a
tree language is first-order defmable if and only if it is built up from
finite sets of special trees using the opérations union, complement and
concaténation, all restricted to the class of special trees. The main part of
the proof of this characterization will be a décomposition of first-order
formulas. The proof of this décomposition lemma uses the Ehrenfeucht-
Fraissé-game (Section 4). In Section 5 we will present an aperiodic language
T which will be proved to be not first-order defmable. To show this, we
define a séquence of trees ti9 st with tteT, st$T such that for all i the trees tt

and st are indistinguishable by first-order formulas of quantifier-depth L The
indistinguishability will be shown again using the Ehrenfeucht-Fraissé-game.
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FIRST-ORDER PROPERTIES OF TREES 127

A preliminary version of the paper has appeared in [5]. Some tedious but
easy proofs left out here can be found in [6].

I would like to thank W. Thomas for introducing me to the subject and
his advice and steady encouragement. I'm also obliged to Th. Hafer for
helpful discussions.

2. TECHNICAL PRELIMINARIES

Let I = S 0 I J S 1 U . . . U 2n be a ranked alphabet where each S£ is a fïnite
set of f-ary symbols (the sets Z£ are not necessarily disjoint). Let furthermore
D be an alphabet with 0-ary symbols, the "concaténation alphabet". A S, D-
tree is a term built up from the symbols of E U D in the usual way; by TZtD

we dénote the set of ail £,D-trees. Instead of Tz 0 we just write !T2.
Let F, T' c= TZtD and deD. Then TdTf is the set of all trees of T^D

which resuit from some teT by substituting each occurrence of d in t by a
tree of T'. The star-operation is defined by: T*d=\j{Td*i | i ̂  0}, where
Td>° = {d} and Td>i+1 = Td>Ld(T(J {d}).

A tree language T a Tz is called regular if there is a fmite alphabet D,
such that T can be constructed from fmite subsets of Tz D by using union,
the concaténation opérations d and the star opérations *d with deD.

The set REÇL, D) of generalized regular S, D-expressions (L e. with comple-
ment opération) is inductively defined by:

0ERE(L9D)9 TZtD

and if p ls $2eREÇL9 D) and deD then also

(pt v Ç2)eREÇZ9 D\ (tffàsREÇL, D), ( - VJeREÇL, D)

and

The tree language r(P) c T2 ö defined by a regular expression Ç>eRE(L, D)
is defined according to the explained meaning of 'd and *d; v stands for
union, and ~ for the complement taken w. r. t. TZiD.

A tree language T c Tz is called star-free if there is a fmite alphabet Z>
and a regular expression fieREÇL, D) without star-operator such that
T(ff)=T. The set of all star-free expressions over 2,\JD is denoted by
SFÇE, i)).

vol. 25, n° 2, 1991



128 U. HEUTER

To defïne aperiodic tree languages we refer to a restricted concaténation
of trees, which takes place at only one leaf. We call a tree special over
S U [c] (where c is a 0-ary symbol not in £), if it has at most one occurrence
of c. The set of all special trees over X U {c} is denoted by Sz. If s, s' e S^
we simply write s.s'instead of sc s'. A tree language Ta r s is called aperiodic
(or noncounting) if

3 « ^ 0 , V s 0 , seSL9 VteTz: so.s
n.teT o so.s

n + 1.teT.

This notion coïncides with the notion of an aperiodic word language when
words are considered as unary trees (cf. [8]). As for regular word languages,
the property "aperiodic" is decidable also for regular tree languages. To
show this, one has to verify that (Ss, . ) is a monoid (with identity c) and that
each regular tree language TcrE induces afinite and effectively constructible
quotient monoid M(T) of (Sz, .), defined by the équivalence relation

sx =Ts2 iff VseSx, VteTz: s.sx.teT <̂ > s.s2.teT.

The following resuit is obtained in exactly the same way as the corresponding
theorem for word languages ([8]):

PROPOSITION 2.1 [13]: (à) A regular tree language T <= Tz is aperiodic iff
M(T) contains only trivial groups.

