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ON A SUBCLASS OF CONTEXT-FREE GROUPS (*)

by Thomas HERBST (*)

Communicated by J. BERSTEL

Abstract. - We investigate those groups which are finite or finite extensions of Z. We give
several char acier izations of this cîass in terms of formai languages and automata theory, and show
that, from a formai language point of view, this is the most important class of groups between
context-free and finite groups.

Résumé. - Nous examinons les groupes finis, ou qui sont extensions finies du groupe Z. Nous
donnons plusieurs caractérisations de cette classe, soit en termes de langages formels, soit en termes
de la théorie des automates, et nous montrons que, du point de vue des langages formels, ces
groupes forment la classe la plus importante entre les groupes context-free et les groupes finis.

1. INTRODUCTION

Following Muller and Schupp [19] we define the word problem of a group
G in a given présentation to be the set of words which are equivalent to the
unit of G. This définition links in a natural way the theory of formai
languages and the theory of groups. An easy lemma shows that under some
mild assumption the complexity of the word problem is independent of the
présentation and thus an invariant of the group. Therefore, every family of
languages closed under inverse homomorphism deftnes a class of groups. It
is an interesting task to give a group theoretical description of those groups
which belong to a given family of languages closed under inverse homomor-
phism. Such description is known for regular and context-free languages:
From Kleene's theorem together with the observation that the unit of a
group is disjunctive we can conclude that the class of groups with a regular
word problem is equal to the class of finite groups (a different proof of this
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256 T. HERBST

statement was given in [2]). From the results in [19, 11] we can deduce that
the class of groups with a context-free word problem is equal to the class of
groups having a free subgroup of finite rank and finite index. In this paper
we détermine for any cone which is a subfamily of the context-free languages
the corresponding class of groups. It is an interesting fact that, besides finite
and context-free groups, only one further class of groups does occur. We
call these groups one counter groups, since their word problem is a one
counter language. One counter groups prove to be exactly those groups
which have a free subgroup of finite index and rank at most 1. Examples
are the infinité dihedral group Z2 * Z2 or any abelian group of rank at
most 1. Moreover we give several further characterizations of one counter
groups which are based on their combinatorial structure or on theorems
similar to that of Kleene which hold exactly in one counter groups.

Another subclass of context-free groups, the so-called plaïn groups, was
investigated in [15]. But the définition of this class of groups is not indepen-
dent of the chosen présentation. The plain groups are incomparable with one
counter groups.

This paper is organized as follows: in the next section we give the basic
définitions so that we can state our main theorem in section 3. This theorem
présents seven different characterizations of one counter groups. Furthermore,
we discuss some of the results. The proof of the main theorem is given at
the end of section 5. It is based on several propositions which we state and
prove in the sections 4 and 5. In section 6 we point out the importance of
one counter groups by the following fact: given a proper subcone £ of the
family of context-free languages the class of groups whose word problem is
in (E is either the class of finite groups or of one counter groups. From this
point of view one counter groups prove to be the most important class of
groups between context-free and finite groups. Furthermore, we show that
given the word problem of a context-free group G it is decidable whether G
is one counter. Finally, we are able to prove that the deterministic context-
free groups are precisely the thin groups. This result is a special case of a
conjecture of Sakarovitch stated in [21, 23].

2. PRELIMINAIRES

In this paper X dénotes always an alphabet, that is a finite nonempty set,
and X* the free monoid generated by X. In gênerai, if T is a subset of a
monoid M, r* dénotes the submonoid generated by T in M. If T= {t} is a
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singleton, we write t* and omit the brackets. If M is a group, < 7") dénotes
the subgroup generated by T in M.

Let M be a monoid and ^4, i? subsets of M. The ng/z? quotients AB'X of
A by B is the set {meM|3Z>ei? : mbeA). In groups the quotient and the
inverse have the same meaning, that is [\}B~1 is the set of inverses of
éléments of B. N is the set of natural numbers and f ^ J o :=^ IU{0} .Z dénotes
the set of integers.

Given a monoid M ^3 (M) is the powerset of M.

A cône is a family of languages closed under homomorphism, inverse
homomorphism, and intersection with regular languages. £ 3 is the family of
regular languages and £ 2

 t n e family of context-free languages.

LEMMA 2.1 (cf. [21, 22]): Let M be a finitely generated monoid, Y an
alphabet, cp : X* -> M a homomorphism, and \|/ : 7* -* M a surjective homo-
morphism. Then there is a homomorphism h : X* -• Y* such that \|/A = <p holds.

Proof: Let h (x) : = wx with (p (x) = \|/ (wj for all x in X
The claim is an easy conséquence of this définition then.
Lemma 2.1 gives the frame of this paper: Since for every T<=M we have

A-1(^-1(îT)) = <p"1(r), and for every L g l * such that q>(L)=T holds we
have \|/ (h (L)) = T, the lemma above links in a natural way subsets of monoids
and families of languages. This leads to

DÉFINITION 2.2: Let M be a finitely generated monoid.
(a) Let Œ be a family of languages closed under inverse homomorphism.

& (M) : = { r<=M| there is a surjective homomorphism

(b) Let £ be a family of languages closed under homomorphism.

: = { r<=M| there is a surjective homomorphism

cp : r - ^ M a n d l G Œ with

Lemma 2.1 asserts that the définitions above are independent of the alphabet
and the homomorphism.

Next we introducé for some classes of subsets which will frequently occur
in this paper a more comfortable notation.

DÉFINITION 2.3: Let M be a finitely generated monoid.

(a) l
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258 T. HERBST

(b) Rat (M) : = fi|(Af).
(c) CF(M) : = fi
(d) AIg(M): =
An element of Rat (M) is called rational and an element of Alg (Af)

The wellknown définitions of the classes Rec, Rat, and Alg which can be
found for example in [12, 6, 7] are different from those définitions we have
given hère. But it is easy to see that the définitions are equivalent in fmitely
generated monoids. The advantage of our approach is the possibility to relate
classes of subsets not only with regular or context-free languages but with
any family of languages which is closed under homomorphism (inverse
homomorphism resp.).

It is clear that the rational subsets of X* are the regular languages.
If M is a free partially commutative monoid and the alphabet X is fixed,

the définitions above are common in the theory of traces (cf. [1] for example).
From the inclusion £ 3 g £ 2 and the définitions we can conclude for every
finitely generated monoid M:

Rec (M) g CF(M) g Alg (M)

and
Rec (M) g Rat (M) g Alg (M).

The inclusions above need not be proper. For example in finite monoids we
have the identity and in free monoids X* we have (£v (X*) = (E3 (X*) for every
family of languages G which is closed under inverse homomorphism and
homomorphism.

This paper deals with groups and we are able to characterize those groups
G for which CF(G) = Alg (G) (CF (G) = Rat (G) resp.) holds. One way to do
this is to define a family of languages which contains the inverse images of
the unit éléments of the groups.

DÉFINITION 2.4: Ocl (or family of one counter languages) are those lan-
guages which are accepted by one counter pushdown automata as defined in
[6]. In the usual way we can define a deterministic version of a one counter
pushdown automaton. This leads to Doel (or family of deterministic one
counter languages) which are those languages accepted by deterministic one
counter pushdown automata.

It is shown in [6] that Ocl is a cone and a proper subfamily of £2. Doel is
closed under inverse homomorphism. To verify this, one may use the standard
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proof which shows the closure of context-free languages under inverse homo-
morphism {cf. [16] for example) in this special case. Thus we can define in
any finitely generated monoid the classes Oclv(Af) and Doclv(Af). For the
sake of brevity we will write in this paper just Ocl(M) and Docl(M).

DÉFINITION 2.5: Let G be a finitely generated group.
(à) G is a context-free group if {1} e CF(G),
(b) G is a one counter group if { 1} G Ocl (G).
Context-free groups were studied by Anisimov in [2]. Among others he

showed that every finitely generated free group is context-free and that the
abelian context-free groups are exactly the abelian groups with rank less or
equal 1. Muller and Schupp gave in [19] a group theoretical description of
context-free groups. A survey of the so far known results can be found in [4].

The next two définitions are from [21].

DÉFINITION 2.6: Let M be a monoid and 7<=M. T is called thin if T is a
fïnite union of subsets wt>* w with «, v, WEM.

M is called thin if M is a thin subset of itself.

DÉFINITION 2.7: A monoid M is called deterministic if every context-free
language whose syntactic monoid is isomorphic to M is deterministic context-
free, and there is at least one of those.

Sakarovitch conjectured in [21, 23] that the thin syntactic monoids are
precisely the deterministic monoids and proved this conjecture for abelian
groups. (Recall that a monoid M is syntactic if there is a language L such
that the syntactic monoid of L is isomorphic to M.) Certainly, every deter-
ministic monoid is syntactic. But there are thin monoids which are not
syntactic, since there are even fini te monoids which are not syntactic (cf [26]).
In this paper we are able to prove this conjecture in case the monoid is a
context-free group. In order to do so we show that thin groups are exactly
the one counter groups and therefore have always a deterministic context-
free word problem. This solves an open problem stated in [20],

3. THE MAIN THEOREM

THEOREM 3 .1 : Let G be a finitely generated group. The following statements
are equivalent:

(a) G is finite, or Z is subgroup o f G withfinite index.