(b) Aperiodicity is decidable for regular tree languages. •
We now turn to the description of tree languages in terms of mathematical

logic. If S contains at most w-ary symbols, a tree teTz (resp. teTzr) is
considered as a function ?: dom (/)-•£ [resp. / : dom (t) -> S U D] where
dom (t) is the set of nodes of /, represented by a finite prefix closed set of
words over {l, . . . , « } * with the following property:

(*) if xi e dom (t) then also xjedom(t) for ail y < L

Dénote the (partial) prefix ordering by < . For the treatment of subtrees it is
convenient to admit sets dom(t) of the form k-P where ke{\, . . ., n}* and
P cz {1, . . ., «}* is a finite prefix-closed set again with property (*). In this
case the node k is called root of t. The frontier fr(t) is defined by
fr (t) : = {x e dom (t) | xi$dom(t) for i=l, . . ., n}. If t' is a tree with root k
and t a tree with kefr(t), then tkt' is the tree obtained by inserting t' at
node k. A eut of a tree t is the frontier of a prefix-tree of /, which is a subtree
with same root as t and a domain included in dom(J). Stated in different
words, a eut of / is a maximal (w. r. t. set inclusion) set of nodes of dom (/)
which are pairwise incomparable by <. For a eut S of t the word w (S) is

Informatique théorique et Applications/Theoretical Informaties and Applications



FIRST-ORDER PROPERTIES OF TREES 129

given by the séquence of the letters at the nodes of the eut, read from left to
right w. r. t. the lexicographical ordering of the nodes.

For a tree teTx let Sl9 . . ., Srt be the successor relations (with
xSiyoxi = y) and let Pa be the subset of dom(r) with kePaot(k) = a for
a e E. Then we will identify a tree teTz with the relational structure

f = (dom(r), <,Sl9 . . ., Sn9 (PJfle£).

Now properties of trees can be formulated in terms of the corresponding
first-order language L1(L). Formulas of this language are built up from
variables x, y, . . . [ranging over nodes of dom (f)], the connectives —i, A5

v, =>,<>, the quantifiers 3, V and the symbols <5 = , Sl9 . . ., Sn, Pa

(for ÖGS). A formula cp with the free variables xl9 . . ., xr is denoted by
cp(xl5 . . ., xr), and a formula without free variables is called a sentence, The
interprétation of a formula (p(x1? . . ., xr) in a tree t with specified nodes
kly , . ., kr is defïned in the usual way; we write

(t, ku . . ., K)t<t>(xl9 . . ., xr)

or just (/, k) \= cp (x), if (p is satisfied in t with A:f as interprétation for xt. The
set of all trees which satisfy a sentence cp is denoted by 7"(cp). A set T c rE

is first-order definable if there is a cpeZ^ÇE) with T= T((p). The quantifier-
depth of a formula (p, denoted by qd(<p), is the maximum number of nested
quantifier s in <p.

In the sequel for simplicity of exposition we consider only binary trees,
L e. we deal with trees over an alphabet E = Do U Si U £2 with S2 = 2 0 and

3. FIRST-ORDER FORMULAS AND STAR-FREE EXPRESSIONS

Extending the notion of special tree to trees over S U A we call a tree
teTZtD special if there is at most one occurrence of each symbol deD. The
set of all special S, ZMrees is then denoted by Sz> D. The language S£> D is a
regular and even star-free subset of Tz D [6]. The set of all special tree
languages is closed under union and intersection, but not under concaténation
and star-operation. It is closed under complement w. r. t. 5L D.

Note that defîning a language T a Tx for a given alphabet Z the concaténa-
tion alphabet D is not fixed; but in each oceSFÇE, D) defîning T there are
only finitely many symbols deD.

vol. 25, n° 2, 1991



130 U. HEUTER

We now define an interprétation of the star-free expressions of RE(%, D)
by setting inductively S ( 0 ) = 0 , S(t) = {t} HSltD, S(a V p) = S(oc)US(P),
S(-i a) = 5L)jD-S(a) and 5(a dP)-(S(a) dS(P)) O SZtD. We call a tree lan-
guage special star-free, if it can be described by a star-free expression with
this interprétation. Our first result (Theorem 3.1) states the équivalence
between special star-free and first-order defïnable tree languages.

Another way of characterization is a syntactical one. Here we ensure
already by the construction of a set of star-free expressions that only sets of
special trees are obtained. We use a star-free expression ots D denoting Ss D

(for its straightforward, but tedious définition, see [6]) and allow only expres-
sions of the following form: 0 , teSz D, azJD-OL, ax v a2 and
(a1

 d0L2) A a2>jD. [Here a A p abbreviates oLLtD — ((oLZjD — oi) v (ocz D— P)),] We
dénote by SSF(S,.D) the star-free expressions obtained in this way; for each
expression oceSSF(Z, D) we may then use the standard interprétation T(a)
instead of S (a).

Formally we have:

THEOREM 3.1: Let T e 72. Then:

T= T((p) for some (pe^ (E)

iff there is an alphabet D and a star-free expression aeSFÇL, D) such that
T=S(a);

iff there is an alphabet D and an expression aeSSFÇL, D) such that
T= T(a). •

To prove Theorem 3.1 we need some notations:

Let (t, X) with te rL, À,edom(/) and k0, ku . . ., &„edom(/) be given such
that:

(i) k0 < kt

(ii) kh kj are pairwise incomparable w. r. t. < (i,j= l, . . ., n);

(iii) ko^X and not kj < X (/= 1, . . ., n).