(b) G is a one counter group.

vol. 25, n° 3, 1991



260 T. HERBST

(c)

(d)

(e) Ocl(G) = Alg(G).

(ƒ) CF (G) = Rat (G).

(g) G is thin.

Theorem 3.1 provides several characterizations of one counter groups. We
think that the statements (c) and (d) deserve some more comments.

Although in gênerai the deterministic version of a type of automata is
weaker than the nondeterministic one, for some types of automata the class
of groups whose word problem is recognized by these automata does not
depend on the determinism of the automata. This is the case for pushdown
automata (cf. [19]) and one counter pushdown automata. The latter will be
proven in this paper.

An example of a différent behaviour is the supercounter machine which
was investigated in [9]. Nondeterministic supercounter machines recognize ail
context-free groups, but from [9, prop. 4] we can conclude that there is no
deterministic supercounter machine which recognizes the word problem of
the free group generated by two éléments.

The famous theorem of Kleene can be formulated as follows: In every
fïnitely generated free monoid X* we have Rat(Z*) = Rec(X*). For that
reason we call a monoid M in which Rat (M) = Rec (M) holds a Kleene
monoid, There are monoids which aren't Kleene monoids, for example every
infinité group. Therefore, it is an interesting task to characterize ail Kleene
monoids. A survey concerning this matter is given in [7].

Similar to the classical case we have Alg (X*) = CF(X*) in fïnitely generated
free monoids X*. We call a monoid in which this identity holds algebraic.
Every fînite monoid is a Kleene monoid as well as algebraic. Z is not a
Kleene monoid but is algebraic. The question which groups are algebraic
monoids is answered by our main theorem.

Finally, we should remark that a group G in which Rat (G) = Alg (G) holds
need not be a one counter group. Take Z2 as a counterexample. From the
results presented in this paper we can easily dérive that Rat (G) = Alg (G)
holds in every group G which has a finitely generated abelian subgroup of
fînite index. But we don't know whether this condition is sufficient, too.

Informatique théorique et Applications/Theoretical Informaties and Applications
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4. SOME BASIC OBSERVATIONS

LEMMA 4.1: Let G be a finitely gêner ated group, i? e Rat (G). Let (£ be a
cône.

(a) Te&B(G)=>TRe<&3(Gy

(b)

(c)

Proof: Let q> : X* -> G be a surjective homomorphism.

(a) By définition there exists L g l * , Led, such that cp(Z)= T holds, and
a regular language R'<^X* such that q>(R') = R. It follows <p(LR') = TR.
LR'e&, since cônes are closed under concaténation by regular languages
(cf [6]).

(b) It is easy to show that R'1 ^ { r " 1 eG|rei?}eRat(G). By définition
there exists a regular language R'<=X* such that (p(jR') = 7?~1. Next note
cp"1 (TR) ̂ cp"1 (T)^ ' " 1 . The claim is a conséquence of the closure of cônes
under right quotients by regular languages (cf. [16]).

(c) is similar to (b).
From part (b) or (c) above we can draw the following conclusion.

LEMMA 4.2: In a context-free group G we have Rat (G) £= CF(G).

Next we note a lemma which is an easy conséquence of Lemma 2.1 (or of
a lemma stated in [22]) but from which we can draw an important conclusion.

LEMMA 4.3: Let M', M be finiiely generaled monoids and x : M' -> M any
homomorphism, T^M, T' : ^ T " 1 (T)^M', Y an alphabet, and q>, \|/ surjective
homomorphisms, \|/ : Y* -• M, cp : X* -+M', Lx : =(p~1(Tr), L2 : =\|/~1(7T).

77*e?ï //zere exists a homomorphism h : X*-+Y* such that L1=h~1(L2)
holds.

Proof: The following diagram explains the situation.

h

4 4

The claim follows from Lemma 2.1, since the composition of 9 and x
yields a homomorphism from X* to M.

vol. 25, n° 3, 1991



262 T. HERBST

Considering the natural embedding leads to the following corollary.

COROLLARY 4.4: Let G be a finitely generaled group and U a finitely
generated subgroup of G, T^G. Then the following holds:

(a) TeOc\(G)^TnUeOc\(U).

(b) TeCF(G)^TnUeCF(U),

Corollary 4.4 plays an important rôle in the proof of the main theorem.
We only stated it in a form we shall need in the proof. But certainly it can
be generalized to monoids or other families of languages. The converse of
this corollary isn't true in gênerai: (l}eCF(Z), but (1}£CF(Z2). In the
next chapter we shall be able to prove a partial converse by imposing some
restrictions on the subgroup U.

The last thing we want to do in this chapter is to take a look at free
groups. In the following Fn dénotes always the free group generated by n
éléments, Zn : = {xl5 x2, . . . ,xn , i i"1

)x2"1 , . . ., x~l}, and <p the natural
homomorphism from Z* onto Fn.

It is a classical resuit {cf. [18]) that for ail w in Z* there is exactly one
reduced word w with the following properties: cp (w) = cp (w) and w contains
no subword x^x^"1 or x^"1 xt for l^i^n.

DÉFINITION 4.5: Let L^

Red (L) : = {w e Z* \ w is reduced and there exists weL such that cp (w) = <p ( w)}.

LEMMA 4.6: Let T^Fn.

Te CF(Fn) o Red (cp " 1 (T)) is context-free.

Proof: One direction follows from the fact that Red(Z*) is a regular
language and the other from [8, Theorem 2.2].

The resuit of Benois [5] that regular languages are closed under the Red-
operator in connection with Lemma 4.6 leads to:

COROLLARY 4.7: Let TeCF{Fn\ i?eRat(FJ. Then TnReCF(Fn).

From Lemma 4.2 we can deduce that Ra.t(Fn)^CF(Fn). An improvement
is the following:

PROPOSITION 4.8: Let neN, n^2.

Then Rat (Fn) G: CF(Fn) a Alg (Fn).

Proof: The fîrst inclusion is shown in [21] and the second in [13]. We shall
give new proofs which seem easier to us.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Let T\ = {xn
1x

n
2\neN}.

By Lemma 4.6 we have TeCF(Fn). The rationality of T would imply by
Benois' theorem the regularity of Red(cp-1 (T)).

In order to show the second inclusion we use an example of [17].

Let G = ( {S, A }, ZB, P, S) be a grammar and

zx. ^ Ĉ-1 /\./x X •% ;

T : = cp(L(G)). Obviously reAlg(F„). Assume TeCF(Fn). From Corollary
4.7 we obtain m ^ e C F ( F „ ) . But r n * * = {xf |neN 0 } , a contradiction
with Lemma 4.6.

5. PROOF OF THE MAIN THEOREM

It is easy to see that a set which is rational or algebraic in a submonoid U
of a monoid M has the same property in M if we assume U and M to be
finitely generated. In the first part of this chapter we shall investigate the
converse (or at least a partial converse) of this fact. We start with a lemma
which we quote from [3].

LEMMA 5.1: Let G be a group, A<=G, A = x1Tfx2T%. . .xn T*xn + 1, where
xteG, Tj^G, l ^ ï ^ n + 1 , 1

Let yt : = xlx2. . ,xt, then

PROPOSITION 5.2 (cf. [7, 13]): Let G be a group, U a subgroup of G,
r eRa t (G) , and T<=U. Then TeRat(U).

Proof: It is convenient for this proposition to assume that a rational
subset is defmed by a rational expressions (cf. [6] for example). We already
mentioned that in finitely generated monoids this définition is equivalent to
the définition given hère.

Assume that there is a subgroup U^H, Te Rat (G) defined by a rational
expression with minimal starheight h, such that
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264 T. HERBST

Certainly h>0.

Without loss of generality we may assume T=x1Tfx2T%. . -xnT*xn+l

where xt e G, 1 ̂  i ̂  n + 1, Tj e Rat (G), and Ti has starheight at most h ~ 1 for
every l^j^n.

T^U implies (T}^U.

*3̂  * X^ . . . X} 11 X^ . . . X^

Using Lemma 5.1 we obtain < T) = <xxx2 . - .Jtn +15 iSl9 S2, . . ., Sn>.

Each iS£ has starheight at most A— 1. Therefore, we can apply Pro-
position 5.2 to St, and we have St e Rat (U), l-^i^n. Furthermore,
xlx2. . >xn + 1eU and x1x2. . .xn + 1eRat(t7). Thus we conclude
r = S;f Sf. . . .S* Xi x2. . .x„ + 1 e Rat (U) which contradicts our assumption.