Then the fragment-tree of (/, X) given by the nodes kOi ku . . ., kn is the
subtree of / which has root k0 and which is obtained from / by restricting
dom (0 to those nodes k with ko^k and not kt < k. We dénote this fragment-
t r ee b y (t9 A,)<ko.*i•••*»].

Informatique théorique et Applications/Theoretical Informaties and Applications



FIRST-ORDER PROPERTIES OF TREES 131

(t,X,k0 , . . . , k 3 ) ( 1 , ^ 0 ^ 1 . . . M

We just write (*, X)[k°>K] if K={kx, . . ., &„}; instead of (f, A.)1*-*3 resp.
(f, A)[fco'01 we write (/, X)K] resp. (f, K)[k°. Fragment-trees of the form t[k°>K]

are defined in an analogous way as fragment-trees {t, X)[k°tK].

Immediately from the définition of a fragment-tree foUows

LEMMA 3.2: Let t[k<>'K], t[k>L] be two fragment-trees of t wit h keK. Then the
tree

is also a fragment-tree {and wel! defined). m

We introducé first-order formulas corresponding to fragment-trees:

DÉFINITION 3.3: A first-order formula which is appropriate for the fragment-
tree {t, A,)1*01*1' • ->kn] is a formula <p(y, x0, . . .,xn)eL1 (E) where each quanti-
fied subformula is of the form

(1) x0 A A A ;, x0,

or

(2) Vz hco^z A A -i(X;<z) V T A X ^

vol. 25, n° 2, 1991



132 U. HEUTER

We dénote such fragment-formulas by (p(j>)[jc°lXlJ ••"Xn]. m
For X={xl9 . . ., xn} we write <p(y)lx<»X] instead of <p(y)c*o.*i. ••••*«]. For-

mulas like q> (y)[x°, cp (y)X] and cptx°'*] are also used (corresponding to
{t, X)[x°3 (t, X)X] and t[k°'K]). The satisfaction relation is extended from trees
and formulas to fragment-trees and fragment-formulas in the obvious way:

(t,

<̂ > (t, X, k09 ku . . . , kn) N cp (y, JCOS x l 5 . . . , xn ) .

N o t e t h a t i t i s n o t n e c e s s a r y t h a t a f r a g m e n t - f o r m u l a cp(y) t xo> J C l ' - ' x n ] c o n -
n

tains the subformula A JC0 < xt; since the satisfaction relation is only defined
1 = 1

n

for fragment-trees, A k0 < kt holds per définition.
i = i

Remark 3.4; Let /[ko.^s tfr*n with fcei^be two fragment-trees and y1^*1,
xeX two appropriate fragment-formulas. Then we have:

^ o . «i 1= <pi*o. ̂  and

iff

Note that the formula 3x(<p[x°>X} A cp^XîY]) is equivalent to

( m m

x0 ^ x A A - t O, < je) A A - i (yt < x) A cp^o. ̂  ^ Wi A cp|x' n

i=i i=i

and hence to a fragment-formula of the form q>[xo»^-Wuy]. So fragment-
trees are possible models, as desired.

Proof of Theorem 3.1; The easier direction (from right to left) is shown by
induction on star-free expressions: For each <xeSF(L, D) with S(p) c r£

there is a sentence (paeL1 (L) such that S(a)= 7"(cpa).
It is convenient to drop first the restriction S (a) c= Tz and to show that

for each aeSFÇL, D) there is a formula <^asL1 (L) of the form:

<pa: V cpf i -V

ie ƒ

Informatique théorique et Applications/Theoretical Informaties and Applications



FIRST-ORDER PROPERTIES OF TREES 133

which describes the expression a in the following way:

VteTz>D: teS(a) o 3iel, lt'eTz with kl9 . . ., kn.edom{t'):

t'ki~'k»?t<f>ïi-x«ii and t'-^di'. . r\dn=t.

Obviously 0 is described by 3 y (y < y). A tree teTx D — SZD again is
described by 3 y (y < y), since in this case S(t) = 0. Concerning trees teSz D

the construction will be inductively:
The tree a e 2 is described by

3y Qfz(y ^ z) A VZ(Z ^ y) A y

y root y at the front

and the tree dteD by

Note that the last formula is a fragment-formula of the form (px*3.