We failed in proving the statement that arises if one replaces in the last
proposition Rat by Alg. Luckily, for the proof of the main theorem a weaker
version is suffïcient, which can be deduced from the following lemma.

LEMMA 5.3: Let G be a finitely generaled group, N a normal subgroup of
G with finite index, cp : X* -• iV~ a surjective homomorphism, {1, d2, . . ., dn}
a set of coset représentatives of N, D : = {d2, . . ., dn}, and \|/ : (X{JD)* -> G
the obvious surjective homomorphism. Then there exists a subsequential function
(cf. [6]) T from {X\JD)* into itselfwith the following two properties:

- ^(w) = y\f(x(w))for all w in (JU/>)*,

- x(w)eX*\JX*Dfor allwin(X\JD)*.

Proof: N is normal in G. Hence there are ut jsX* such that

*{dixj) = Mui.jdd (1)

and zu j e X*, du} e D \J {8 } such that

iz^jd^j) (2)

for all dh dj in Z)5 Xj in X,

The function x maps every word to a kind of normal form which has the
same value in the group, and which contains, at most, one letter of D at the
right side. The équations above show that x can be realized by a subsequential
transducer S (cf. [6]) such that the set of states of S are the cosets of N, the
next state function and the output function are defïned by (1), (2), and the
partial function p is the identity.
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PROPOSITION 5.4: Let G be afinitely generaled groupe N a normal subgroup
ofG withfinite index, <E a cône, and Te&3(G).

Then

Proof: The notations are the same as in the proof of the last lemma.

Let Te (E3 (G). Hence there exists L<^(X\JD)*, Le&, such that ty(L) = T.
It follows from Lemma 5.3 that I|/(T(L) nX*) = TC\ N. Since cones are
closed under subsequential functions [6] and intersection with regular lan-
guages, this implies the claim.

PROPOSITION 5.5: Let G be afinitely generated groupe N a normal subgroup
of G with fïnite index, and T<= N.

(a) Let &bea cone and TefF(N). Then Te^{G).

(b) Te Doel (TV) => Te Doel (G).

Proof: The notations are the same as in the proof of Lemma 5.3.

Clearly x"1 (cp"1 (r)) = \|/"1 (T) holds. Thus it is sufficient to show that
cones (the family of deterministic one counter languages resp.) are closed
under the inverse of x.

This is obvious for the first case, since x ~ * is a rational transduction (as
well as x) and cones are closed under rational transductions [6].

The second case cannot be treated in the same way, since deterministic one
counter languages are not closed under homomorphism. But the underlying
subsequential transducer of x can be simulated in the finite control of a one
counter automaton.

Let A be such automaton recognizing q>"1(7'). We can construct a new
automaton A' which recognizes x"1(cp~1(7')). A' carries out the rewriting
process described by the équations (1) and (2) of Lemma 5.3 and simulâtes
A. Certainly, if A was a deterministic one counter automaton, so is A'.

Now we are ready to prove our main theorem. The implications (a) => (c),
(e), (ƒ) may be deduced from [22], but we give a different treatment here.

Proof (of Theorem 3.1): If G is fïnite, the claim is trivial. Therefore,
assume G to be infinité. Let Z be a subgroup of G with finite index. It
follows from a wellknown theorem in group theory that there is a subgroup
Z' of Z that is normal in G and has finite index in G. Hence we can assume
that Z is a normal subgroup of G with finite index,

(a) =>(c) : Obviously {1 }çDoçl(Z).

vol, 25, na 3, 1991



266 T. HERBST

Then, by Proposition 5.5, {1 }eDocl(G).

(c) => (b) : trivial.

(b) =>(a) : {l}eOcl(G). Thus, G is a context-free group. The results of
[19, 11] imply that there exists a fmitely generated free normal subgroup N
of G with finite index. It follows from Corollary 4.4 that { 1} eOcl(iV). Thus
rank (N) = 1, since otherwise the cône generated by the word problem of N
would be the family of context-free languages.

(a) ^>{d) : CF(G)gAlg(G) follows from the définitions.

Let TeAlg(G). ZeRec(G), since the syntactic monoid of Z is fmite. The
same holds for every coset of Z.

Hence TC\ZgeMg(G) for ail g in G. This gives a partition of T into
fïnitely many disjunct subsets Tu T2, . . ., Tk according to the fmitely many
cosets of Z and TieA\g(G), l^ii^k. To prove the claim it is suffîcient to
show TteCF(G) for each Tt.

Therefore, let T^Zg, TteA\g(G). It follows from Lemma 4.1 that
Tig'1 eAlg(G). Moreover, Ttg~x^Z. We conclude from Proposition 5.4
that Tig~1eAlg(Z). Parikh's theorem (cf. [14]) gives T^" 1 eRat(Z), since
Z is a commutative monoid. Thus, T^g"1 e Rat (G). It follows from Lemma
4.1 that Tig~1g=Tie Rat (G). Thus Tt G CF(G) by Lemma 4.2.

(d) =>(a) : ( l}eCF(G). Therefore, G is a context-free group and the
results from [19, 11] imply that there exists a fmitely generated free normal
subgroup N of G with fïnite index.

Assume that N has rank more or equal 2. It follows from Proposition 4.9
that there is a T^N, TeA\g(N), T$CF(N). Certainly, TeAlg(G). We
conclude from Corollary 4.4 that T$CF(G) which contradicts our assump-
tion.

(a).

(d) =>0) : So far we have Rat(G) = Alg(G). Therefore it is suffîcient to
show Rat(G)<=Ocl(G). But that is an easy conséquence of Lemma 4.1 (b).

(a) => (g) : trivial

(g)=>(à) : Let G = uxvîw1\J - - -UunviwH9 l ^ i g « .

Informatique théorique et Applications/Theoretical Informaties and Applications
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It follows

G = (w1z>1wr1)*«iV*>1U. . .\J(unvnu;l)*unwn

= < "l Vl Uî l > Ul Wl U • • • U < Un Vn U~ X > Un Wn.

Therefore we can assume that there are ah gteG such that

Each <fl(> is a cyclic subgroup of G. We can gather all finite <#;>& to get
a finite set E. Hence

G = E{J(b1)g'1U...U(bm)g'm

and

( ^ i ) n ^ 6 , - ) is either trivial or isomorphic to Z and in the latter case a
subgroup of < èx ) and of < Z?; ) with finite index.

Therefore there exists c, cf) g", hjSG, l^i^p, l^j^k, such that

and <c>n<C;> = { l} fo
Now assume that G is no one counter group.

Then G^E{J <c> {Al9 . . ., Ak} and there exists A e G, A^{Al9 . . ., hk).
(c}h contains infinitely many éléments not in EU (c}{hu . . ., Afc}. Hence
there exists l^i^p such that ( c )Af | (Ci )gJ ' is infinité. Especially there
are two different éléments in both cosets.

Thus, cqh = crig" and <? h = cjg", where 9 #5, r ^ f e Z . It follows
cs"* = c|"r, which contradicts the assumption < c ) n < c t > = { l} .

6. PROPERTIES OF ONE COUNTER GROUPS

Let Zh Fh and cp defined as in chapter 4.
Df : = q>-x (1) where /=1 , 2.

We start with a remark concerning the significance of one counter groups.
From a certain formai language point of view they prove to be the most
important subclass between finite and context-free groups. A précise formu-
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lation is given in Proposition 6.2. To prove this we need the following
statement.

LEMMA 6 . 1 : Let d be a family of languages closed under inverse homo-
morphism, C ^ £ 2 -

(a) If there is an infinité group G such that { 1} e <£v (G), then Df e G.

(b) If there is a group G, G no one counter group, such that {1 }e£ v (G),
then D%éd.

Proof: (a) G is context-free and infinité. Thus Ft is subgroup of G, The
claim follows from Lemma 4 .3 if we consider the natural embedding.

(b) is similar to (a).

PROPOSITION 6.2: Let (£ be a cône, ( £ G : £ 2 . Let © be the class of all groups

whose word problem is in (L Then © is the class offinite or one counter groups.
Moreover, the following two statements are equivalent:

(a) />îe<L
(b) © is the class of one counter groups.

Proof: Every group, whose word problem is in (£, is a context-free group
and therefore has a free subgroup of fïnite index. Let m be the maximum of
the ranks of all those subgroups.

If m = 0, then every group in © is finite. On the other hand, every fïnite
group is in ©, since every cône contains £3 .

If m= 1, then, by Lemma 6 .1 , £?e(E. We dérive from Proposition 5.5 (a)
that © is the class of one counter groups.

The case m > 1 is impossible: assume m > 1.

It follows from Lemma 6.1 (b) that D%e&. But D% is a cône generator of
£ 2 {cf. [6]).