Let t~a{tu t2) be given and the tree t1 resp. t2 be described by 9 J 1 x™]

resp. cpji'••" x»]. The / describing formula is then given by <p*i • ••*»•'xi•••*«]

where

9:
A 3y!(ySiyi A < i ' - i - ^ ) A 3y2(yS2y2 A (p^-i--n]))5

e. g. ail quantified subformulas occurring in cp have to be "relativized" to the
variables xu . . ., xm, x'l5 . . ., x'n as in Définition 3.3.

Now, let a, fieSFÇL, D) be given. We assume we have formulas of the
form

<pŒ: V c p f i - ^ çp. y i|//i- ^
i e I jeJ

to describe a resp. p. Then a formula which is equivalent to ad p is given by

t e / j e J

w h e r e ( p ^ i - ^ — \(/xi- -xnl:=

- q , * i - » J if

vol. 25, n° 2, 1991



134 U. HEUTER

- 3 y (y < y) if there are i9 j ( /e{l , . . ., m}, je{l, . . ., «}), such that
dt^ d and rf£ = rfj

/ x ) X l • • ' * i - l > * > x i + I -xmï A x | / [ x , * i . . . ^ 3 c 1 . . . x i _ 1 , x i + 1 . . . x I f , , x 1 . . . x ; ]

else (/. e. especially 3ie{\, . . ., m) with dt = d).

The second case ensures that only trees teSZD satisfy the formula. In the
third formula cp (xjx) arises from <p by substituting xt by x. This substitution
is necessary since one of the variables x[. . .x'n may be equal to xt

(z. e. corresponding to dt). This variable however must be excluded from the
quantification 3 x, which causes that the former variable xt is now bounded,
Le. the concaténation symbol dx in a is vanished.

Concerning the boolean connectives, the construction of <pa v p is trivial.
Building the formula <p_,a, the main steps are the construction of formulas
cpn ai. and the conjunction of them. Given cpa of the form cp*1 •••*»1 the formula
q>_, a expresses the disjunction of ~i (pXl "Xn] with ail formulas of the form
(3yy = y)xi>---*xm] for m # «, m ̂  |D | . This step is tedious but not diffîcult
and hence left out hère (for more details see [6]). Using these results for the
case of expressions a with S (a) c Tz we have formulas cpaî which are dis-
junctions of sentences of Lx (S). This complètes the proof of one direction
of Theorem 3.1.

Conversely we show that to each (peLx(L) there exist an alphabet D and
an expression a^eSFÇL, D) such that r(cp) = 5f(a(p). Therefore we have to
interpret regular expressions in fragment-trees, and we have to state what is
the counterpart of free variables within star-free expressions. Let S{dl ...,dn)
be the set of trees with exactly one occurrence of the symbols dx, . . ., dn

from D and no occurrence of another symbol d from D. We write

if

S(oi)czS[du,,,idn) and P°-k*-V*id1...-
k-d,eS(aî).

Corresponding to Lemma 3.4 follows.

LEMMA 3.5: Let a, fieSFÇL, D) be given with S (a) c SD., 5(|3) <= SD.. for
D', D" c D, D' C\D" c {4} and dteD'. For fragment-trees tlk*K\ ? lk 'L1 with
kj eKwe have:

tlko-K^D,oL and ^ L 1 N D . . p

Informatique théorique et Applications/Theoretical Informaties and Applications



FIRST-ORDER PROPERTIES OF TREES 135

iff

Note that this Lemma is (trivially) true, because there is only one concatén-
ation point labeled di in oc corresponding to the single "composition" node
kt in /.

It suffices to show the following

LEMMA 3.6: For each set of variables X~{xx, . . ., xn) and any formula
(p[*o>*3 there is an alphabet D => [du . . ., d„) and an expression a^eSFÇL, D)
such that for all te Tz:

( * ) ' [ k ° ' K ] *= <PIx°' X] iff 'E*°'K ] N { d l f . . . , dn) < v •

We write D{X) for the subset {du . . ., dn} of D and say in the case of
(*) that the expression a9 is D {X)-equivalent to cp[x°'X]. (Note that
\X\ = \D(X)\.)

It suffices to show Lemma 3.6 in order to prove the Theorem,
because with the Lemma also for each cp[x°' 0 i there is an 0-equivalent
expression ocp. Furthermore, each cp e L t (S) is equivalent to
9 = 3x 0 (—i 3 j ( y < x0) A cp[xo'01), and we have for arbitrary (peL1(L)
and te TL with root k0:

rN cp ^> t N cp <̂>

Note that concerning the second équivalence it is trivial that t and tlk°* 0 1

are equivalent since k0 is the root of /. The formula cp[X(>' 0 1 arose from cp by
"relativizing" each quantification to x0. So with the interprétation of x0 by
the root k0 the équivalence follows immediately.