The property of a context-free group G to be a one counter group is
decidable if the word problem of G is given. Observe that the word problem
of G is always deterministic context-free (cf. [19, 11]). We give an algorithm
which also can be seen as a partial solution of the more gênerai problem to
décide whether a deterministic context-free language is one counter which is
to our knowledge still an open problem (cf [25]).

PROPOSITION 6 .3 : Let G be a finitely gênerated group, (p : X* -• G a surjec-
tive homomorphism, and L : = cp~1(l) a deterministic context-free language
which may be given by a deterministic pushdown automaton. Then it is decidable
whether G is a one counter group.
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Proof: In a first step we test whether L is regular (cf [24]). Note that L is
regular iff G is fînite.

If L is not regular, we détermine weX* such that cp(w) has infinité order
in G by testing whether w* w C\ L is empty. Such w does exist, since every
periodic context-free group is finite.

Next we search for w' e X* such that ww' s L. This can be done by enumerat-
ing the words in X* and testing successively the membership. At last we test
whether L({w, w'}*)"1 is regular which is equivalent to testing whether
( <p (w) ) has finite index.

Now we corne back to the conjecture of Sakarovitch. If the monoid is a
context-free group we are able to prove it. Observe that every finitely
generated group is syntactic.

PROPOSITION 6.4: Let G be a context-free group.

G is deterministic o G is thin.

Proof: "<=" By Theorem 3.1 we deduce that G is one counter and that
the image of every context-free language in G is a rational set. The remainder
of the proof can be done analogously to the proof of Lemma 4.1 (è), since
deterministic context-free languages are closed under right quotient with
regular languages.

"=>" Assume that G is not thin and therefore not one counter. Then there
exists a free normal subgroup F=F(xl, x2, . . ., xn) of finite index in G and

Let (p : X* -> G be a surjective homomorphism and L : = cp"l (T).

It follows from [26] that the syntactic monoid of L is isomorphic to G iff
T is a disjunctive subset. (Recall that a subset T is disjunctive in G if for ail
a^b in G there are u, veG such that uaveToubv^T).

It is an easy exercise to show that T is disjunctive.

Using Lemma 4.6 and Proposition 5.5 (a) we obtain TeCF(G). Assume
that L is already deterministic context-free. It follows from Lemma 4.3 that
the inverse image of T in F is deterministic context-free. But that is a
contradiction with an example given in [21, p. 141].

Proposition 6.4 could be extended to all kinds of groups if it is possible
to show that a group which is syntactic monoid of a deterministic context-
free language, is always a context-free group. But we failed in proving this.
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The last proposition we state in this paper hasn't that much to do with
one counter groups but is more a property of context-free groups which are
not one counter. Nevertheless we find it worth mentioning.

PROPOSITION 6.5: Let G be a context-free group, G not one counter group.
Let U^G be a finitely generated subgroup of G, t/£Rec(G) (pr equivalent, U
has infinité index in G). Let 0¥"T^ U be any nonempty subset of U and G
the cone generated by the inverse image of T.

Then 22^<&.

Proof: To prove the claim it is suffïcient to show that D% e (L

G is context-free and not one counter. Therefore there exists a free normal
subgroup F of finite index and finite rank « in G with n^2.

Let H : = UnF. H is free and of finite rank, since every subgroup of a
free group is free [18] and the intersection of a finitely generated subgroup
and a subgroup of finite index is finitely generated [13].

t/£Rec(G) and therefore H$Rec(F).

By Lemma 4.1 (b) we may assume without loss of generality {1 } e T and
therefore TÇ\H±0.

Let {hl9 . . ., hk} be a free generating system of H.

First, assume fe^2.

According to [10] there is a free generating system {hu . . ., hk,
Su • • •> Sm} of a subgroup N of finite index in F and m^l, since H 4 Ree (F).

Let F2 : = < hu h2 > and let x : F2 -• G be the natural embedding. We can
deduce from Lemma 4.1 (b) and (c) that T :=gf1 Tg1e&(G). But
T - i ( r ) = { 1 }. Hence, by Lemma 4.3, Z)|e(L

Now assume fc=l. This implies 0¥-TC\F^(h1 >.

Let F2 be the free group generated by x1 and JC2, and heF such that
h1h^hh1, Such h exists, since rank(iO^2.

p : F2-+G defined by p(x1) = h1h, p(x2) = hhl.

From this définition we conclude p " 1 ( T ) = { l } and furthermore, by
Lemma 4 . 3 , D%e(L

ACKNOWLEDGMENTS

The author is greatly indebted to J. Sakarovitch for his numerous suggestions and improve-
ments to a previous version of this paper. Especially Lemma 5.3 and the present proofs of
Proposition 5.4 and 5.5 are due to him.