To show Lemma 3.6 we need the following Décomposition Lemma which
will be proved in Section 4, using the Ehrenfeucht-Fraissé-game.

Décomposition Lemma 3.7

For each formula cp(y)[x°'X] with quantifier-depth q there exist a fmite
number of formulas (pĵ O' *«. *u W], cp^^6- *3 with quantifier-depth q and
*fl, i U Xht t = X such that 3 j ; cp (y)[x0'X] is equivalent to

V l x { ] ]

vol. 25, n° 2, 1991



136 U. HEUTER

Intuitively the second part of the conjunction only speaks about parts of
trees "below" y and the first of parts "above" y (in the sense of "not
below y ) . Therefore the subformulas are labeled with "a", resp. "è" .

We prove Lemma 3.6 by induction on the quantifïer-depth q of the
formulas cpE*°' x\ The most interesting step concerns quantification (the others
are easy). We know that for each formula (pE*o>*i with qd(<p) ̂  q there exists
an alphabet D and at, e SF(L, D) such that t[k°'K] t= cp[*o> ̂  iff ^ o ^ i ^ ^ ^
with appropriate D (X) a D.

Now let cp(y)[JCO'X] with qd(q>) = q be given. By the Décomposition Lemma,
3 y 9 (y)[x°'X] is equivalent to

ie ƒ

where the formulas <pa> i9 <p6( t are also of quantifier-depth q. Let aa f resp. ab> t

be the expressions which are D(Xa ( U {^})-equivalent to (p^0 ' \ i uW) 5 resp.
D (Xhi ̂ -equivalent to <p£jX*«i]. If we set i ) ( ^ a • U {7}) = Z)(Xaf) U {rfy}5 we
have by Remarks 3.4 and 3.5 that 3y((ptxQ>xa,iu{y]] A cp^*0-'1) is
D (Xa t) U D (Xb £)-equivalent to aüt t '

 dy aft ;. Hence 3 y <p (y)[xo>X] is
equivalent to V oca £*

dy ab ^ as desired.
ie ƒ

4. PROOF OF THE DECOMPOSITION LEMMA WITH THE EHRENFEUCHT-FRAISSE-
GAME

In this section we prove the Décomposition Lemma by means of the
Ehrenfeucht-Fraissé-game. (In some cases we state standard lemmas without
proof; for details we refer the reader to [10].) We start introducing these
games played on two fragment-trees of the form (/, X0)

[k0' *] and
(f9X'0)

ik'0'K'} with |JS:| = |j?7|. A play of the Ehrenfeucht-Fraisse game
Gn((t, ^o)^ '* 3 , (t', K0)

[k°'K']) consists of a séquence of n moves. Within each
move player / chooses an element of dom(t[k^K]) or of dom(tr[k°'K]), and
player II chooses an element of the other domain. The element which is
chosen from dom(t[k°>K]) [resp. dom(tt[ko>K'])] in the i-th move is called Xt

(resp. \'i). For simplicity of exposition we set Xn + 1+i: = kt and

Player II wins the play of the game Gn((t, X0)
[k°>K\ (t', Xf

0)
[k'<»x']), if for ail

U j with 0 S h j è n+ 1 +1 K\ we have:

(i) ^ <À,, o XJ <*,;•;

(ii) XiSkXjoXlSkX
r
j(k=ly2);

Informatique théorique et Applications/Theoretical Informaties and Applications



FIRST-ORDER PROPERTIES OF TREES 137

(iii) Xi = KjOk'i = 'k'j;

(iv) X,6P f l oXÎ6P a .
Thus player II has won if he respects the relations < , = , Sk, Pa in all his
choices, that means if the séquences of nodes (Xo, . . ., Xn, k0, . . ., k\ K |) and
(X'o, . . ., X'n, k'o, . . ., fcfx,|) define a partial isomorphism w. r. t. < , = , Sk

and JPfl(ûeE).
Player II has a winning-strategy in the game Gn((t, X0)

[k°'K\ (t\ XQ)1*'*»X']),

[denoted here by "II wins Gn((t, Xo)
[ko>K\ (/', ^) [ f co^'])^3 if player II is able

to respond to any move of player I such that II wins the resulting play.

We write:

(*, K)[k°'K] ~ „ C \ K)ik»K']'- iff n wins GH((t, Xofo-**, (t\ X'oy
k°'K1)*

The logical counterpart of this relation is the following:

DÉFINITION 4.1:

(t, ^o)[fc°'K1 =n(t', XX0'K1- iff for all <pO)tx°'*] with qd(q>) = n:

LEMMA 4.2 (cf. [10], Lemma 13.4, Lemma 13.10, Theorem 13.11): Let n > 0
ató(r , ^o)1*0'*3' (̂ '» X'Xo'*1 be two fragment-trees. Then:

(a) t[k°>K]~nt'
[ko>K'] iff for all X e dom (t{k^ K]) there is a X'

such that:

and for all X' e dom (t'[k'°' K']) there is a ^edornO**0'*1) such that:

(b) (t, xor<»v „ n ( f t xx°>K'] iff it9

(c) the relation ~n has afïnite number of équivalence classes (w. r. t. fragm-
ent-trees (f, X0T°'K] withfixed\K\);

(d) each ~n-class n (also called «-type %) is definable by a formula cp„ (a
"type description'') with quantifier-depth n;

(e) each formula cp of the form <p (y)Ï3Co-*i fs equivalent to afinite disjunction
of type-descriptions (p ,̂ that means:

q)(y)[xo>X] is equivalent to a formula of the form <pni(y)[x°'X]

(over all appropriate fragment-trees). •
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Note that all définitions and lemmas remain true for fragment-trees of the
form t[x°'X], i. e. without a further designated node Xo, and a fortiori for trees
/ without any parameters.

We now show a Composition Lemma for games with which we are able
to prove the Décomposition Lemma for formulas. (A similar resuit for linear
orderings can be found in [10], Theorem 6.6). We consider fragment-trees
(/, Xo)

[ko>K] and (t', X'o)
iko>K"t with | ^ | = |^ ' | , which shail be decomposed at

the node Xo (resp. ^0) into fragment-trees *[*<>.*«" (M (resp. t'[k'°' K«u { ^ )
above (again in the sensé of "not below") the node Xo (resp. X'o) and t[X°>Kb]

(resp. t'{Xo>Kd) below the node Xo (resp. X'o). The set of nodes Kaa K (resp.
K^) thereby consists of the nodes of K (resp. K) above the node Xo (resp.
XQ) and the set Kb <= K (resp. Kb) of the nodes of K (resp. K) below the node
À,o (resp. Xf

0). The Composition Lemma shows that it is possible to obtain a
winning-strategy for the game on the composed fragment-tree from the
winning-strategies for the constituting fragment-trees. Formally:

Composition Lemma 4.3

Let t, t' e TL.
I f ttk0, Ka u {io>] _ M fik'o, Ka u RÓ>] a n ( i ^ o . xfr] ^n , ' f l i , K'bi9 t h e n a l s o

Sketch ofproof

Let Ga be a winning-strategy for player II in the game on the upper two
fragment-trees of t, f and Gb a winning-strategy for the lower fragment-trees.

One has to verify that the following strategy is a winning-strategy on the
composed fragment-trees:

Player II sélects for each node chosen by player I from
dom(;[fcO'*^<V])-p,oj (resp. dom(;' t fc0'<u{^}1)- {X'o}) the node as given
by the strategy Ga, and for each node chosen by player I from dom (t[l°'Kb])
[resp. dom(tf[k°>Kb])] the corresponding node given by the strategy Gb.

For the inductive proof that a winning strategie results see [6], •
Now we are able to prove the Décomposition Lemma of the previous

Section:

Proof of the décomposition Lemma 3.7; By Lemma 4.2 (e), each formula
<p(y)[x°'X] with qd(q>) = n is equivalent to a finite disjunction of rc-type-
descriptions of the form <pni(y)[x°'X]- We show that each q>n(y)[x°'X] is
decomposable in the desired way.
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We take the set T of all pairs (na, nb) such that:

if t[k^K°u [X)]ena and t[K K^enbenb then t[k<» K°u * * ] e n .

This set is well defined by Lemma 4.2 (b) together with the Composition
Lemma, and it is finite by Lemma 4.2 (c).

Let q>J*°'Xa u {y}] be the formula defîning na and cpĵ ' Xfel the one defining nb,
each of them of quantifier-depth n. [These formulas exist by Lemma 4.2 (d).]
Hence it follows, as desired, that:

if

(na , nb) G n

5. APERIODIC LANGUAGES AND THEIR RELATIONSHIP TO FIRST-ORDER DEFINA-
BLE LANGUAGES

We show in this section that first-order definability is a more restrictive
notion than aperiodicity; hence the well-known result of the theory of regular
word languages on the équivalence between aperiodicity and first-order defin-
ability fails in the case of tree languages. That each first-order definable tree
language is aperiodic, is shown immediately by induction (see [9] for a
corresponding proof in the case of word languages).