Informatique théorique et Applications/Theoretical Informaties and Applications



ON A SUBCLASS OF CONTEXT-FREE GROUPS 2 7 1

REFERENCES

1. IJ. J. AALBERSBERG and G. ROZENBERG, Theory of traces, Theoret. Comput. Sci.,
1988., 60, pp. 1-82.

2. A. V. ANISIMOV, Group languages, Kibernetika, 1971, 4, pp. 18-24.
3. A. V. ANISIMOV and F. D. SEIFERT, Zur algebraischen Charakteristik der durch

kontextfreie Sprachen defmierten Gruppen, Elektr. Inf. und Kybernetik, 1975, 11,
pp. 695-702.

4. J. M. AUTEBERT, L. BOASSON and SÉNIZERGUES, Groups and NTS languages,
J. Comput. Syst. Sci., 1987, 35, pp. 243-267.

5. M. BENOIS, Parties rationnelles du groupe libre, C.R. Acad. Sci. Paris, 1969, Séries
A, 269, pp. 1188-1190.

6. J. BERSTEL, Tranductions and context-free languages, Teubner, 1979.
7. J. BERSTEL and J. SAKAROVITCH, Recent results in the theory of rational sets,

Springer L.N.C.S., 1986, 233, pp. 15-28.
8. R. BOOK, M. JANTZEN and C. WRATHALL, Monadic Thue Systems, Theoret. Comput.

Sci, 1982, 19, pp. 231-251.
9. B. v. BRAUNMÜHL and E. HOTZEL, Supercounter machines, Springer L.N.C.S.,

1979, 71, pp. 58-72.
10. R. G. BURNS, A note on free groups, Proc. Amer. Math. Soc, 1969, 23,

pp. 14-17.
11. M. J. DUNWOODY, The accessibility of finitely presented groups, Invent. Math.,

1985, 81, pp. 449-457.
12. S. EILENBERG, Automata, languages, and machines, Vol. A, Academie Press, 1974.
13. C. FROUGNY, J. SAKAROVITCH and P. SCHUPP, Finiteness conditions on subgroups

and formai languages theory, Proc. London Math. Soc, 1989, 58, pp. 74-88.
14. S. GINSBURG, The mathematical theory of context-free languages, McGraw-Hill,

New York, 1966.
15. R. H. HARING-SMITH, Groups and simple languages, Ph. D. thesis, University of

Illinois, Urbana, 1981.
16. J. E. HOPCROFT and J. D. ULLMAN, Introduction to automata theory, languages,

and computation, Addison-Wesley, 1979.
17. M. JANTZEN, M. KUDLEK, K. LANGE and H. PETERSEN, DVC^-réductions of context-

free languages, Springer L.N.C.S., 1987, 278, pp. 218-227.
18. W. MAGNUS, A. KARRASS and D. SOUTAR, Combinatorial group theory, Pure and

Appl. Math., XII, Interscience publishers 1966.
19. D, E. MULLER and P. SCHUPP, Groups, the theory of ends, and context-free

îanguages, / . Comput. System. Sci., 1983, 26, pp. 295-310.
20. J. F. PERROT, Introduction aux monoïdes syntaçtiques des langages algébriques,

in J.-P. CRESTIN and M. NIVAT Eds., Actes des premières journées d'informatique
théorique, Bonascre 1973, E.N.S.T.A., Paris, 1978, pp. 167-222.

21. J. SAKAROVITCH, Monoïdes syntaçtiques et langages algébriques, Thèse 3e cycle,
Université Paris-VII, 1976.

22. J. SAKAROVITCH, Syntaxe des langages de Chomsky, Thèse Se Math., Univ.
Paris-VII, 1979.

vol. 25, n° 3, 1991



272 T. HERBST

23. J. SAKAROVITCH, Sur une propriété d'itération des langages algébriques déter-
ministes, Math. Systems Theory, 1981, 14, pp. 247-288.

24. R. E. STEARNS, A regularity test for pushdown machines, Inform. and Control,
1967, 11, pp. 323-340.

25. L. VALIANT, Regularity and related problems for deterministic pushdown auto-
mata, J. Assoc. Comput. Math., 1975, 22, pp. 1-10.

26. E. VALKEMA, Zùr Charakterisierung formaler Sprachen durch Halbgruppen,
Dissertation, Universitât Kiel, 1974.

Informatique théorique et Applications/Theoretical Informaties and Applications