THEOREM 5.1: There is an aperiodic regular tree language which is not first-
order definable,

Proof: Let S = {a, b}. We define Tcz TTto be the set of trees where for all
cuts S with | S\ > 1 the word w(S) is in E*aa£*. It is easy to see that T is a
regular, aperiodic tree language: Note that the existence of a eut £ £ * Ö < Z £ *

is directly expressible in monadic second order logic over finite trees (which
implies by [14], [2] that the resulting tree language is regular). Concerning
aperiodicity this existence claim for trees so.s

n.t does not depend on the
choice of n provided n > 1.
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We show that T is not first-order definable in the following way, using
the équivalence =n of Définition 4.1:

(*) For each n > 0 there are two trees tn, sneTz with tn =nsn,
but / „e land sn$T.

With (*) it follows that for any first-order sentence <p, say of quantifier depth
n, there exist trees t, seT^ which are on the one hand indistinguishable by
cp (since t =ns) and on the other hand satisfy teT and s$T. So, clearly, T
will not be first-order definable.

We define the trees /„, sn by induction. The trees tu st look as follows:

a b a b a b

It is easy to see that the trees tx and sx are indistinguishable by any of the
formulas with quantifier depth 1. [Note that these formulas are, up to logical
équivalence, Boolean combinations of formulas 3x(xePa).] Hence we have
t1 =x Ji. Moreover holds g e l a n d sx$T (the eut {11, 12, 21, 22} does not
contain two consécutive letters a).

The main difficuity of the proof is the construction of tn + u sn+1. Let trees
tn, sn be given with tn =nsn, tneT, sn$T and the following additional three
properties:

(i) The root of both trees is labeled with a.
(ii) The leftmost path of sn is labeled with a.

(iii) There is a eut S in sn with w(S)$Y<*aal,* which ends with b.
Note that the trees tl9 sx realize these three properties. We will ensure

them also for tn + 1 and sn+1.
To define tn+1 and sn+l we consider for arbitrary fc^l a "zigzag tree" zk

and a fixed "path tree" p:

b a a
 Xd2

A

Informatique théorique et Applications/Theoretical Informaties and Applications



FIRST-ORDER PROPERTIES OF TREES 141

The trees zk and p are trees over E U {cu . . ., ck> dl9 d2, d3}. Now tn+1

will be from the set of trees of the form:

7 •
Zk

(1)

i s n
l 2 s n

l 3 tn)

(p
di2

sn

with {di 2, dt 3} = {d2, d3}, and sn + 1 will be one of the following trees (differing
from tn+l at exactly one cj):

(2)

also with {dt 2, ^ 3} = {rf2, ^ 3 } .
We shall explain that each tree of the above form (1) is a member of T

[Le. that for all cuts S of such a tree we have w(S)e£*aaE*]3 and for each
tree of the above form (2) there is a eut S with w(£)££*<zaE*.

To show the first claim, consider tn+ x say of the form:

Then any eut which does not start by two consécutive letters a starts with
abb*. To pass through the whole tree on a eut one has to cross the "zig-zag
line" and to pass one of the subtrees p'dl sn

di2sn
di3 tn, and the only way to

avoid two consécutive a is to choose here the leftmost node of the subtree,
which is labeled with b, To reach now the rightmost node of this subtree
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(which is necessary for the construction of a eut), one has to pass the three
sub-subtrees (tn or sn) at least at the root. Thereby one has to choose a eut
in the sub-subtree tn (then the claim is shown, because in tn all cuts are from
£* aa?,*) or otherwise to choose the root of tn. Because of the three assumed
properties for sn, tn above, this root is labeled with a and each node of the
leftmost path of the tree sn also, hence in all cases one obtains a eut which
contains two consécutive letters a. (Note that if the tree /„ would be replaced
only for dl9 the last argument would fail, because there would not follow a
tree sn, but only a node labeled with b.)

Now we consider the claim for a tree of form (2):

The marked eut clearly is a not in E*aal,*. Note that here the property is
used that there is a eut in sn without two consécutive letters a which ends
with b (induction assumption).

Because of the fïnite index of =„ [Lemma 4.2 (c)] there are numbers k and
such that:
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where p(sn) : = / r d i sn
dls'^sn. Note that in each of these trees one d3 remains

for later substitution.

Let ri9 r2, r3 be trees as given by such parameters j1,j2>j?>- These trees are
also equivalent to each tree which arises from them by replacing arbitrary
occurrences of sn by tn. This results from a (repeated) application of the
Composition Lemma 4.3 and the induction assumption sn =„tn.

We will consider trees r[, r2 defined as foliows:

r\ arises from zk such that the labels {cls . . ., ck}~{cjv cJ2} of zk are
replaced by trees pdl sn

d2tn
d^sn, the label ch by pd^sn

d2sn and the label cJ2

by / r d W 3 V
r'2 arises in a similar way from zk9 where the labels {cu . . ., ck) — {c71, cj2}

are replaced as before, ch by P'dl sn
d2sn

d*sn and cJ2 by pd^sn
d2sn.

Clearly r[ =nrx and r2 =nr2 and hence r\ =nr'2 by the above remark.

Now we may define the desired trees tn+i and sn+1:

tn + i'^r'^t» and

Obviously the trees tn + 1, sn + 1 are of the form (1), resp. (2), described
above, hence tn+1eT, .yn + 1 ^ r a n d they realize the three properties (i), (ii),
(iii). So it remains to show tn + 1 =n + iSn + 1. By Lemma 4.2 (à) it suffices to
show:

(i) for all fcedom(f„+1) there is a k'edom(sn+1) such that:

(ii) for all ̂ ' e d o m ^ + J there is a A;edom(r„ + 1) such that:

Vn+U fy — nV^w+ls k )•

(i): There are two possibilities where the node k may occur in tn+1. The
first one is kedom(r[) but r[ (k) # d3 (note that tn+1 = r[d3 tn). In this case
we choose k':=k and it folio ws with (r[, k) =n(r[, k') and tn =nsn by the
Composition Lemma that (r'{d:itn, k) =n(r'{d3sn, k'), or equivalently

The second possibility is the occurrence of k in that subtree tn of tn+l

which replaces d3 of r'v Considering the construction of r'2 it is clear that
sn + 1

=r2
d^tn (note that sn + 1 :=r[-d*sn). Now we let X be the node with

r[QC}^d3 and X' the one with r'2(X') = d3. Then the trees ^ + 1 and s[^+1 are
both isomorphic to /„ (consider the constructions of tn+1 and sn+1). Suppose
k' of dom (s[£+1) is the node corresponding to k of dom(r^+1). Then clearly:

#+i = » £ l i ( ° r equivalently r\ =nr'2) and (/^+1, k) =n($+i> k')-
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Hence with Composition Lemma we obtain (tn+u k) = n(sn + li k') which was
to be shown.

(ii) To show this direction of the proof one argues in a similar way with
the tree r3 instead of r2. •

6. CONCLUSION

In this paper we have presented two results on first-order definable sets of
finite trees: We have characterized first-order logic over fïnite trees in terms
of a special class of star-free tree expressions, and we have clarified the
relation between first-order logic and aperiodicity: For sets of finite trees,
first-order definability is a more restrictive notion than aperiodicity.

It is well known that monadic second-order logic (first-order logic extended
by quantification over sets) over trees characterizes the regular tree languages
([2, 14]). Thomas defined in [13] two restricted versions of monadic second-
order logic related to tree structures: chain- and antichain-A$ïinab\\iXy. A
subset of dom(/) is a chain if it is linearly ordered by the partial tree
ordering <. It is an antichain if any two distinct éléments in it are incompar-
able w. r. t. < . A set T c r z is chain-(antichain-) definable if there is a
cp e L2 (E) such that T is the set of all trees t in which cp is satisfied under the
proviso that the set variables in cp range only over chains (antichains).
Thomas showed the équivalence between the star-free languages and antichain
definable languages; he also proved the équivalence of aperiodicity and first-
order logic for chain definable sets of trees. Given arbitrary alphabets E
(including Ex # 0 ) the classes of regular, star-free, special star-free, monadic
second-order (m. s.o.) definable, antichain definable, chain definable, first-
order (f. o.) definable and aperiodic tree languages are —as far as known-re-
lated as follows:

| | m.s.o. definable (= regular)

chain definable

antichain definable (= star-free)

aperiodic

f.o. definable (= special star-free)

If we consider sets of strictly binary trees (Le, over Z = Z0 = 2 2 with
1 = 0 ) , it is open whether there are regular tree languages, which are not
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star-free. A joint result with D. Niwinski states that a natural candidate for
a non star-free set of trees, consisting of ail binary trees over the alphabet
[a, b\ with an even number of letters a, is in fact star-free [7], Hence the
intuition concerning sets of words that star-free languages "are not able to
capture modulo counting" fails in the case of tree languages.

Further questions which remain open are:

- Is first-order defînability decidable for regular sets of trees?

— Which subclass of regular tree expressions characterizes the chain defln-
able tree languages?

— Is there an aperiodic tree language which is not antichain-defînable
(consider the question mark in the diagram)?

- Are there regular tree languages which are not (chain + antichain)-
definable (in this case the set quantifiers range either over chains or
antichains)?
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